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Abstract

Computational models of pragmatic language
use have traditionally relied on hand-specified
sets of utterances and meanings, limiting their
applicability to real-world language use. We
propose a neuro-symbolic framework that en-
hances probabilistic cognitive models by inte-
grating LLM-based modules to propose and
evaluate key components in natural language,
eliminating the need for manual specification.
Through a classic case study of pragmatic
question-answering, we systematically exam-
ine various approaches to incorporating neural
modules into the cognitive model—from eval-
uating utilities and literal semantics to gener-
ating alternative utterances and goals. We find
that hybrid models can match or exceed the
performance of traditional probabilistic models
in predicting human answer patterns. However,
the success of the neuro-symbolic model de-
pends critically on how LLMs are integrated:
while they are particularly effective for propos-
ing alternatives and transforming abstract goals
into utilities, they face challenges with truth-
conditional semantic evaluation. This work
charts a path toward more flexible and scal-
able models of pragmatic language use while
illuminating crucial design considerations for
balancing neural and symbolic components.

1 Introduction

Imagine you are a barista in a café with only three
items in stock: iced coffee, soda, and Chardonnay.
If a customer asks: “Do you have iced tea?”, you
might naturally respond “I’m sorry, we don’t have
iced tea, but I can make you an iced coffee!”. This
situation exemplifies pragmatic question answer-
ing, where answerers commonly go beyond the
literal question being asked (Clark, 1979). Classi-
cal accounts of the semantic meaning of questions
and answers (e.g., Hamblin, 1973; Groenendijk and
Stokhof, 1984; Hakulinen, 2001), maintain that po-
lar questions like “Do you have iced tea?” are fully

resolved by a polar answer {yes, no}. Yet humans
routinely provide a relevant selection of additional
information (e.g., mentioning the iced coffee, but
not the Chardonnay).

Understanding what, exactly, makes an answer
relevant has been a central question in the field
of pragmatics, with extensive work investigating
the contextual factors that shape answer selection
(e.g. van Rooy, 2003; Stevens et al., 2016; Rothe
et al., 2017). One recent framework for model-
ing these pragmatic choices is the Rational Speech
Act framework (Frank and Goodman, 2012; De-
gen, 2023), which has been successfully applied to
both question and answer selection (Hawkins et al.,
2015; Hawkins and Goodman, 2017; Hawkins
et al., to appear). The probabilistic cognitive mod-
els (PCMs) developed within this framework offer
significant advantages through their transparent,
explicit task decomposition and systematic error
analysis (Farrell and Lewandowsky, 2018).

However, these models are typically limited to a
small set of predefined examples, restricting their
applicability to real-world scenarios. In contrast,
Large Language Models (LLMs) offer a comple-
mentary set of capabilities. They can process open-
ended natural language input and generate flexible
responses, but often struggle with subtle pragmatic
patterns (Hu et al., 2023; Ruis et al., 2023; Tsvilo-
dub et al., 2024b) and lack the degree of explain-
ability that makes PCMs so valuable for cognitive
modeling (Zhao et al., 2023).

To address these complementary strengths and
limitations, we explore a family of neuro-symbolic
models, with different combinations of both ap-
proaches to leverage their respective strengths
and to overcome known shortcomings.1 Our ap-

1We use the term neuro-symbolic in the sense of a model
that has neural network components (here, LLMs), that are
scaffolded by a symbolic task analysis, i.e., integrated in a
particular computational procedure. Other senses of the term
also exist (Bhuyan et al., 2024).

2
Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 2-17.

Eugene, Oregon, July 18-20, 2025



Figure 1: Probabilistic cognitive model (PCM) of prag-
matic question answering. The PCM, built in the Ratio-
nal Speech Act framework, implements recursive back-
and-forth reasoning of rational agents. The questioner
chooses a question based on their decision problem and
an expectation of responses that any question might pro-
voke. The respondent chooses a relevant response based
on the decision problem inferred from the question.

proach builds on the task analysis developed in
previous work on pragmatic question-answering
(Hawkins et al., 2015; Hawkins and Goodman,
2017; Hawkins et al., to appear) in two ways. First,
we use it as a scaffolding structure that determines
the computational steps, with LLMs executing spe-
cific subtasks that would traditionally require man-
ual specification in a PCM (Sections 3.2–3.3). Sec-
ond, we verbalize (parts of) the scaffolding struc-
ture in a single prompt, relying on a single LLM
call to solve the respective computational task (Sec-
tion 3.4). This dual approach enables us to sys-
tematically investigate the tradeoffs between fine-
grained task decomposition and end-to-end neural
processing.

