@inproceedings{hsieh-2025-compact,
title = "A Compact {W}hisper+{L}o{RA} Baseline for {T}aiwanese {H}akka {ASR} in {FSR}-2025",
author = "Hsieh, Hung-Ting",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.55/",
pages = "467--470",
ISBN = "979-8-89176-379-1",
abstract = "We present a compact baseline for the For- mosa Speech Recognition (FSR-2025) Tai- wanese Hakka ASR challenge. Our system fine-tunes Whisper-large-v2 (Track 1) and Whisper-large-v3-turbo (Track 2) (Radford et al., 2022) with LoRA (Hu et al., 2021), under a consistent normalization policy and balanced speaker-based dev splits. On the official warm-up set, we obtain 10.94{\%} CER for Track 1 (Hanzi) and 28.48{\%} SER for Track 2 (Pinyin). We provide simple, reproducible pipelines covering data prepa- ration, training, inference, and evaluation, without using external data or language models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hsieh-2025-compact">
<titleInfo>
<title>A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hung-Ting</namePart>
<namePart type="family">Hsieh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>We present a compact baseline for the For- mosa Speech Recognition (FSR-2025) Tai- wanese Hakka ASR challenge. Our system fine-tunes Whisper-large-v2 (Track 1) and Whisper-large-v3-turbo (Track 2) (Radford et al., 2022) with LoRA (Hu et al., 2021), under a consistent normalization policy and balanced speaker-based dev splits. On the official warm-up set, we obtain 10.94% CER for Track 1 (Hanzi) and 28.48% SER for Track 2 (Pinyin). We provide simple, reproducible pipelines covering data prepa- ration, training, inference, and evaluation, without using external data or language models.</abstract>
<identifier type="citekey">hsieh-2025-compact</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.55/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>467</start>
<end>470</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025
%A Hsieh, Hung-Ting
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F hsieh-2025-compact
%X We present a compact baseline for the For- mosa Speech Recognition (FSR-2025) Tai- wanese Hakka ASR challenge. Our system fine-tunes Whisper-large-v2 (Track 1) and Whisper-large-v3-turbo (Track 2) (Radford et al., 2022) with LoRA (Hu et al., 2021), under a consistent normalization policy and balanced speaker-based dev splits. On the official warm-up set, we obtain 10.94% CER for Track 1 (Hanzi) and 28.48% SER for Track 2 (Pinyin). We provide simple, reproducible pipelines covering data prepa- ration, training, inference, and evaluation, without using external data or language models.
%U https://aclanthology.org/2025.rocling-main.55/
%P 467-470
Markdown (Informal)
[A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025](https://aclanthology.org/2025.rocling-main.55/) (Hsieh, ROCLING 2025)
ACL