@inproceedings{huang-etal-2025-applying,
title = "Applying Whisper Fine-tuning and Branchformer to {H}akka Speech Recognition",
author = "Huang, Yu-Sheng and
Hong, Wei-Cheng and
Chen, Xin-Yu and
Lin, Szu-Yin",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.50/",
pages = "441--445",
ISBN = "979-8-89176-379-1",
abstract = "This study addresses the FSR 2025 Hakka speech recognition task by comparing two strategies: fine-tuning large pre-trained models and training from scratch. For character (Hanzi) recognition, we fine-tuned five different scales of the Whisper model, with large-v3-turbo achieving a 7.55{\%} CER on the test set. For Pinyin recognition, a Branchformer model was compared against a LoRA fine-tuned Whisper-small, yielding WERs of 4.7{\%} and 6.5{\%} on the test set, respectively. Speed perturbation was the primary method used for data augmentation in our pre-processing pipeline."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2025-applying">
<titleInfo>
<title>Applying Whisper Fine-tuning and Branchformer to Hakka Speech Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yu-Sheng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Cheng</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Szu-Yin</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>This study addresses the FSR 2025 Hakka speech recognition task by comparing two strategies: fine-tuning large pre-trained models and training from scratch. For character (Hanzi) recognition, we fine-tuned five different scales of the Whisper model, with large-v3-turbo achieving a 7.55% CER on the test set. For Pinyin recognition, a Branchformer model was compared against a LoRA fine-tuned Whisper-small, yielding WERs of 4.7% and 6.5% on the test set, respectively. Speed perturbation was the primary method used for data augmentation in our pre-processing pipeline.</abstract>
<identifier type="citekey">huang-etal-2025-applying</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.50/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>441</start>
<end>445</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Applying Whisper Fine-tuning and Branchformer to Hakka Speech Recognition
%A Huang, Yu-Sheng
%A Hong, Wei-Cheng
%A Chen, Xin-Yu
%A Lin, Szu-Yin
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F huang-etal-2025-applying
%X This study addresses the FSR 2025 Hakka speech recognition task by comparing two strategies: fine-tuning large pre-trained models and training from scratch. For character (Hanzi) recognition, we fine-tuned five different scales of the Whisper model, with large-v3-turbo achieving a 7.55% CER on the test set. For Pinyin recognition, a Branchformer model was compared against a LoRA fine-tuned Whisper-small, yielding WERs of 4.7% and 6.5% on the test set, respectively. Speed perturbation was the primary method used for data augmentation in our pre-processing pipeline.
%U https://aclanthology.org/2025.rocling-main.50/
%P 441-445
Markdown (Informal)
[Applying Whisper Fine-tuning and Branchformer to Hakka Speech Recognition](https://aclanthology.org/2025.rocling-main.50/) (Huang et al., ROCLING 2025)
ACL