Our key contributions are as follows:

• A novel neuro-symbolic framework that ex-
tends probabilistic models of pragmatic ques-
tion answering to more open-ended natural
language.

• A systematic investigation of how different in-
tegrations of neural and symbolic components
affect model behavior.

• Empirical validation against human data,
demonstrating that neuro-symbolic models
can match or exceed traditional probabilistic
approaches in predicting human behavior.

2 A Probabilistic Cognitive Model of
Relevant Question-Answering

The probabilistic cognitive model we use for task
analysis and scaffolding, which we refer to as the

QA model (Hawkins et al., to appear), captures
a rational pragmatic respondent that chooses an
answer by reasoning about how a pragmatic ques-
tioner chooses a question (see Figure 1 for overview
and Appendix A for technical detail). The ques-
tioner is grounded in a context-independent base-
level respondent. The pragmatic questioner selects
a question based on the response they expect to
get from the base-level respondent, who answers
austerely without considering the wider context.
The pragmatic respondent, in turn, reasons about
the motivation of the speaker for asking the ques-
tion (i.e., infers their goal from the question) and
chooses responses that are expected to be relevant
to the questioner’s goal.

To implement expected relevance of an answer,
the QA model builds on decision-theoretic ac-
counts of relevance of questions and answers (van
Rooy, 2003; Benz, 2006), which formalizes rele-
vance in terms of a decision problem (DP). The
DP includes a real-valued utility function of how
useful different alternatives (e.g., iced coffee, soda,
Chardonnay) are for a given goal (e.g., getting an
iced tea). The questioner selects questions that have
a high expected relevance (i.e., high expected util-
ity) of information from the base-level respondent.
The pragmatic respondent uses the questioner’s
goal-oriented choice of question to infer from the
question what kind of DP the questioner likely
has. These inferences then guide the respondent’s
choice of information that will likely increase the
expected utility for the questioner, traded off with
response costs. We use a probabilistic implementa-
tion of the QA model in WebPPL (Goodman and
Stuhlmüller, 2014) from Hawkins et al. (to appear)
as a starting point and baseline. As commonly done
for probabilistic modeling, for these simulations
we specified the space of possible answers, pos-
sible questions, the literal semantics and the DP
utility function specifically for the main experimen-
tal materials (see Section 3.1 and Appendix A.1).

Before diving into neuro-symbolic model evalu-
ation, we first validate whether the task decomposi-
tion stipulated in the QA model is actually borne
out in human intuitive reasoning. To this end, we
conducted an exploratory answer explanation ex-
periment. Participants (N=50) were recruited via
Prolific and shown four trials with contexts wherein
a person asked for a target item while several alter-
native options were available, similar to the initial
café example, which constituted the main materi-
als we describe in more detail in Section 3.1. The
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question was followed by a character replying “no”
and providing one, most relevant, competitor al-
ternative. Participants were asked to type an ex-
planation of why that response was reasonable and
what would justify mentioning the particular option
over a different one. We then analyzed the types
of provided explanations, distinguishing between
explanations that appealed to (1) abstract similar-
ity of options, (2) questioner goals, desires, inten-
tions, or preferences, and (3) features that were
functionally relevant for the questioner goal (e.g.,
being and iced non-alcoholic drink). If participants
spontaneously reason about questioner goals and
respective relevant option features as formalized in
the QA model, we hypothesize that the proportion
of (2) and (3) will be higher than (1). We found
that 0.43 of responses appealed to goals (2), 0.20
to goal-relevant features (3), and 0.21 to general
similarity (1). 0.13 of responses were unclassifi-
able (e.g., only appealed to respondent politeness).
We interpret this as mild prima facie support for
the task decomposition implemented in the proba-
bilistic QA model. In the next section, we analyze
how systematically replacing different components
of the QA model with LLM modules affects the fit
to human data.

