The Study of a Traffic Accident Information Collection Agent System Based on Fine-tuned Open-Source Large Language Models

Jo-Chi Kung, Chia-Hui Chang


Abstract
本研究提出了一套名為「交通事故資訊蒐集代理人」(Collision Care Guide, CCG)的系統架構,專注於事故初期階段的結構化資訊蒐集。CCG 整合三大模組:問題生成、資訊擷取及事故重建,透過多輪對話引導使用者敘述事故細節並轉換為結構化資料格式(TARF),同時生成可讀性敘述供核對。為滿足成本效益、隱私保護及部署彈性需求,本研究比較開源 Llama 模型(3B/8B 參數,完整微調及 4-bit PEFT 方法)與商業基準 GPT-4o-mini 的效能表現。結果顯示,資訊擷取模組欄位準確率高於 0.94,JSON 語義相似度達 0.995;問題生成模組語義相似度介於 0.85-0.88,問題表達更加精煉。微調模型在對話品質與資訊擷取的 LLM 評估中均獲得 4 分以上(滿分 5 分),與商業基準差距小於 0.5 分。研究證實開源模型經微調後能逼近商業模型效能,且量化版本在資源受限場景中具備高效能與部署潛力。CCG 的設計填補了事故初期互動式資訊蒐集的技術空白,為交通事故處理提供了高效且具成本優勢的解決方案。
Anthology ID:
2025.rocling-main.8
Volume:
Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
Month:
November
Year:
2025
Address:
National Taiwan University, Taipei City, Taiwan
Editors:
Kai-Wei Chang, Ke-Han Lu, Chih-Kai Yang, Zhi-Rui Tam, Wen-Yu Chang, Chung-Che Wang
Venue:
ROCLING
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
71–79
Language:
URL:
https://aclanthology.org/2025.rocling-main.8/
DOI:
Bibkey:
Cite (ACL):
Jo-Chi Kung and Chia-Hui Chang. 2025. The Study of a Traffic Accident Information Collection Agent System Based on Fine-tuned Open-Source Large Language Models. In Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025), pages 71–79, National Taiwan University, Taipei City, Taiwan. Association for Computational Linguistics.
Cite (Informal):
The Study of a Traffic Accident Information Collection Agent System Based on Fine-tuned Open-Source Large Language Models (Kung & Chang, ROCLING 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.rocling-main.8.pdf