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Abstract
Large Language Models (LLMs) are in-
creasingly applied to temporally grounded
reasoning tasks, yet the role of input rep-
resentation remains unclear. This paper
compares structured temporal inputs, rep-
resented as Temporal Knowledge Graphs
(TKGs), with unstructured captions in two
settings: forecasting future events and de-
tecting anomalies in surveillance video de-
scriptions. To enable direct comparison,
we build a unified dataset by aligning
anomaly labels from UCF-Crime with cap-
tion annotations from UCA. Experiments
show that unstructured captions consis-
tently yield slightly higher scores across
both tasks, but the differences do not reach
statistical significance. Their trade-offs,
however, differ: captions provide richer se-
mantic cues for generation, while TKGs
reduce input length, suppress noise, and
enhance interpretability. These findings
suggest that action-centric corpora, such
as surveillance or forensic narratives, nat-
urally lend themselves to structured rep-
resentations, which can provide temporal
scaffolds for timeline reconstruction and
more traceable reasoning. All code, data
processing scripts, and experimental re-
sults are available at our GitHub reposi-
tory.1

Keywords: Large Language Mod-
els (LLMs), Temporal Knowledge Graphs
(TKGs), Forecasting, Anomaly Detection,
Structured vs. Unstructured Input, Surveil-
lance Video Understanding

1 Introduction
Large Language Models (LLMs) have demon-
strated impressive performance across a wide

1https://github.com/lowannann/
StructVsUnstruct-LLM

spectrum of natural language processing tasks,
ranging from open-domain question answering
to temporal reasoning (Gruver et al., 2023; Jin
et al., 2023a). Yet, when these models are
applied to real-world scenarios where events
unfold over time—such as surveillance video
understanding, event forecasting, or anomaly
detection—the choice of input representation
becomes crucial. The way temporal context
is presented to an LLM can significantly af-
fect its ability to generate accurate predictions
or make reliable judgments (Su et al., 2024a;
Zhou and Yu, 2024).

Two common approaches to representing
temporal context are unstructured text and
structured knowledge representations. Raw
textual descriptions, such as captions or tran-
scripts, preserve rich semantic details and con-
textual cues, which may benefit generative
tasks. However, they are also noisy and can
introduce irrelevant information that distracts
the model. In contrast, Temporal Knowl-
edge Graphs (TKGs) encode events as struc-
tured quadruples (head entity, relation, tail
entity, timestamp) (Gastinger et al., 2022;
Trivedi et al., 2017b), thereby distilling inter-
actions into a more compact and less noisy
form. TKGs have been widely applied in
temporal reasoning tasks such as forecasting
and anomaly detection (Goel et al., 2020; Lee
et al., 2023a; Jin et al., 2020). They facilitate
knowledge management and temporal reason-
ing (Ji et al., 2021; Kejriwal, 2019), but may
omit subtle semantic cues available in natu-
ral language. Despite the growing interest
in both representations, there remains little
systematic comparison of how structured and
unstructured inputs affect LLM performance
across different temporal tasks.

In this work, we investigate this gap by
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asking: (1) Does structured temporal input
provide advantages over unstructured input
for forecasting tasks? (2) How does tempo-
ral context—whether structured or unstruc-
tured—impact anomaly detection tasks? We
evaluate LLMs on two settings using a fine-
grained surveillance video dataset that com-
bines anomaly labels from UCF-Crime (Sul-
tani et al., 2018) with caption annotations
from UCA (Yuan et al., 2023).

Our contributions are threefold. First, we
propose a comparative framework that evalu-
ates structured and unstructured inputs under
two complementary temporal reasoning tasks:
forecasting and anomaly detection. Second,
we provide empirical evidence that unstruc-
tured captions consistently perform slightly
better across both tasks, though the differ-
ences are not statistically significant. This
finding suggests that LLMs may not inher-
ently favor one representation, but that the
choice between structured and unstructured
inputs should depend on task demands. Fi-
nally, our results carry practical implications
for applying LLMs in temporally dynamic do-
mains, highlighting how structured formats
like TKGs can support contexts where reduced
input cost, transparency, or traceability are es-
sential.

