@inproceedings{chouikhi-aloui-2025-dialect,
title = "Dialect-Aware Sentiment Analysis for Ahasis Challenge",
author = "Chouikhi, Hasna and
Aloui, Manel",
editor = "Alharbi, Maram and
Chafik, Salmane and
Ezzini, Saad and
Mitkov, Ruslan and
Ranasinghe, Tharindu and
Hettiarachchi, Hansi",
booktitle = "Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.ranlp-ahasis.7/",
pages = "40--45",
abstract = "This paper presents our approach to Arabic sentiment analysis with a specific focus on dialect-awareness for Saudi and Moroccan (Darija) dialectal variants. We develop a system that achieves a macro F1 score of 77{\%} on the test set, demonstrating effective generalization across these dialect variations. Our approach leverages a pre-trained Arabic language model (Qarib) with custom dialect-specific embeddings and preprocessing techniques tailored to each dialect. The results show a significant improvement over baseline models that do not incorporate dialect information, with an absolute gain of 5{\%} in F1 score over the equivalent non-dialect-aware model. Our analysis further reveals distinct sentiment expression patterns between Saudi and Darija dialects, highlighting the importance of dialect-aware approaches for Arabic sentiment analysis."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chouikhi-aloui-2025-dialect">
<titleInfo>
<title>Dialect-Aware Sentiment Analysis for Ahasis Challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hasna</namePart>
<namePart type="family">Chouikhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Aloui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maram</namePart>
<namePart type="family">Alharbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salmane</namePart>
<namePart type="family">Chafik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Ezzini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansi</namePart>
<namePart type="family">Hettiarachchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our approach to Arabic sentiment analysis with a specific focus on dialect-awareness for Saudi and Moroccan (Darija) dialectal variants. We develop a system that achieves a macro F1 score of 77% on the test set, demonstrating effective generalization across these dialect variations. Our approach leverages a pre-trained Arabic language model (Qarib) with custom dialect-specific embeddings and preprocessing techniques tailored to each dialect. The results show a significant improvement over baseline models that do not incorporate dialect information, with an absolute gain of 5% in F1 score over the equivalent non-dialect-aware model. Our analysis further reveals distinct sentiment expression patterns between Saudi and Darija dialects, highlighting the importance of dialect-aware approaches for Arabic sentiment analysis.</abstract>
<identifier type="citekey">chouikhi-aloui-2025-dialect</identifier>
<location>
<url>https://aclanthology.org/2025.ranlp-ahasis.7/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>40</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dialect-Aware Sentiment Analysis for Ahasis Challenge
%A Chouikhi, Hasna
%A Aloui, Manel
%Y Alharbi, Maram
%Y Chafik, Salmane
%Y Ezzini, Saad
%Y Mitkov, Ruslan
%Y Ranasinghe, Tharindu
%Y Hettiarachchi, Hansi
%S Proceedings of the Shared Task on Sentiment Analysis for Arabic Dialects
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F chouikhi-aloui-2025-dialect
%X This paper presents our approach to Arabic sentiment analysis with a specific focus on dialect-awareness for Saudi and Moroccan (Darija) dialectal variants. We develop a system that achieves a macro F1 score of 77% on the test set, demonstrating effective generalization across these dialect variations. Our approach leverages a pre-trained Arabic language model (Qarib) with custom dialect-specific embeddings and preprocessing techniques tailored to each dialect. The results show a significant improvement over baseline models that do not incorporate dialect information, with an absolute gain of 5% in F1 score over the equivalent non-dialect-aware model. Our analysis further reveals distinct sentiment expression patterns between Saudi and Darija dialects, highlighting the importance of dialect-aware approaches for Arabic sentiment analysis.
%U https://aclanthology.org/2025.ranlp-ahasis.7/
%P 40-45
Markdown (Informal)
[Dialect-Aware Sentiment Analysis for Ahasis Challenge](https://aclanthology.org/2025.ranlp-ahasis.7/) (Chouikhi & Aloui, RANLP 2025)
ACL