@inproceedings{simonsen-etal-2025-foqa,
title = "{F}o{QA}: A {F}aroese Question-Answering Dataset",
author = "Simonsen, Annika and
Nielsen, Dan Saattrup and
Einarsson, Hafsteinn",
editor = "Holdt, {\v{S}}pela Arhar and
Ilinykh, Nikolai and
Scalvini, Barbara and
Bruton, Micaella and
Debess, Iben Nyholm and
Tudor, Crina Madalina",
booktitle = "Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025)",
month = mar,
year = "2025",
address = "Tallinn, Estonia",
publisher = "University of Tartu Library, Estonia",
url = "https://aclanthology.org/2025.resourceful-1.11/",
pages = "48--57",
ISBN = "978-9908-53-121-2",
abstract = "We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simonsen-etal-2025-foqa">
<titleInfo>
<title>FoQA: A Faroese Question-Answering Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annika</namePart>
<namePart type="family">Simonsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="given">Saattrup</namePart>
<namePart type="family">Nielsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hafsteinn</namePart>
<namePart type="family">Einarsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Špela</namePart>
<namePart type="given">Arhar</namePart>
<namePart type="family">Holdt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Ilinykh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Scalvini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Micaella</namePart>
<namePart type="family">Bruton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iben</namePart>
<namePart type="given">Nyholm</namePart>
<namePart type="family">Debess</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Crina</namePart>
<namePart type="given">Madalina</namePart>
<namePart type="family">Tudor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>University of Tartu Library, Estonia</publisher>
<place>
<placeTerm type="text">Tallinn, Estonia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-9908-53-121-2</identifier>
</relatedItem>
<abstract>We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis.</abstract>
<identifier type="citekey">simonsen-etal-2025-foqa</identifier>
<location>
<url>https://aclanthology.org/2025.resourceful-1.11/</url>
</location>
<part>
<date>2025-03</date>
<extent unit="page">
<start>48</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FoQA: A Faroese Question-Answering Dataset
%A Simonsen, Annika
%A Nielsen, Dan Saattrup
%A Einarsson, Hafsteinn
%Y Holdt, Špela Arhar
%Y Ilinykh, Nikolai
%Y Scalvini, Barbara
%Y Bruton, Micaella
%Y Debess, Iben Nyholm
%Y Tudor, Crina Madalina
%S Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025)
%D 2025
%8 March
%I University of Tartu Library, Estonia
%C Tallinn, Estonia
%@ 978-9908-53-121-2
%F simonsen-etal-2025-foqa
%X We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis.
%U https://aclanthology.org/2025.resourceful-1.11/
%P 48-57
Markdown (Informal)
[FoQA: A Faroese Question-Answering Dataset](https://aclanthology.org/2025.resourceful-1.11/) (Simonsen et al., RESOURCEFUL 2025)
ACL
- Annika Simonsen, Dan Saattrup Nielsen, and Hafsteinn Einarsson. 2025. FoQA: A Faroese Question-Answering Dataset. In Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025), pages 48–57, Tallinn, Estonia. University of Tartu Library, Estonia.