2 Related Work

KGs, TKGs, and TKG Forecasting.
Knowledge Graphs (KGs) organize entities
and their relations into triples ⟨h, r, t⟩, offer-
ing a compact and interpretable representa-
tion that supports reasoning in applications
such as semantic search and question answer-
ing (Kejriwal, 2019; Ji et al., 2021). However,
many real-world scenarios are inherently tem-
poral. To capture evolving dynamics, Tem-
poral Knowledge Graphs (TKGs) extend this
structure by associating each fact with a times-
tamp, forming quadruples ⟨h, r, t, τ⟩ (Trivedi
et al., 2017a; Leblay and Chekol, 2018; Goel
et al., 2020; Jin et al., 2023b). This tempo-
ral extension enables modeling sequential de-
pendencies and facilitates downstream tasks
such as forecasting and anomaly detection in
time-sensitive domains. By explicitly encod-
ing temporal order, TKGs preserve event tra-
jectories while reducing redundancy and noise

compared to free-form text.
Research on TKG forecasting (TKGF) has

traditionally relied on graph-based methods,
which adapt knowledge graph embedding and
graph neural network (GNN) architectures to
temporal settings. Examples include RE-NET
and recurrent RGCN variants that propagate
historical states across timesteps (Jin et al.,
2020; Chang et al., 2025), as well as sym-
bolic approaches like TLogic and Temporal
ILP that induce temporal rules (Liu et al.,
2022; Xiong et al., 2024). While effective,
these methods often require dataset-specific
tuning and struggle in sparse or noisy contexts
(Ma et al., 2023; Han et al., 2021). More re-
cently, LLM-based approaches have reframed
TKG forecasting as a language modeling prob-
lem, either by integrating graph embeddings
into prompts (Zhang et al., 2024b; Wang et al.,
2024; Zhang et al., 2024a) or by casting histor-
ical quadruples into textual sequences for in-
context learning (Lee et al., 2023a; Liao et al.,
2023; Luo et al., 2024). Remarkably, even
general-purpose LLMs can perform competi-
tively with specialized graph models, suggest-
ing that LLMs capture not only semantic cues
but also structural patterns in temporal data
(Lee et al., 2023a).

LLMs in Forecasting and Anomaly De-
tection Forecasting is a fundamental tem-
poral reasoning task that aims to predict fu-
ture events or values from historical patterns.
While traditionally addressed by statistical
and deep learning models, recent work has
demonstrated that LLMs provide strong gen-
eralization and flexible prompting mechanisms
for this task (Jin et al., 2023a; Alnegheimish
et al., 2024). Approaches include zero- or
few-shot prompting, fine-tuning on domain-
specific datasets, and direct application of
foundation models. For example, Gruver et al.
(2023) and Xue and Salim (2023) showed that
GPT-family models and LLaMA variants can
achieve competitive results on standard bench-
marks in zero-shot settings, while fine-tuned
BERT-based models improved regression accu-
racy on structured datasets (Xue et al., 2022).
These studies highlight that LLMs can encode
temporal dependencies through natural lan-
guage interfaces, providing a flexible alterna-
tive to specialized time-series architectures.
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Anomaly detection focuses on identifying de-
viations from expected temporal behavior and
is increasingly framed as a diagnostic test of
models’temporal reasoning ability (Su et al.,
2024b; Zhou and Yu, 2024). LLMs have been
applied here through three main strategies: us-
ing frozen encoders for log or sensor data, fine-
tuning for binary anomaly classification, and
prompt-based reasoning. For instance, Dang
et al. (2021) fine-tuned BERT for detecting
anomalies in KPI and Yahoo datasets, while
Lee et al. (2023b) evaluated few-shot and zero-
shot anomaly detection on system logs. Other
prompt-based methods (Zhang et al., 2023;
Huang et al., 2023) demonstrated that LLMs
can capture subtle irregularities in noisy or
weakly labeled data. Collectively, these find-
ings suggest that LLMs not only generalize
well across forecasting and anomaly detection
but also provide a unified framework for han-
dling diverse temporal reasoning tasks.