3 Evaluating Neuro-Symbolic QA models

We investigate the neuro-symbolic framework start-
ing with models where only one component of the
task is supplied by an LLM. We then incrementally
increase the number of LLM-based modules and
change their types, while observing the changes of
the fit to human data and the qualitative changes in
the predictions. The driving motivation is to make
PCMs more generally applicable (open-ended). For
that, two steps are necessary. For one, we would
like to be able to generate an in principle open-
ended set of alternatives over which to reason or
which to choose from. Consequently, we test if
LLMs can provide plausible sets of responses, ques-
tions, and questioner goals for the QA model; we
call LLMs in this role proposers (cf. Sumers et al.,
2023; Tsvilodub et al., 2024a). For another, once
we have open-ended sets of alternatives, we need to
be able to obtain information about them for down-
stream computation, i.e., we also use LLMs in the
role of evaluators for judging literal semantics of
answers and for assessing the utility of options.

3.1 Experimental setup

For all reported simulations below, we use
GPT-4o-mini for the LLM modules, with the sam-
pling temperature τ = 0.1. All simulations are run
for five iterations. We report additional results with
the open-source LLM Qwen-2.5-32B-Instruct
in Appendix D. We use experimental materials,
human data and the one-shot LLM prompt from
Tsvilodub et al. (2023) to investigate what kinds
of alternative options (e.g., iced coffee or Chardon-
nay), if any, different neuro-symbolic QA models
mention in the predicted responses, given a polar
question (e.g., “Do you have iced tea?”) and differ-
ent options in context.

The materials include 30 commonsense vi-
gnettes similar to the initial barista example. The
context always included three possible options, but
not the requested target (i.e., iced tea). The options
always included a best-fitting alternative called the
competitor (e.g., iced coffee), a conceptually sim-
ilar option that was deemed less relevant for the
questioner’s goal (e.g., soda), and an unrelated op-
tion irrelevant for the uttered request (e.g., Chardon-
nay). Experimental subjects provided answers by
freely typing into a text box. Responses were cate-
gorized as “target,” “similar,” and “unrelated.” In
addition to these three categories, corresponding
to mentioning each of the single options, the cate-
gorization also distinguished responses that men-
tioned all options, as well as responses that men-
tioned no options.

If a respondent is engaging in pragmatic rea-
soning, we would expect her to prefer competi-
tor responses over other types. Tsvilodub et al.
(2023) found that humans are, in fact, relevantly
overinformative, strongly preferring competitor re-
sponses (0.52 of responses) over exhaustive re-
sponses (0.10), no options responses (0.20), similar
(0.18) or unrelated responses (0.00). We investi-
gate how well neuro-symbolic models match hu-
man behavior, operationalized via Jensen-Shannon
divergence between the observed human data and
the models’ categorical predictions.

3.2 Integrating LLM Evaluators in the PCM

We assess a class of models that, starting from the
QA model, systematically incorporate LLM mod-
ules into the PCM architecture which take over two
functions: (i) the evaluation of utility of an option,
and (ii) the evaluation of the truth of a response.
Figure 2 (lower panel) shows a schematic overview
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Figure 2: Upper panel: Improvement of the model fit to human data in terms of Jensen-Shannon divergence over a
uniform response distribution baseline (higher is better, y-axis) of all analyzed models (x-axis). The horizontal line
indicates performance of the probabilistic model. Dots indicate the means across simulations, error bars indicate
95% bootstrapped CIs. Lower panel: Overview of tested models. Each box shows a schematic of one model,
labeled on the x-axis in the plot above it. The models are ordered from closest to the PCM on the left (only one
component is LLM-based), to a model only using a single LLM with a single prompt on the right.

of the tested models.

First, we implement an LLM utility evaluator for
instantiating the utility function in the questioner’s
decision problem (resulting in the “LLM utilities”
model). The utility function defines real-valued
utilities for the different alternatives (e.g., the iced
coffee, soda), conditioned on a target object (e.g.,
iced tea). In the original QA model, the utilities
were elicited in a human rating experiment wherein
participants were asked to provide slider ratings
for each possible option (e.g., iced tea, iced cof-
fee, soda, Chardonnay), given another option as
the goal (see Appendix A.1). To replace the human
input with an LLM, we prompted the utility eval-
uator in a way identical to the instructions of the
human elicitation experiment, namely to predict
the full space of utilities via ratings on a scale with
range 0–100 instead of slider ratings. Importantly,
the prompt (and the original human experiment)
only asked for abstract ratings, independent of the
functional context in which the options occurred in
the question answering scenario (see Appendix B
for all full prompts). The remaining model com-
ponents (e.g., the set of alternative utterances, the

semantics) remained symbolic in this model.

