@inproceedings{alahmari-etal-2025-arabic,
title = "{A}rabic-Centric Large Language Models for Dialectal {A}rabic Sentiment Analysis Task",
author = "Alahmari, Salwa Saad and
Atwell, Eric and
Saadany, Hadeel and
Alsalka, Mohammad",
editor = "Alharbi, Maram and
Chafik, Salmane and
Ezzini, Saad and
Mitkov, Ruslan and
Ranasinghe, Tharindu and
Hettiarachchi, Hansi",
booktitle = "Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-ahasis.11/",
pages = "69--75",
abstract = "This paper presents a study on sentiment anal- ysis of Dialectal Arabic (DA), with a particu- lar focus on Saudi and Moroccan (Darija) di- alects within the hospitality domain. We in- troduce a novel dataset comprising 698 Saudi Arabian proverbs annotated with sentiment polarity labels{---}Positive, Negative, and Neu- tral{---}collected from five major Saudi dialect regions: Najdi, Hijazi, Shamali, Janoubi, and Sharqawi. In addition to this, we used customer reviews for fine-tuning the CAMeLBERT-DA- SA model, which achieved a 75{\%} F1 score in sentiment classification. To further evaluate the robustness of Arabic-centric models, we assessed the performance of three open-source large language models{---}Allam, ACeGPT, and Jais{---}in a zero-shot setting using the Ahasis shared task test set. Our results highlight the effectiveness of domain-specific fine-tuning in improving sentiment analysis performance and demonstrate the potential of Arabic-centric LLMs in zero-shot scenarios. This work con- tributes new linguistic resources and empirical insights to support ongoing research in senti- ment analysis for Arabic dialect"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alahmari-etal-2025-arabic">
<titleInfo>
<title>Arabic-Centric Large Language Models for Dialectal Arabic Sentiment Analysis Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salwa</namePart>
<namePart type="given">Saad</namePart>
<namePart type="family">Alahmari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Atwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hadeel</namePart>
<namePart type="family">Saadany</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Alsalka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maram</namePart>
<namePart type="family">Alharbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salmane</namePart>
<namePart type="family">Chafik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Ezzini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansi</namePart>
<namePart type="family">Hettiarachchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a study on sentiment anal- ysis of Dialectal Arabic (DA), with a particu- lar focus on Saudi and Moroccan (Darija) di- alects within the hospitality domain. We in- troduce a novel dataset comprising 698 Saudi Arabian proverbs annotated with sentiment polarity labels—Positive, Negative, and Neu- tral—collected from five major Saudi dialect regions: Najdi, Hijazi, Shamali, Janoubi, and Sharqawi. In addition to this, we used customer reviews for fine-tuning the CAMeLBERT-DA- SA model, which achieved a 75% F1 score in sentiment classification. To further evaluate the robustness of Arabic-centric models, we assessed the performance of three open-source large language models—Allam, ACeGPT, and Jais—in a zero-shot setting using the Ahasis shared task test set. Our results highlight the effectiveness of domain-specific fine-tuning in improving sentiment analysis performance and demonstrate the potential of Arabic-centric LLMs in zero-shot scenarios. This work con- tributes new linguistic resources and empirical insights to support ongoing research in senti- ment analysis for Arabic dialect</abstract>
<identifier type="citekey">alahmari-etal-2025-arabic</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-ahasis.11/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>69</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Arabic-Centric Large Language Models for Dialectal Arabic Sentiment Analysis Task
%A Alahmari, Salwa Saad
%A Atwell, Eric
%A Saadany, Hadeel
%A Alsalka, Mohammad
%Y Alharbi, Maram
%Y Chafik, Salmane
%Y Ezzini, Saad
%Y Mitkov, Ruslan
%Y Ranasinghe, Tharindu
%Y Hettiarachchi, Hansi
%S Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F alahmari-etal-2025-arabic
%X This paper presents a study on sentiment anal- ysis of Dialectal Arabic (DA), with a particu- lar focus on Saudi and Moroccan (Darija) di- alects within the hospitality domain. We in- troduce a novel dataset comprising 698 Saudi Arabian proverbs annotated with sentiment polarity labels—Positive, Negative, and Neu- tral—collected from five major Saudi dialect regions: Najdi, Hijazi, Shamali, Janoubi, and Sharqawi. In addition to this, we used customer reviews for fine-tuning the CAMeLBERT-DA- SA model, which achieved a 75% F1 score in sentiment classification. To further evaluate the robustness of Arabic-centric models, we assessed the performance of three open-source large language models—Allam, ACeGPT, and Jais—in a zero-shot setting using the Ahasis shared task test set. Our results highlight the effectiveness of domain-specific fine-tuning in improving sentiment analysis performance and demonstrate the potential of Arabic-centric LLMs in zero-shot scenarios. This work con- tributes new linguistic resources and empirical insights to support ongoing research in senti- ment analysis for Arabic dialect
%U https://aclanthology.org/2025.ranlp-ahasis.11/
%P 69-75
Markdown (Informal)
[Arabic-Centric Large Language Models for Dialectal Arabic Sentiment Analysis Task](https://aclanthology.org/2025.ranlp-ahasis.11/) (Alahmari et al., RANLP 2025)
ACL