Input Representations and Prompting
Strategies for LLM The representation of
temporal information critically shapes how
LLMs perform reasoning over time. Struc-
tured inputs—such as KG triples or graph em-
beddings—encode relations explicitly, provid-
ing precision and reducing ambiguity. Studies
have shown that even when entity names are
replaced with arbitrary IDs, LLMs can still
perform forecasting by exploiting the struc-
tural patterns alone (Lee et al., 2023a). Simi-
larly, prompts that present historical events as
discrete triples allow the model to better recog-
nize temporal dependencies than long descrip-
tive texts, since the latter introduce noise and
redundancy (Chang et al., 2024, 2025). In con-
trast, unstructured inputs—such as captions
or free-form text—carry richer semantic infor-
mation and contextual cues, but are noisier
and harder for models to consistently parse.

Despite their noisiness, unstructured repre-
sentations can complement structured data by
capturing semantic or pragmatic information
that graphs often omit. For example, tex-
tual descriptions may highlight causal links or
implicit attributes useful for reasoning about
events. Prior work has shown that com-
bining structured triples with summarized or
retrieved text improves model performance
by balancing precision with semantic nuance

(Chang et al., 2024). In temporal question an-
swering, GenTKGQA (Gao et al., 2024) and
M3TQA (Zha et al., 2024) illustrate how tex-
tual context and graph structure can be fused
to cover each other’s blind spots. These re-
sults suggest that structured and unstructured
inputs are not mutually exclusive but offer
complementary strengths: graphs provide clar-
ity and temporal grounding, while text intro-
duces richness and flexibility.

We regard temporal forecasting and
anomaly detection as complementary settings
for evaluating how LLMs process tempo-
rally structured input. Forecasting captures
whether a model can extrapolate from ob-
served sequences to anticipate plausible next
events, while anomaly detection emphasizes
the ability to recognize deviations that require
attention to semantic coherence, pragmatic
norms, and contextual irregularities. As Zhou
and Yu (2024) notes, anomaly detection serves
as a particularly diagnostic probe, since it
goes beyond numerical accuracy and requires
models to identify exceptions and contextual
shifts rather than relying on surface-level
continuation. Together, these two tasks pro-
vide complementary perspectives on temporal
reasoning: one oriented toward projection,
the other toward sensitivity to irregularities.

In this work, we leverage the UCF-Crime
Annotation (UCA) dataset, whose human-
written captions offer semantically and prag-
matically grounded temporal descriptions of
surveillance footage. By formulating both fore-
casting and anomaly detection on this data,
we create a unified evaluation setting that al-
lows us to examine how LLMs interpret struc-
tured inputs (TKGs) versus unstructured in-
puts (captions). This dual-task design is not
aimed at comparing the tasks themselves, but
at using them jointly to assess how input
modality shapes models’ability to internalize
temporal structures and reason about events.

3 Methods

3.1 Dataset
We employs the UCF-Crime dataset (Sultani
et al., 2018) and its multimodal extension, the
UCF-Crime Annotation (UCA) dataset (Yuan
et al., 2023). UCF-Crime contains 1,900 long
surveillance videos (over 128 hours) with ei-
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ther normal activities or one of 13 predefined
anomalous event types, such as Fighting, Rob-
bery, Arson, Assault, and Burglary. In our
setting, we define an anomaly as an event
or activity within a video sequence that de-
viates significantly from expected normal pat-
terns of behavior. Anomalies are inherently
context-dependent, rare in occurrence, and in
surveillance scenarios typically correspond to
suspicious or potentially criminal actions (e.g.,
fighting, robbery, or arson). Following prior
work on video anomaly detection, anomaly
labels in our experiments are derived from
benchmark annotations, where each anoma-
lous frame is marked according to the presence
of such irregular or threatening activities.

While UCF-Crime provides video-level bi-
nary anomaly labels and segment-level annota-
tions for evaluation, it lacks natural language
descriptions of visual content. To address
this, the UCA dataset augments UCF-Crime
with over 23,000 sentence-level captions (�110
hours), each temporally aligned at 0.1-second
resolution. These captions describe both nor-
mal and anomalous events in detail, offering
semantically and pragmatically rich accounts
of evolving scenes. The integration of UCF-
Crime and UCA yields a unified data with
anomaly labels, temporal spans, and human-
written descriptions, enabling us to compare
structured inputs (e.g., TKG quadruples) and
unstructured inputs (caption sequences) for
LLM-based forecasting and anomaly detec-
tion.