Beyond replacing the utility component, another
function-based component to replace with LLMs
for open-ending the PCM is semantic evaluation.
Semantic evaluation is necessary for the base-level
and for the pragmatic respondent and assesses
whether a response is true in a particular context.
While base-level and pragmatic respondent have
slightly different responses at their disposition ow-
ing to the fact that the base-level responder is not
reasoning about the context (see Appendix A), the
semantic evaluation is essentially the same. For
an answer like “No, but we have iced coffee.” the
module has to check whether the polar answer part
(e.g., “yes”, “no”) is true for a context (e.g., the
café has soda and iced coffee), given the question
(e.g., “Do you have iced tea?”). It also has to evalu-
ate whether the added information (e.g., “We have
iced coffee.”) is actually correct. We explored mod-
els with different combinations of these evaluators.
The “LLM semantics” model uses an LLM-based
semantic evaluator for both the base-level and the
pragmatic respondent, while using the same utility
component as the original QA model (based on
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the human experimental data). The “LLM seman-
tics & utilities” model employs all described LLM
evaluators. The “LLM base-level semantics &
utilities” only uses an LLM-based base-level re-
spondent, a rule-based pragmatic respondent, and
the LLM utility evaluator. The predictions of all
models are compared in Section 4.

3.3 Integrating LLM Proposers in the PCM
Next, we integrate LLMs as proposers for sets of
alternatives required by the QA model. We start
with sampling the possible questioner goals with a
goal proposer. The LLM was prompted to generate
plausible text-based goals, given the context and
question (see Figure 11). While the set of possible
goals in the PCM only contained four DPs (each
defining a preference for one of the options: target,
competitor, similar, unrelated option), the proposer
may sample any text-based questioner goal descrip-
tion. These sampled text-based goals are connected
to a DP representation via the utility evaluator (Sec-
tion 3.2). The evaluator was prompted to generate
the utilities for the available options, conditioned
on each proposed goal. The “LLM semantics, util-
ities, DPs” model uses the goal proposer together
with the evaluators from Section 3.2, while the sets
of possible utterances and questions are symbolic
(i.e., pre-specified manually).

Further open-ending the QA model, we intro-
duce a response proposer and a question proposer
which provide the set of alternative questions and
pragmatic answers that the respective pragmatic
agents reason over. In both cases, the LLM was
concisely prompted to generate n alternatives to an
observed utterance or question given the context vi-
gnette (see Figure 9, Figure 10). We set n = 10 for
the response proposer, and n = 3 for the question
proposer. Here, we address the empirical ques-
tion whether LLMs, out of the box, can be (easily)
prompted to produce the expected types of alter-
native pragmatic responses in the context of the
QA model (no options, competitor, similar, unre-
lated, all options). Based on exploratory qualitative
analyses described in Section 4 in more detail, we
append “no-options” and “all-options” responses
constructed in a rule-based manner to the set of
sampled alternatives. The observed question was
always added to the set of sampled alternatives
provided by question proposer.

The question and response proposers were tested
as part of the fully neuro-symbolic replication of
the PCM (“full NeSy” model). This model im-

plements the full task decomposition of the QA
model, capturing the pragmatic respondent’s re-
cursive reasoning (Figure 1) fully via the modules
described above. The base-level respondent uses an
LLM-based semantic evaluator to (symbolically)
select an informative, true response to a given ques-
tion (assuming that the decision problem is known).
For the pragmatic interpreter, the different possible
questions are supplied by an LLM-based question
proposer. An LLM-based utility evaluator rates the
usefulness of potential options to (symbolically)
compute the questioner’s expected utility of each
question (based on the expected behavior of the
base-level respondent). Finally, the pragmatic re-
spondent estimates likely DPs among the neurally
sampled alternatives, given the question, symboli-
cally via Bayes rule (where the likelihood term is
approximated via samples of generated questions
given a DP). Given her posterior beliefs about the
DPs, the respondent chooses a response from the
set provided by the response proposer that maxi-
mizes her utility function. The respondent’s util-
ity function combines the expected utility of a re-
sponse with informativeness, formalized as a KL
divergence term (see Appendix A for details). We
assume flat priors and no utterance costs through-
out the model.

