@inproceedings{lam-yang-2025-revisiting,
title = "Revisiting Pre-trained Language Models for Conversation Disentanglement",
author = "Lam, Tung-Thien and
Yang, Cheng-Zen",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.31/",
pages = "296--302",
ISBN = "979-8-89176-379-1",
abstract = "Multi-party conversation is a popular form in online group chatting. However, the interweaving of utterance threads complicates the understanding of the dialogues for participants. Many conversation disentanglement models have been proposed using transformer-based pre-trained language models (PrLMs). However, advanced transformer-based PrLMs have not been extensively studied. This paper investigates the effectiveness of five advanced PrLMs: BERT, XLNet, ELECTRA, RoBERTa, and ModernBERT. The experimental results show that ELECTRA and RoBERTa are two PrLMs with outstanding performance than other PrLMs for the conversation disentanglement task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lam-yang-2025-revisiting">
<titleInfo>
<title>Revisiting Pre-trained Language Models for Conversation Disentanglement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tung-Thien</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Zen</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>Multi-party conversation is a popular form in online group chatting. However, the interweaving of utterance threads complicates the understanding of the dialogues for participants. Many conversation disentanglement models have been proposed using transformer-based pre-trained language models (PrLMs). However, advanced transformer-based PrLMs have not been extensively studied. This paper investigates the effectiveness of five advanced PrLMs: BERT, XLNet, ELECTRA, RoBERTa, and ModernBERT. The experimental results show that ELECTRA and RoBERTa are two PrLMs with outstanding performance than other PrLMs for the conversation disentanglement task.</abstract>
<identifier type="citekey">lam-yang-2025-revisiting</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.31/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>296</start>
<end>302</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revisiting Pre-trained Language Models for Conversation Disentanglement
%A Lam, Tung-Thien
%A Yang, Cheng-Zen
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F lam-yang-2025-revisiting
%X Multi-party conversation is a popular form in online group chatting. However, the interweaving of utterance threads complicates the understanding of the dialogues for participants. Many conversation disentanglement models have been proposed using transformer-based pre-trained language models (PrLMs). However, advanced transformer-based PrLMs have not been extensively studied. This paper investigates the effectiveness of five advanced PrLMs: BERT, XLNet, ELECTRA, RoBERTa, and ModernBERT. The experimental results show that ELECTRA and RoBERTa are two PrLMs with outstanding performance than other PrLMs for the conversation disentanglement task.
%U https://aclanthology.org/2025.rocling-main.31/
%P 296-302
Markdown (Informal)
[Revisiting Pre-trained Language Models for Conversation Disentanglement](https://aclanthology.org/2025.rocling-main.31/) (Lam & Yang, ROCLING 2025)
ACL