Table 1 provides illustrative examples from
this unified dataset, showing how video seg-
ments are paired with human-written captions,
their corresponding TKG representations, and
anomaly labels. This format highlights the
dual structured–unstructured nature of the
data, which supports systematic evaluation of
LLMs across different input modalities.

3.2 Models Used
We employed two LLMs, each serving a dis-
tinct role in the experimental pipeline for fore-
casting and anomaly detection tasks.

GPT-4o-Mini (via OpenAI API). GPT-
4o-Mini was used exclusively for extract-
ing TKG representations from natural lan-
guage captions. The model was accessed

through the OpenAI API2 with LangChain3’
s LLMGraphTransformer() module, using a
temperature of 0.1 to ensure deterministic
triple extraction. No fine-tuning or post-
processing was applied beyond temporal align-
ment. A closed-source model was selected
for this step due to its superior performance
in zero-shot structural parsing and KG ex-
traction (Huang et al., 2024; Carta et al.,
2023), thereby ensuring high-quality and reli-
able TKG representations that minimize con-
founding errors in downstream evaluations.

Mistral-large-latest (via Open Source
API). All downstream inference—
forecasting and anomaly detection—
was conducted with the open-source
mistral-large-latest4 . This model
was chosen for two main reasons: (1) its
open-source nature ensures reproducibility
and transparency, which are essential for
academic research; and (2) as an instruction-
tuned model, it demonstrates strong reasoning
and generation capabilities across diverse NLP
tasks. To maintain consistency, all runs used
identical inference parameters: temperature =
0.1, top-p = 1.0, and maximum input length
= 128. This setup guarantees a controlled
comparison between structured (TKG-based)
and unstructured (caption-based) inputs.

By separating the TKG extraction phase
from the main evaluation model, we en-
sure that observed differences between input
modalities stem from the LLM’s reasoning
capacity rather than inconsistencies in struc-
tural encoding quality.

3.3 Experiment 1: Forecasting
Objective. The forecasting experiment eval-
uates whether LLMs can generate semanti-
cally plausible next-event descriptions based
on prior temporal context. Instead of predict-
ing new triples, the task is framed as fore-
casting the natural language caption of a fu-
ture video frame given preceding input in two
forms: (1) structured TKG quadruples and
(2) unstructured captions. The key goal is

2OpenAI API: https://openai.com/index/
openai-api/

3LangChain: https://python.langchain.com/
docs/introduction/

4Mistral AI: https://docs.mistral.ai/
getting-started/models/models_overview/
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Video Type Timestamp Caption (Text and TKG Format) Anomalous
Arson   81.3–106 Text: The man walked down and tried to light

a piece of paper but failed to light it.
TKG: {[Man, WALKED_DOWN, Paper],
[Man, TRIED_TO_LIGHT, Paper], [Man,
FAILED_TO_LIGHT, Paper]}  

False

115.8–121.2 Text: The man returned to the Christmas tree
and continued to light it and successfully lit it.
TKG: {[Man, RETURNED_TO, Christmas
Tree], [Man, CONTINUED_TO_LIGHT,
Christmas Tree], [Man, SUCCESSFULLY_LIT,
Christmas Tree]}  

True

Burglary   254.4–255.8 Text: Another person opened the trunk, and
there were several men in white hiding in the
trunk.
TKG: {[Another Person, HIDING_IN, Men In
White]}  

False

  256.1–350.4 Text: A total of five people gathered around
the door and cooperated to pry it open.
TKG: {[People, GATHERED_AROUND,
Door], [People, COOPER-
ATED_TO_PRY_OPEN, Door]}  

True

Explosion   0.0–9.0 Text: Many cars were parked on the roadside
and many people walking on the roadside.
TKG: {[Cars, PARKED_ON, Roadside], [Peo-
ple, WALKING_ON, Roadside]}  

False

  9.0–21.3 Text: An explosion occurred in a building and
produced smoke, and the glass of the nearby
building was shaken.
TKG: {[Explosion, OCCURRED_IN, Build-
ing], [Explosion, PRODUCED, Smoke], [Build-
ing, SHAKEN, Glass]}  

True

Table 1: Examples of aligned captions, their corresponding TKG quadruples, and anomaly labels across
video types.

to assess semantic coherence and contextual
appropriateness of the generated output. An
overview of the pipeline is shown in Figure 1.

