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Abstract

In the ROCLING 2025 dimensional
sentiment analysis task, we present
EmoTracer. It is an emotion-space-based
system for analyzing doctors’ self-
reflection texts. The system uses XLNet,
BERT, and LSTM models. It is trained on
the SLAKE medical dataset and Chinese
datasets, such as Chinese EmoBank and
NRC-VAD. This helps the system capture
the possible emotional changes of doctors
when they write patient-related reflections.
EmoTracer converts texts into Valence and
Arousal scores. The experiments show
about 60% accuracy, a Pearson correlation
coefficient (PCC) of 0.9, and a mean
absolute error (MAE) of 0.3. These results
can help support mental health
management. The system also has a simple
front-end UL Users can enter texts and see

o

the analysis results. This demonstrates the
full functionality of the EmoTracer system.
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