@inproceedings{zasina-2025-automatic,
title = "Automatic Generation of Corpus-Based Exercises Using Generative {AI}",
author = "Zasina, Adrian Jan",
editor = "Chang, Kai-Wei and
Lu, Ke-Han and
Yang, Chih-Kai and
Tam, Zhi-Rui and
Chang, Wen-Yu and
Wang, Chung-Che",
booktitle = "Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)",
month = nov,
year = "2025",
address = "National Taiwan University, Taipei City, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.rocling-main.9/",
pages = "80--86",
ISBN = "979-8-89176-379-1",
abstract = "This study explores the automatic generation of corpus-based language exercises using generative AI models. We focus on the interaction between language models and corpus data, detailing a workflow in which lexical and syntactic patterns are extracted from a tagged corpus and structured prompts are constructed to guide the model in producing sentence-level exercises. The generated exercises reveal both the potential of AI-driven approaches. However, observations highlight the necessity of careful design and critical evaluation when integrating generative models with corpus-based language materials. By analysing these processes from a computational linguistics perspective, this study contributes to understanding how generative AI can interact with structured linguistic data, informing future applications in automated language resources."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zasina-2025-automatic">
<titleInfo>
<title>Automatic Generation of Corpus-Based Exercises Using Generative AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="given">Jan</namePart>
<namePart type="family">Zasina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke-Han</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chih-Kai</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi-Rui</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Che</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">National Taiwan University, Taipei City, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-379-1</identifier>
</relatedItem>
<abstract>This study explores the automatic generation of corpus-based language exercises using generative AI models. We focus on the interaction between language models and corpus data, detailing a workflow in which lexical and syntactic patterns are extracted from a tagged corpus and structured prompts are constructed to guide the model in producing sentence-level exercises. The generated exercises reveal both the potential of AI-driven approaches. However, observations highlight the necessity of careful design and critical evaluation when integrating generative models with corpus-based language materials. By analysing these processes from a computational linguistics perspective, this study contributes to understanding how generative AI can interact with structured linguistic data, informing future applications in automated language resources.</abstract>
<identifier type="citekey">zasina-2025-automatic</identifier>
<location>
<url>https://aclanthology.org/2025.rocling-main.9/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>80</start>
<end>86</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Generation of Corpus-Based Exercises Using Generative AI
%A Zasina, Adrian Jan
%Y Chang, Kai-Wei
%Y Lu, Ke-Han
%Y Yang, Chih-Kai
%Y Tam, Zhi-Rui
%Y Chang, Wen-Yu
%Y Wang, Chung-Che
%S Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C National Taiwan University, Taipei City, Taiwan
%@ 979-8-89176-379-1
%F zasina-2025-automatic
%X This study explores the automatic generation of corpus-based language exercises using generative AI models. We focus on the interaction between language models and corpus data, detailing a workflow in which lexical and syntactic patterns are extracted from a tagged corpus and structured prompts are constructed to guide the model in producing sentence-level exercises. The generated exercises reveal both the potential of AI-driven approaches. However, observations highlight the necessity of careful design and critical evaluation when integrating generative models with corpus-based language materials. By analysing these processes from a computational linguistics perspective, this study contributes to understanding how generative AI can interact with structured linguistic data, informing future applications in automated language resources.
%U https://aclanthology.org/2025.rocling-main.9/
%P 80-86
Markdown (Informal)
[Automatic Generation of Corpus-Based Exercises Using Generative AI](https://aclanthology.org/2025.rocling-main.9/) (Zasina, ROCLING 2025)
ACL