@inproceedings{khan-etal-2025-nust,
title = "{NUST} Nova at {RIRAG} 2025: A Hybrid Framework for Regulatory Information Retrieval and Question Answering",
author = "Khan, Mariam Babar and
Ameer, Huma and
Latif, Seemab and
Fatima, Mehwish",
editor = "Gokhan, Tuba and
Wang, Kexin and
Gurevych, Iryna and
Briscoe, Ted",
booktitle = "Proceedings of the 1st Regulatory NLP Workshop (RegNLP 2025)",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.regnlp-1.11/",
pages = "73--78",
abstract = "NUST Nova participates in RIRAG Shared Task, addressing two critical challenges: Task 1 involves retrieving relevant subsections from regulatory documents based on user queries, while Task 2 focuses on generating concise, contextually accurate answers using the retrieved information. We propose a Hybrid Retrieval Framework that combines graph-based retrieval, vector-based methods, and keyword matching BM25 to enhance relevance and precision in regulatory QA. Using score-based fusion and iterative refinement, the framework retrieves the top 10 relevant passages, which are then used by an LLM to generate accurate, context-aware answers. After empirical evaluation, we also conduct an error analysis to identify our framework`s limitations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khan-etal-2025-nust">
<titleInfo>
<title>NUST Nova at RIRAG 2025: A Hybrid Framework for Regulatory Information Retrieval and Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mariam</namePart>
<namePart type="given">Babar</namePart>
<namePart type="family">Khan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huma</namePart>
<namePart type="family">Ameer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seemab</namePart>
<namePart type="family">Latif</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mehwish</namePart>
<namePart type="family">Fatima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Regulatory NLP Workshop (RegNLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuba</namePart>
<namePart type="family">Gokhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kexin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ted</namePart>
<namePart type="family">Briscoe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>NUST Nova participates in RIRAG Shared Task, addressing two critical challenges: Task 1 involves retrieving relevant subsections from regulatory documents based on user queries, while Task 2 focuses on generating concise, contextually accurate answers using the retrieved information. We propose a Hybrid Retrieval Framework that combines graph-based retrieval, vector-based methods, and keyword matching BM25 to enhance relevance and precision in regulatory QA. Using score-based fusion and iterative refinement, the framework retrieves the top 10 relevant passages, which are then used by an LLM to generate accurate, context-aware answers. After empirical evaluation, we also conduct an error analysis to identify our framework‘s limitations.</abstract>
<identifier type="citekey">khan-etal-2025-nust</identifier>
<location>
<url>https://aclanthology.org/2025.regnlp-1.11/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>73</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NUST Nova at RIRAG 2025: A Hybrid Framework for Regulatory Information Retrieval and Question Answering
%A Khan, Mariam Babar
%A Ameer, Huma
%A Latif, Seemab
%A Fatima, Mehwish
%Y Gokhan, Tuba
%Y Wang, Kexin
%Y Gurevych, Iryna
%Y Briscoe, Ted
%S Proceedings of the 1st Regulatory NLP Workshop (RegNLP 2025)
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F khan-etal-2025-nust
%X NUST Nova participates in RIRAG Shared Task, addressing two critical challenges: Task 1 involves retrieving relevant subsections from regulatory documents based on user queries, while Task 2 focuses on generating concise, contextually accurate answers using the retrieved information. We propose a Hybrid Retrieval Framework that combines graph-based retrieval, vector-based methods, and keyword matching BM25 to enhance relevance and precision in regulatory QA. Using score-based fusion and iterative refinement, the framework retrieves the top 10 relevant passages, which are then used by an LLM to generate accurate, context-aware answers. After empirical evaluation, we also conduct an error analysis to identify our framework‘s limitations.
%U https://aclanthology.org/2025.regnlp-1.11/
%P 73-78
Markdown (Informal)
[NUST Nova at RIRAG 2025: A Hybrid Framework for Regulatory Information Retrieval and Question Answering](https://aclanthology.org/2025.regnlp-1.11/) (Khan et al., RegNLP 2025)
ACL