3.4 Scaffolding Prompted LLMs with
Cognitive Modules

All previous models have implemented computa-
tional components suggested by the original QA
model with LLM-based proposers and evaluators.
These LLM-based components implemented rather
“local”, smaller computational elements of the task
analysis suggested by the QA model. Alternatively,
we may also use LLMs to replace larger chunks
of computation, such as the full pragmatic ques-
tion answering agent, or even the full task analysis
captured by the QA model. In the following, we
introduce three models that instantiate this general
strategy.

We first consider a model called prompt-based
questioner, of which we consider two versions,
one prompted with questioner goals, and one
prompted without goals. This model decomposes
the pragmatic respondent’s task into its two high-
level components suggested by the PCM: inferring
the questioner’s goal based on the observed ques-
tion, and selecting a response that optimizes the
questioner’s utility given the inferred DP. We imple-
ment a purely prompt-based pragmatic questioner

6



module that supplies the first component. This
prompt-based questioner is used by the pragmatic
respondent of the “full NeSy” model for inferring
the distribution over DPs sampled with an LLM-
based goal proposer. The prompt-based questioner
takes a questioner goal, the context, and prompts
the LLM to provide a likelihood of someone ask-
ing the given question (see Fig. 12). The elicited
likelihoods for all questions and DPs are then renor-
malized and used by the pragmatic respondent. We
then compare the role of conditioning this mod-
ule on the goal, and also use a goal-free prompt
where the LLM is asked to assess the question like-
lihood based on the context only (prompt-based
questioner without goal, see Fig. 13).

For comparison, we also consider a purely mono-
lithic prompting of the LLM. In particular, the
one-shot chain-of-thought model has a chain-
of-thought prompt which verbalizes the reasoning
steps suggested by the QA model in the chain-of-
thought for a single example item (see Figure 14).
That is, this model is fully LLM-based, using only
one call to one neural module (i.e., the LLM).

4 Results

Quantitative results We used the human answer
proportions reported in Section 3 as reference and
quantitatively compared models in terms of fit to
the human data by calculating the Jensen-Shannon
divergence (JSD) between the human and the mod-
els’ predictions. Specifically, we calculated the
score ∆i of model Mi in comparison to the perfor-
mance of a baseline B given by a flat distribution
over all answer categories:

∆i = JSD(B, humans)− JSD(Mi, humans)

where JSD(B, humans) = 0.154. We report ∆i-s
in Figure 2 (upper panel; higher JSD differences
are better, indicating closer fit to human data). The
figure additionally shows the reference value pro-
vided by the PCM (solid line).

We found that most tested models with interme-
diate or high degrees of task decomposition came
close to the original PCM (the CIs overlap with
the PCM reference line or lie above it), indicating
that the neuro-symbolic framework provides a po-
tentially viable method for explaining human data.
Visually, the “full NeSy” model and the “prompt-
based questioner with goals” fit human data best
in terms of ∆. The PCM + LLM models tended
to improve with a higher number of LLM mod-
ules, but generally provided a somewhat worse

fit than the PCM (the means are below the line).
Supporting LLMs with a theoretically motivated
task decomposition led to significant improvement
within the LLM + scaffolding models: the “prompt-
based questioner” models showed a better fit than
the “one-shot CoT” model. Therefore, overall we
found that the neuro-symbolic approach to open-
ending pragmatic PCMs showed quantitative fit to
human data on par with established cognitive mod-
eling, while offering a more realistic interface to
natural language inputs and outputs.

Qualitative results Next to the quantitative anal-
yses, we analyzed qualitatively the differences be-
tween model predictions and the performance of
the single modules. Figure 3 shows the proportions
of different response categories (e.g., competitor,
no-options responses etc.) predicted by the differ-
ent models, next to PCM predictions and human
data from Tsvilodub et al. (2023). The figure re-
veals that although many neuro-symbolic models
have similar fit to human data in terms of ∆, there
are qualitative differences in the predicted response
proportions. The two models with “LLM seman-
tics” overpredicted the proportion of unrelated re-
sponses, while the “LLM base-level semantics &
utilities” model overpredicted the all-options re-
sponse rate and slightly underpredicted the com-
petitor rate.

