A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025

Hung-Ting Hsieh


Abstract
We present a compact baseline for the For- mosa Speech Recognition (FSR-2025) Tai- wanese Hakka ASR challenge. Our system fine-tunes Whisper-large-v2 (Track 1) and Whisper-large-v3-turbo (Track 2) (Radford et al., 2022) with LoRA (Hu et al., 2021), under a consistent normalization policy and balanced speaker-based dev splits. On the official warm-up set, we obtain 10.94% CER for Track 1 (Hanzi) and 28.48% SER for Track 2 (Pinyin). We provide simple, reproducible pipelines covering data prepa- ration, training, inference, and evaluation, without using external data or language models.
Anthology ID:
2025.rocling-main.55
Volume:
Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
Month:
November
Year:
2025
Address:
National Taiwan University, Taipei City, Taiwan
Editors:
Kai-Wei Chang, Ke-Han Lu, Chih-Kai Yang, Zhi-Rui Tam, Wen-Yu Chang, Chung-Che Wang
Venue:
ROCLING
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
467–470
Language:
URL:
https://aclanthology.org/2025.rocling-main.55/
DOI:
Bibkey:
Cite (ACL):
Hung-Ting Hsieh. 2025. A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025. In Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025), pages 467–470, National Taiwan University, Taipei City, Taiwan. Association for Computational Linguistics.
Cite (Informal):
A Compact Whisper+LoRA Baseline for Taiwanese Hakka ASR in FSR-2025 (Hsieh, ROCLING 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.rocling-main.55.pdf