@inproceedings{albertson-etal-2025-beyond,
title = "Beyond Binary: Enhancing Misinformation Detection with Nuance-Controlled Event Context",
author = "Albertson, Elijah Frederick and
Latifah, Retnani and
Chen, Yi-Shin",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.5/",
pages = "35--44",
ISBN = "979-8-89176-379-1",
abstract = "Misinformation rarely presents itself as entirely true or entirely false. Instead, it often embeds partial truths within misleading contexts, creating narratives that blur the boundary between fact and falsehood. Traditional binary fact-checking frameworks fail to capture this nuance, forcing complex claims into oversimplified categories. To address this gap, we introduce MEGA, a multidimensional graph framework designed to classify ambiguous claims, with a particular focus on those labelled Somewhat True. MEGA integrates event evidence, spatio-temporal metadata, and a quantifiable nuance score. Its Event Candidate Extraction (ECE) module identifies supporting or contradicting evidence, while the Nuance Control Module (NCM) injects or removes nuance to assess its effect on classification. Experiments show that nuance is both detectable and learnable: adding nuance improves borderline discrimination, while stripping it leads the decisions toward false extremes and conceals partial truth. Our top model{---} nuance-injected without score weighting{---} improve accuracy and F1 score by 15 and 16 points over the claims-only baseline, and 6 and 9 points over the ECE-only variant. These results show that explicitly modeling nuance alongside context is crucial for classifying mixed-truth claims and advancing fact-checking beyond binary judgments."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="albertson-etal-2025-beyond">
<titleInfo>
<title>Beyond Binary: Enhancing Misinformation Detection with Nuance-Controlled Event Context</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elijah</namePart>
<namePart type="given">Frederick</namePart>
<namePart type="family">Albertson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Retnani</namePart>
<namePart type="family">Latifah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Shin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>Misinformation rarely presents itself as entirely true or entirely false. Instead, it often embeds partial truths within misleading contexts, creating narratives that blur the boundary between fact and falsehood. Traditional binary fact-checking frameworks fail to capture this nuance, forcing complex claims into oversimplified categories. To address this gap, we introduce MEGA, a multidimensional graph framework designed to classify ambiguous claims, with a particular focus on those labelled Somewhat True. MEGA integrates event evidence, spatio-temporal metadata, and a quantifiable nuance score. Its Event Candidate Extraction (ECE) module identifies supporting or contradicting evidence, while the Nuance Control Module (NCM) injects or removes nuance to assess its effect on classification. Experiments show that nuance is both detectable and learnable: adding nuance improves borderline discrimination, while stripping it leads the decisions toward false extremes and conceals partial truth. Our top model— nuance-injected without score weighting— improve accuracy and F1 score by 15 and 16 points over the claims-only baseline, and 6 and 9 points over the ECE-only variant. These results show that explicitly modeling nuance alongside context is crucial for classifying mixed-truth claims and advancing fact-checking beyond binary judgments.</abstract>
<identifier type="citekey">albertson-etal-2025-beyond</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.5/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>35</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Binary: Enhancing Misinformation Detection with Nuance-Controlled Event Context
%A Albertson, Elijah Frederick
%A Latifah, Retnani
%A Chen, Yi-Shin
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F albertson-etal-2025-beyond
%X Misinformation rarely presents itself as entirely true or entirely false. Instead, it often embeds partial truths within misleading contexts, creating narratives that blur the boundary between fact and falsehood. Traditional binary fact-checking frameworks fail to capture this nuance, forcing complex claims into oversimplified categories. To address this gap, we introduce MEGA, a multidimensional graph framework designed to classify ambiguous claims, with a particular focus on those labelled Somewhat True. MEGA integrates event evidence, spatio-temporal metadata, and a quantifiable nuance score. Its Event Candidate Extraction (ECE) module identifies supporting or contradicting evidence, while the Nuance Control Module (NCM) injects or removes nuance to assess its effect on classification. Experiments show that nuance is both detectable and learnable: adding nuance improves borderline discrimination, while stripping it leads the decisions toward false extremes and conceals partial truth. Our top model— nuance-injected without score weighting— improve accuracy and F1 score by 15 and 16 points over the claims-only baseline, and 6 and 9 points over the ECE-only variant. These results show that explicitly modeling nuance alongside context is crucial for classifying mixed-truth claims and advancing fact-checking beyond binary judgments.
%U https://aclanthology.org/2025.rocling-main.5/
%P 35-44
Markdown (Informal)
[Beyond Binary: Enhancing Misinformation Detection with Nuance-Controlled Event Context](https://aclanthology.org/2025.rocling-main.5/) (Albertson et al., ROCLING 2025)
ACL