Comparisons of the base-level and pragmatic re-
spondent semantic modules revealed that the base-
level semantics module performed reliably, while
the pragmatic respondent semantic module made
mistakes more frequently, including when evalu-
ating unrelated responses. This may have led to
the overprediction of the unrelated responses, as
shown by the comparison of the “LLM semantics
& utilities” and the “LLM base-level semantics &
utilities” models because the former only differs
from the latter by using an LLM-based pragmatic
respondent semantics evaluator. We correlated the
utility evaluator predictions with data elicited from
humans for the PCM (see Figure 5) and found a
very high correlation (R = 0.92), so we can likely
rule out the utility evaluator as the source of over-
prediction of the unrelated category.

The comparison of the PCM + LLM models to
the “full NeSy” model highlights the difference
in response proportions that is driven by adding
LLM proposers for the set of available responses
and questions. The addition of response and ques-
tion proposers decreased the rate of unrelated re-

7



Figure 3: Proportions of different response categories produced by humans (left column) and predicted by different
models. The categories are based on which options are mentioned in the response.

sponses and slightly increased the rate of similar
and exhaustive responses. Since the “full NeSy”
model included the pragmatic respondent semantic
evaluator module, we can conclude that seman-
tic evaluations might work more reliably with the
LLM’s own proposals than with the pre-specified
sets of responses and questions. These observations
are in line with one of the well-known challenges
of neuro-symbolic modeling concerning difficulty
of converting between neural and symbolic rep-
resentations that is required in order to reliably
compute truth values for open-ended sentences and
contexts (Bader et al., 2004), as well as with de-
bates around LLMs’ ability to provide reliable eval-
uations (Bavaresco et al., 2024).

We also explored decreasing and increasing the
n of alternative responses proposed by the LLM.
We found that results with n < 10 proposals were
unlikely to contain the “all options” or “no options”
responses. For n = 10 this was more often the
case, but we appended these two response types
to set of alternatives manually nonetheless, to en-
sure availability of all conceptually meaningful re-
sponse types. Sampling n = 50 responses ensured
full coverage of response types but became compu-
tationally expensive. Generally the proposals often
contained multiple instances of one response type
(e.g., multiple competitor responses), an observa-
tion we return to in the discussion. However, this
is unlikely the sole driving force beyond the fit of
the framework, as the “LLM semantics, utilities,
DP” model showed a similar competitor response

proportion, while operating on a fully prespecified
set of responses.

We qualitatively assessed the samples of the goal
proposer module that generates possible text-based
questioner goals, given the vignette. We compared
the samples to human data from a web-based ex-
periment wherein participants were asked to write
three plausible goals of the questioner, given the
vignette context (see Appendix C for details and
human results). We focused on analyzing whether
the LLM-proposed goal focused on getting the tar-
get mentioned in the question, on a more general
information gain, or on specific situation aspects.
We observed that, while LLM proposals were plau-
sible, they focused on the target and specific goals
around the target more, while humans showed more
diversity in their specific goals, e.g., often involv-
ing social aspects of the described situation.

Turning to the LLM + scaffolding model type,
comparing the “prompt-based questioner model
without goals” and the “prompt-based questioner
model with goals” revealed a trend towards predict-
ing unrelated and similar responses more uniformly
in the goal-free model, which is expected given
that the distinction between these types of answers
is based on reasoning about the questioner’s goal.
However, these differences are small and indicate
that, even under certain (ablating, from a theoret-
ical perspective) prompt variation, LLMs may be
able to approximate pragmatic behavior.

Taken together, our key results are:
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• the neuro-symbolic modeling approach fits
human data quite closely, potentially making
it a framework for computational modeling of
pragmatic question answering performing on
par with the PCM;

• at least some level of task decomposition
when using LLM modules is required for a
good fit to human data;

• LLM modules are generally good proposers,
although attention should be paid to types of
proposals that are expected for explanatory
purposes;

• LLMs are good evaluators for functions based
on abstract world knowledge like the utility
evaluator;

• LLMs may struggle with truth-conditional se-
mantics of certain utterances, but perform well
when evaluating yes/no responses to polar
questions.