Input Settings. Two input conditions were
tested:

• Structured (TKG → Text): Captions
were converted into subject–relation–
object triples with aligned timestamps.
These quadruples were verbalized into
structured prompt templates.

• Unstructured (Text → Text): Raw or
lightly summarized captions were concate-
nated to form free-text temporal con-
text, which was directly inserted into the
prompt.

Prompt Design. Prompts were designed to
ensure parity across conditions, differing only
in input format. In both cases, the LLM was
instructed to predict the most likely action im-
mediately preceding an anomaly and to out-
put exactly one complete sentence. Example
prompt templates are shown in Figure 2 and
Figure 3.

Prompted Generation. Formally, the pre-
diction is modeled as:

ŷtext = ΦLLM (PI), I ∈ {TKG→Text, Text→Text}
(1)
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Figure 1: Pipeline of the Experiment 1: forecasting
task. The model receives temporally ordered input
(either structured TKGs or unstructured captions)
and generates a next-frame description. The gener-
ated output is then compared against ground-truth
captions to evaluate semantic alignment.

where ΦLLM denotes the inference model
and PI the prompt constructed from tempo-
ral context.

Metrics Predicted sentences ŷtext were com-
pared against human-annotated ground-truth
captions yGT using semantic similarity. Both
sentences were encoded with the BAAI Gen-
eral Embedding (BGE) model, and cosine sim-
ilarity was computed:

Similarity = cos(EBGE(ŷtext), EBGE(yGT ))
(2)

Cosine similarity captures paraphrastic
overlap without requiring exact lexical
matches, making it well-suited for evaluating
free-text generation. Segment-level scores
were averaged across the evaluation set to
yield the final similarity metric.

3.4 Experiment 2: Anomaly Detection
Objective. The anomaly detection experi-
ment evaluates how well LLMs identify ab-
normal events in surveillance video descrip-
tions under different temporal input condi-
tions. Given a sequence of frame-level cap-
tions, the model must judge whether the cur-
rent frame is anomalous. Anomalies are de-
fined as events that deviate significantly from
expected behavioral patterns and typically cor-
respond to suspicious or criminal actions (e.g.,
fighting, robbery, arson). This task probes the

Figure 2: Structured Input Prompt (TKG → Text)
used in the forecasting task. The model is provided
with a sequence of TKG quadruples representing
past events and is asked to predict, in one com-
plete sentence, the most likely next action before
an anomalous event.

model’s ability to reason over event coher-
ence and detect pragmatic inconsistencies. An
overview of the pipeline is shown in Figure 4.

Prompt Design. Following the training-
free strategy of Zanella et al. (2024), we
prompt the LLM to assign a scalar anomaly
score a ∈ [0, 1] for each frame. Examples of
each prompt are provided in Figures 5–6. The
prompt is composed of three parts:

• PS : a system instruction framing the task
as risk assessment on a 0–1 scale;

• PF : an output-format instruction requir-
ing one number from a discrete set of 11
values (0.0–1.0 in steps of 0.1);

• PC : the temporal context, either unsum-
marized captions, LLM-summarized cap-
tions, or TKG quadruples:
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Figure 3: Unstructured Input Prompt
(Text → Text) used in the forecasting task.
The model is given a sequence of natural language
captions describing prior events and is instructed
to generate one complete sentence predicting the
subject’s next likely action before an anomaly.

