@inproceedings{farag-etal-2025-conditional,
title = "Conditional Multi-Stage Failure Recovery for Embodied Agents",
author = "Farag, Youmna and
Stoyanchev, Svetlana and
Li, Mohan and
Keizer, Simon and
Doddipatla, Rama",
editor = "Kamalloo, Ehsan and
Gontier, Nicolas and
Lu, Xing Han and
Dziri, Nouha and
Murty, Shikhar and
Lacoste, Alexandre",
booktitle = "Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.realm-1.15/",
doi = "10.18653/v1/2025.realm-1.15",
pages = "200--227",
ISBN = "979-8-89176-264-0",
abstract = "Embodied agents performing complex tasks are susceptible to execution failures, motivating the need for effective failure recovery mechanisms. In this work, we introduce a conditional multi-stage failure recovery framework that employs zero-shot chain prompting. The framework is structured into four error-handling stages, with three operating during task execution and one functioning as a post-execution reflection phase.Our approach utilises the reasoning capabilities of LLMs to analyse execution challenges within their environmental context and devise strategic solutions.We evaluate our method on the TfD benchmark of the TEACH dataset and achieve state-of-the-art performance, outperforming a baseline without error recovery by 11.5{\%} and surpassing the strongest existing model by 19{\%}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="farag-etal-2025-conditional">
<titleInfo>
<title>Conditional Multi-Stage Failure Recovery for Embodied Agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youmna</namePart>
<namePart type="family">Farag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Stoyanchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Keizer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rama</namePart>
<namePart type="family">Doddipatla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ehsan</namePart>
<namePart type="family">Kamalloo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Gontier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nouha</namePart>
<namePart type="family">Dziri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shikhar</namePart>
<namePart type="family">Murty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Lacoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-264-0</identifier>
</relatedItem>
<abstract>Embodied agents performing complex tasks are susceptible to execution failures, motivating the need for effective failure recovery mechanisms. In this work, we introduce a conditional multi-stage failure recovery framework that employs zero-shot chain prompting. The framework is structured into four error-handling stages, with three operating during task execution and one functioning as a post-execution reflection phase.Our approach utilises the reasoning capabilities of LLMs to analyse execution challenges within their environmental context and devise strategic solutions.We evaluate our method on the TfD benchmark of the TEACH dataset and achieve state-of-the-art performance, outperforming a baseline without error recovery by 11.5% and surpassing the strongest existing model by 19%.</abstract>
<identifier type="citekey">farag-etal-2025-conditional</identifier>
<identifier type="doi">10.18653/v1/2025.realm-1.15</identifier>
<location>
<url>https://aclanthology.org/2025.realm-1.15/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>200</start>
<end>227</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conditional Multi-Stage Failure Recovery for Embodied Agents
%A Farag, Youmna
%A Stoyanchev, Svetlana
%A Li, Mohan
%A Keizer, Simon
%A Doddipatla, Rama
%Y Kamalloo, Ehsan
%Y Gontier, Nicolas
%Y Lu, Xing Han
%Y Dziri, Nouha
%Y Murty, Shikhar
%Y Lacoste, Alexandre
%S Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-264-0
%F farag-etal-2025-conditional
%X Embodied agents performing complex tasks are susceptible to execution failures, motivating the need for effective failure recovery mechanisms. In this work, we introduce a conditional multi-stage failure recovery framework that employs zero-shot chain prompting. The framework is structured into four error-handling stages, with three operating during task execution and one functioning as a post-execution reflection phase.Our approach utilises the reasoning capabilities of LLMs to analyse execution challenges within their environmental context and devise strategic solutions.We evaluate our method on the TfD benchmark of the TEACH dataset and achieve state-of-the-art performance, outperforming a baseline without error recovery by 11.5% and surpassing the strongest existing model by 19%.
%R 10.18653/v1/2025.realm-1.15
%U https://aclanthology.org/2025.realm-1.15/
%U https://doi.org/10.18653/v1/2025.realm-1.15
%P 200-227
Markdown (Informal)
[Conditional Multi-Stage Failure Recovery for Embodied Agents](https://aclanthology.org/2025.realm-1.15/) (Farag et al., REALM 2025)
ACL
- Youmna Farag, Svetlana Stoyanchev, Mohan Li, Simon Keizer, and Rama Doddipatla. 2025. Conditional Multi-Stage Failure Recovery for Embodied Agents. In Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 200–227, Vienna, Austria. Association for Computational Linguistics.