5 Related work

Our work is situated at the intersection of several
strands of like-minded work in different areas, in
addition to the work we build on directly (Hawkins
et al., 2015; Tsvilodub et al., 2023). The idea and
promise of neuro-symbolic models has been stud-
ied in artificial intelligence for many years (Bhuyan
et al., 2024). Further, our framework is closely re-
lated to recent work outlining various approaches
to combining scaffolding structures, computational
modeling or cognitive architectures with LLMs
(e.g., Nye et al., 2021; Collins et al., 2022; Sumers
et al., 2023; Wong et al., 2023; Kambhampati et al.,
2024). Combining LLMs with PCMs specifically
in the context of computational pragmatics has re-
ceived some attention in recent work (e.g., Lew
et al., 2020; Franke et al., 2024; Tsvilodub et al.,
2024a) but the present work focuses specifically on
systematically comparing and evaluating families
of related models with varying degrees of neural or
symbolic computation.

On an algorithmic level, our models combine
several LLM calls in a particular architecture,
which has been widely used in recent prompt tech-
niques (Nye et al., 2021; Prystawski et al., 2023;
Yao et al., 2023), and systems that use LLM calls
to retrieve information (e.g., Lewis et al., 2020), to
access different tools (e.g., Schick et al., 2023) or

to solve complex reasoning tasks (e.g., Creswell
et al., 2022; He-Yueya et al., 2023).

Systems with multiple LLM calls per input have
also been specifically applied to question answer-
ing (Wang et al., 2023), mainly with a focus on
improving factual accuracy of responses, or on
training systems to improve their question asking
capabilities (Andukuri et al., 2024). Therefore, our
case study addresses a highly relevant task, with
a novel focus on modeling pragmatic, human-like
answering behavior.

6 Discussion

Taken together, in this case study we outlined and
systematically assessed a neuro-symbolic frame-
work for computational pragmatic modeling that
uses probabilistic cognitive models as scaffolding
structure that integrates LLM components for more
flexible interfaces with language and background
knowledge. The experiments on a case study of
pragmatic question answering revealed that such
modeling can be a viable candidate in the toolbox
for more flexible models of human behavior in
question answering. The systematic comparison
of neuro-symbolic models with different degrees
of task decomposition suggests fine-grained differ-
ences in how LLMs perform on different subtasks
common to PCMs.

Our case study has several limitations, but also
opens up paths for future work. For one, the full
neuro-symbolic models implement Bayesian in-
ference via enumeration, which results in compu-
tational bottlenecks when scaling the number of
proposals and options in context. Related work
connecting LLMs and Bayesian inference might
be a promising avenue for improvements (Lew
et al., 2023). Additionally, the current main re-
sults are based only on one closed-source LLM
(but see Appendix D for exploratory results with an
open-source LLM), and only use zero-shot prompt-
ing (except the CoT model). In this initial case
study, we prioritized using relatively simple, non-
engineered prompts, but nonetheless LLM prompt-
ing comes with potential risks of hallucination, er-
rors and biases (e.g., Bender et al., 2021; Ji et al.,
2023; Liu et al., 2023).

Finally, the use of LLMs as proposers and evalu-
ators opens up interesting questions. For instance,
response proposals supplied by the LLM might con-
tain a trend towards certain response types, which
can arguably be seen as a learned prior over human

9



preferences reflected in the training data. Addition-
ally, cognitive models usually assume utterance
costs for human language production and compre-
hension, but such online processing costs might not
have a clear counterpart in LLMs. Further, vary-
ing performance of LLM evaluators might suggest
that some aspects of semantics might be amortized
in training data (White et al., 2020). Our results
suggest that LLMs might not approximate differ-
ent aspects of human intuitive knowledge equally
well, touching upon important considerations of
replacing human judgements with LLMs (Shiffrin
and Mitchell, 2023; Löhn et al., 2024). For the
LLMs + PCM models, one other potential source
of improved performance with scaffolding of the
LLM could be due to higher inference time com-
pute budget that comes with decomposing the task
into several LLM calls (Yu et al., 2024).

In sum, we presented a detailed case study as a
starting point for exploring neuro-symbolic mod-
els of human language use, showing that task de-
composition supplied by a cognitive model can
be leveraged in synergy with recent LLMs, work-
ing towards open-ending pragmatic computational
modeling.

Acknowledgments

We would like to thank Fausto Carcassi for his
contributions to developing the framework, and
the anonymous reviewers for insightful comments.
MF is a member of the Machine Learning Clus-
ter of Excellence at University of Tübingen, EXC
number 2064/1 – Project number 39072764. PT
and MF gratefully acknowledge the support by the
state of Baden-Württemberg through bwHPC and
the German Research Foundation (DFG) through
grant INST 35/1597-1 FUGG.