Ctemporal ∈ {Cunsummarized, Csummarized, CTKG}.
(3)

The final prompt concatenates these compo-
nents, and the LLM outputs a single anomaly
score:

â = ΦLLM (PS ◦ PF ◦ PC). (4)

Metrics. We adopt AUC-ROC as the pri-
mary evaluation metric. Each prediction â is
compared against the binary ground-truth la-
bel aGT ∈ 0, 1 from UCF-Crime. AUC mea-
sures the model’s ranking ability across all
thresholds:

Figure 4: Pipeline of the Experiment 2: anomaly
detection task. The model receives prior context
in one of three forms—raw captions, summarized
text, or structured TKGs—and predicts whether
the current frame is anomalous. The prediction is
compared against the ground-truth anomaly label
for evaluation.

AUC = AUC −ROC(â, aGT ). (5)

Unlike accuracy, AUC is threshold-
independent and reflects whether anomalies
are consistently ranked above normal events.
This makes it well-suited for surveillance,
where operational definitions of abnormality
vary. In our setting, AUC provides a robust
criterion to compare how structured versus
unstructured temporal inputs enable LLMs
to detect deviations from normative event
sequences.

4 Discussion
4.1 Research Questions
RQ1: Does structured temporal input
provide advantages over unstructured
input for temporal forecasting tasks?
As shown in Table 2 and Table 3, the un-
structured input condition yielded a slightly
higher mean similarity score (0.5978) than
the structured TKG input (0.5718). However,
this difference was not statistically significant,
as indicated by both the paired t-test (t =
1.7259, p = 0.0978) and the non-parametric
Wilcoxon signed-rank test (W = 90.0, p =
0.0894). These findings suggest that unstruc-
tured input consistently produces marginally
higher semantic alignment on average, though
the difference does not reach statistical signif-
icance.
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Figure 5: System prompt (PS) used in the anomaly
detection task. This instruction frames the model’
s role as a law enforcement agent and asks it to
assess whether the described scene is normal or
suspicious on a scale from 0 (normal) to 1 (highly
anomalous).

A closer inspection of forecasting outputs re-
veals systematic error patterns that help ex-
plain this small but non-significant gap. With
TKG-based inputs, predictions often stalled
at preparatory actions rather than advancing
toward anomalous outcomes (e.g., anticipat-
ing ignition attempts but not the actual ar-
son). Highly specific or low-probability events
—such as an arsonist accidentally catching
fire—were rarely captured, reflecting the diffi-
culty of forecasting unexpected developments
from sparse cues. The model also frequently
lacked narrative progression, anchoring on ear-
lier triplets and producing semantically plausi-
ble but stagnant outputs. Finally, forecasting
performance varied by category: gradual, visu-
ally grounded events (e.g., arson, shoplifting)
were more predictable than abrupt or ambigu-
ous ones (e.g., explosions, accidents, shoot-
ings), highlighting the dependence of struc-

Figure 6: Prompt components for the anomaly de-
tection task. Top: output-format prompt (PF ),
which constrains the model to return exactly one
anomaly score as a Python list containing a sin-
gle value between 0.0 and 1.0. Bottom: context
prompt (PC), which provides frame-by-frame de-
scriptions as temporal context. The context is used
only to interpret event flow, while the anomaly
score must be determined independently for the
current frame.

tured inputs on contextual richness.
These results carry important implications

for the utility of structured input. TKGs offer
a consistent and formal representation that ab-
stracts away surface-level linguistic noise and
encourages the model to reason based on event
structure and temporal progression. This con-
sistency may be beneficial in downstream tasks
that require symbolic manipulation or multi-
modal alignment. By contrast, raw captions
naturally carry richer lexical and syntactic
cues, which directly benefit tasks emphasiz-
ing surface-level semantic similarity. While
TKGs did not surpass unstructured captions
in raw semantic similarity in this experiment,
their representational strengths suggest poten-
tial advantages in more complex, reasoning-
intensive applications.

Input Type Cosine Similarity
Unstructured (Text → Text) 0.5978
Structured (TKG → Text) 0.5718

Table 2: Mean cosine similarity scores for struc-
tured and unstructured input conditions.
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Test Stat. p-value
Paired t-test t = 1.7259 0.0978
Wilcoxon (SR) W = 90.0 0.0894

Table 3: Statistical test results comparing struc-
tured and unstructured input conditions.

