@inproceedings{schmitz-etal-2025-oversight,
title = "Oversight Structures for Agentic {AI} in Public-Sector Organizations",
author = "Schmitz, Chris and
Rystr{\o}m, Jonathan and
Batzner, Jan",
editor = "Kamalloo, Ehsan and
Gontier, Nicolas and
Lu, Xing Han and
Dziri, Nouha and
Murty, Shikhar and
Lacoste, Alexandre",
booktitle = "Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.realm-1.21/",
doi = "10.18653/v1/2025.realm-1.21",
pages = "298--308",
ISBN = "979-8-89176-264-0",
abstract = "This paper finds that agentic AI systems intensify existing challenges to traditional public sector oversight mechanisms {---} which rely on siloed compliance units and episodic approvals rather than continuous, integrated supervision. We identify five governance dimensions essential for responsible agent deployment: cross-departmental implementation, comprehensive evaluation, enhanced security protocols, operational visibility, and systematic auditing. We evaluate the capacity of existing oversight structures to meet these challenges, via a mixed-methods approach consisting of a literature review and interviews with civil servants in AI-related roles. We find that agent oversight poses intensified versions of three existing governance challenges: continuous oversight, deeper integration of governance and operational capabilities, and interdepartmental coordination. We propose approaches that both adapt institutional mechanisms and design agent architectures compatible with public sector constraints."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schmitz-etal-2025-oversight">
<titleInfo>
<title>Oversight Structures for Agentic AI in Public-Sector Organizations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Schmitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Rystrøm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Batzner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ehsan</namePart>
<namePart type="family">Kamalloo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Gontier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nouha</namePart>
<namePart type="family">Dziri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shikhar</namePart>
<namePart type="family">Murty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Lacoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-264-0</identifier>
</relatedItem>
<abstract>This paper finds that agentic AI systems intensify existing challenges to traditional public sector oversight mechanisms — which rely on siloed compliance units and episodic approvals rather than continuous, integrated supervision. We identify five governance dimensions essential for responsible agent deployment: cross-departmental implementation, comprehensive evaluation, enhanced security protocols, operational visibility, and systematic auditing. We evaluate the capacity of existing oversight structures to meet these challenges, via a mixed-methods approach consisting of a literature review and interviews with civil servants in AI-related roles. We find that agent oversight poses intensified versions of three existing governance challenges: continuous oversight, deeper integration of governance and operational capabilities, and interdepartmental coordination. We propose approaches that both adapt institutional mechanisms and design agent architectures compatible with public sector constraints.</abstract>
<identifier type="citekey">schmitz-etal-2025-oversight</identifier>
<identifier type="doi">10.18653/v1/2025.realm-1.21</identifier>
<location>
<url>https://aclanthology.org/2025.realm-1.21/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>298</start>
<end>308</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Oversight Structures for Agentic AI in Public-Sector Organizations
%A Schmitz, Chris
%A Rystrøm, Jonathan
%A Batzner, Jan
%Y Kamalloo, Ehsan
%Y Gontier, Nicolas
%Y Lu, Xing Han
%Y Dziri, Nouha
%Y Murty, Shikhar
%Y Lacoste, Alexandre
%S Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-264-0
%F schmitz-etal-2025-oversight
%X This paper finds that agentic AI systems intensify existing challenges to traditional public sector oversight mechanisms — which rely on siloed compliance units and episodic approvals rather than continuous, integrated supervision. We identify five governance dimensions essential for responsible agent deployment: cross-departmental implementation, comprehensive evaluation, enhanced security protocols, operational visibility, and systematic auditing. We evaluate the capacity of existing oversight structures to meet these challenges, via a mixed-methods approach consisting of a literature review and interviews with civil servants in AI-related roles. We find that agent oversight poses intensified versions of three existing governance challenges: continuous oversight, deeper integration of governance and operational capabilities, and interdepartmental coordination. We propose approaches that both adapt institutional mechanisms and design agent architectures compatible with public sector constraints.
%R 10.18653/v1/2025.realm-1.21
%U https://aclanthology.org/2025.realm-1.21/
%U https://doi.org/10.18653/v1/2025.realm-1.21
%P 298-308
Markdown (Informal)
[Oversight Structures for Agentic AI in Public-Sector Organizations](https://aclanthology.org/2025.realm-1.21/) (Schmitz et al., REALM 2025)
ACL