@inproceedings{jian-etal-2025-cyut,
title = "{CYUT}-{NLP} at {ROCLING}-2025 Shared Task: Valence{--}Arousal Prediction in Physicians' Texts Using {BERT}, {RAG}, and Multi-Teacher Pseudo-Labeling",
author = "Jian, Yi-Min and
Hsiao, An Yu and
Wu, Shih-Hung",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.42/",
pages = "381--389",
ISBN = "979-8-89176-379-1",
abstract = "Accurately modeling physicians' emotional states from self-reflection texts remains challenging due to the lowresource, domain-specific nature of medical corpora. The proposed workflow performs Retrieval-Augmented Generation (RAG) and multi-teacher pseudo-labeling to generate high-quality augmented data. This workflow enables effective crossdomain adaptation from general text corpora to professional medical texts. Evaluations on the ROCLING 2025 test set demonstrate substantial improvements over the best-performing baseline in Valence{--}Arousal prediction accuracy and model stability. Importantly, the workflow is domain-agnostic and provides a generalizable methodology for systematically transferring models to new, low-resource domains, making it applicable beyond medical text analysis."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jian-etal-2025-cyut">
<titleInfo>
<title>CYUT-NLP at ROCLING-2025 Shared Task: Valence–Arousal Prediction in Physicians’ Texts Using BERT, RAG, and Multi-Teacher Pseudo-Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi-Min</namePart>
<namePart type="family">Jian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">An</namePart>
<namePart type="given">Yu</namePart>
<namePart type="family">Hsiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shih-Hung</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>Accurately modeling physicians’ emotional states from self-reflection texts remains challenging due to the lowresource, domain-specific nature of medical corpora. The proposed workflow performs Retrieval-Augmented Generation (RAG) and multi-teacher pseudo-labeling to generate high-quality augmented data. This workflow enables effective crossdomain adaptation from general text corpora to professional medical texts. Evaluations on the ROCLING 2025 test set demonstrate substantial improvements over the best-performing baseline in Valence–Arousal prediction accuracy and model stability. Importantly, the workflow is domain-agnostic and provides a generalizable methodology for systematically transferring models to new, low-resource domains, making it applicable beyond medical text analysis.</abstract>
<identifier type="citekey">jian-etal-2025-cyut</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.42/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>381</start>
<end>389</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CYUT-NLP at ROCLING-2025 Shared Task: Valence–Arousal Prediction in Physicians’ Texts Using BERT, RAG, and Multi-Teacher Pseudo-Labeling
%A Jian, Yi-Min
%A Hsiao, An Yu
%A Wu, Shih-Hung
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F jian-etal-2025-cyut
%X Accurately modeling physicians’ emotional states from self-reflection texts remains challenging due to the lowresource, domain-specific nature of medical corpora. The proposed workflow performs Retrieval-Augmented Generation (RAG) and multi-teacher pseudo-labeling to generate high-quality augmented data. This workflow enables effective crossdomain adaptation from general text corpora to professional medical texts. Evaluations on the ROCLING 2025 test set demonstrate substantial improvements over the best-performing baseline in Valence–Arousal prediction accuracy and model stability. Importantly, the workflow is domain-agnostic and provides a generalizable methodology for systematically transferring models to new, low-resource domains, making it applicable beyond medical text analysis.
%U https://aclanthology.org/2025.rocling-main.42/
%P 381-389
Markdown (Informal)
[CYUT-NLP at ROCLING-2025 Shared Task: Valence–Arousal Prediction in Physicians’ Texts Using BERT, RAG, and Multi-Teacher Pseudo-Labeling](https://aclanthology.org/2025.rocling-main.42/) (Jian et al., ROCLING 2025)
ACL