RQ2: How does temporal context—
whether structured or unstructured—
impact LLM performance in anomaly de-
tection tasks? We examine how temporal
context—structured vs. unstructured—affects
LLM anomaly detection. As shown in Fig. 7,
summarized text attains AUC = 0.7817, raw
text 0.7766, and TKG 0.7673. Pairwise De-
Long tests (Table 4) indicate no significant dif-
ferences among conditions: summarized–TKG
∆AUC = +0.014 (p = 0.345, 95

Qualitative error analysis reveals a few sys-
tematic behaviors. The model showed over-
sensitivity to ambiguous behaviors, classify-
ing vague or cautious actions (e.g., pacing or
looking around) as anomalies. Another bias
appeared in action-triggered cases: attempts
such as“trying to light”were flagged as anoma-
lous even when unsuccessful.

A plausible mechanism is that TKG pro-
vides a low-noise, reference-only context. By
encoding ⟨subject, relation, object, time⟩, it
preserves the action backbone (who did what,
when) while filtering lexical and pragmatic
clutter that can nudge the model toward spuri-
ous cues. Unstructured text—especially sum-
maries—retains fine-grained signals (e.g., nega-
tion, intensity, scene qualifiers) that occasion-
ally help, which could explain the small nu-
merical edge, though the average advantage
remains modest. Overall, in action-centric
surveillance scenes, compact structured con-
text can achieve similar statistical perfor-
mance to longer textual context while reducing
token cost, offering a cost-efficient alternative
when latency or context length matters.

At the same time, both tasks reveal com-
mon limitations of current LLMs for temporal
reasoning: difficulty projecting narrative pro-
gression, a tendency to conflate intent with
actual threat, and challenges in maintaining
calibrated anomaly judgments. These find-
ings suggest that while LLMs can leverage
both structured and unstructured inputs, they
still require mechanisms that better capture

causal progression, distinguish ambiguous in-
tent from concrete outcomes, and handle noisy
labels.

Figure 7

5 Conclusion
This study compared structured (TKG) and
unstructured (caption) temporal inputs in ab-
normal event forecasting and anomaly detec-
tion with LLMs. Our results show that un-
structured captions consistently yield slightly
higher scores in both tasks, but these dif-
ferences do not reach statistical significance.
This finding highlights that when data are in-
herently action-centric—as in UCF-Crime and
UCA, where human activities are described in
subject–verb–object form—structured repre-
sentations like TKGs provide a conceptually
natural scaffold. Even when empirical gains
over unstructured inputs are modest, TKGs
reduce token length, enhance interpretability,
and align closely with the relational structure
of the data. These advantages carry practi-
cal implications for domains such as surveil-
lance, legal, and forensic analysis, where trans-
forming fragmented narratives into structured
graphs can facilitate timeline reconstruction,
highlight contradictions, and support trace-
able reasoning over events.

6 Limitations
Our study has several limitations. Results are
based on a single open-source model (Mistral-
large-latest), and may differ with other ar-
chitectures or fine-tuning. Token length was
not systematically explored, leaving open how
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Comparison AUC(A) AUC(B) ∆AUC SE z p 95% CI
raw_txt – tkg 0.7673 0.7766 0.0093 0.0188 0.494 0.621 [−0.0275, 0.0461]
sum_txt – tkg 0.7673 0.7817 0.0143 0.0152 0.943 0.345 [−0.0155, 0.0441]
sum_txt – raw_txt 0.7766 0.7817 0.0051 0.0201 0.252 0.801 [−0.0344, 0.0445]

Table 4: DeLong tests for pairwise ROC AUC differences; ∆AUC = AUC(B) − AUC(A). None of the
differences are statistically significant at α = 0.05.

TKG efficiency scales under extreme long-
context settings. The dataset size may also
limit statistical power: unstructured inputs
consistently scored slightly higher, yet differ-
ences were not significant. Finally, UCF-
Crime and UCA anomaly labels may contain
temporal misalignments or noise. Future work
should test diverse models, larger and more
varied datasets, long-context benchmarks, and
improved annotations.
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