References
Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Ger-

stenberg, and Noah Goodman. 2024. STar-GATE:
Teaching language models to ask clarifying questions.
In First Conference on Language Modeling.

Sebastian Bader, Pascal Hitzler, and Steffen Hoell-
dobler. 2004. The integration of connectionism and
first-order knowledge representation and reasoning
as a challenge for artificial intelligence. Preprint,
arXiv:cs/0408069.

Anna Bavaresco, Raffaella Bernardi, Leonardo Berto-
lazzi, Desmond Elliott, Raquel Fernández, Albert
Gatt, Esam Ghaleb, Mario Giulianelli, Michael

Hanna, Alexander Koller, et al. 2024. LLMs in-
stead of human judges? A large scale empirical study
across 20 NLP evaluation tasks. URL https://arxiv.
org/abs/2406.18403.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Margaret Mitchell. 2021. On the dangers
of stochastic parrots: Can language models be too
big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, FAccT
’21, page 610–623, New York, NY, USA. Association
for Computing Machinery.

Anton Benz. 2006. Utility and relevance of answers.
Springer.

Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi
Tomar, and TP Singh. 2024. Neuro-symbolic artifi-
cial intelligence: a survey. Neural Computing and
Applications, pages 1–36.

Herbert H Clark. 1979. Responding to indirect speech
acts. Cognitive psychology, 11(4):430–477.

Katherine M. Collins, Catherine Wong, Jiahai Feng,
Megan Wei, and Joshua B. Tenenbaum. 2022. Struc-
tured, flexible, and robust: benchmarking and im-
proving large language models towards more human-
like behavior in out-of-distribution reasoning tasks.
Preprint, arXiv:2205.05718.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Judith Degen. 2023. The rational speech act framework.
Annual Review of Linguistics, 9(1):519–540.

Simon Farrell and Stephan Lewandowsky. 2018. Com-
putational modeling of cognition and behavior. Cam-
bridge University Press.

Michael C Frank and Noah D Goodman. 2012. Predict-
ing pragmatic reasoning in language games. Science,
336(6084):998–998.

Michael Franke, Polina Tsvilodub, and Fausto Carcassi.
2024. Bayesian statistical modeling with predictors
from LLMs. arXiv preprint arXiv:2406.09012.

Noah D Goodman and Andreas Stuhlmüller. 2014. The
Design and Implementation of Probabilistic Program-
ming Languages. http://dippl.org. Accessed:
2025-1-30.

Jeroen Antonius Gerardus Groenendijk and Martin Jo-
han Bastiaan Stokhof. 1984. Studies on the Seman-
tics of Questions and the Pragmatics of Answers.
Ph.D. thesis, Univ. Amsterdam.

Auli Hakulinen. 2001. Minimal and non-minimal an-
swers to yes-no questions. Pragmatics, 11(1):1–15.

CL Hamblin. 1973. Questions in Montague English.
Foundations of Language, 10(1):41–53.

10



Robert D. Hawkins and Noah D. Goodman. 2017. Why
do you ask? The informational dynamics of questions
and answers. PsyArXiv.

Robert D. Hawkins, Andreas Stuhlmüller, Judith De-
gen, and Noah D. Goodman. 2015. Why do you
ask? Good questions provoke informative answers.
Cognitive Science.

Robert D. Hawkins, Polina Tsvilodub, Claire Augusta
Bergey, Noah D. Goodman, and Michael Franke. to
appear. Relevant answers to polar questions. Philo-
sophical Transactions B.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D. Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Jennifer Hu, Sammy Floyd, Olessia Jouravlev, Evelina
Fedorenko, and Edward Gibson. 2023. A fine-
grained comparison of pragmatic language under-
standing in humans and language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4194–4213, Toronto, Canada. Associ-
ation for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. LLMs
can’t plan, but can help planning in LLM-Modulo
frameworks. Preprint, arXiv:2402.01817.

Alexander K Lew, Michael Henry Tessler, Vikash K
Mansinghka, and Joshua B Tenenbaum. 2020. Lever-
aging unstructured statistical knowledge in a proba-
bilistic language of thought. In Proceedings of the
annual conference of the cognitive science society.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and
Vikash K. Mansinghka. 2023. Sequential Monte
Carlo steering of large language models using proba-
bilistic programs. Preprint, arXiv:2306.03081.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive NLP tasks. Advances in
Neural Information Processing Systems, 33:9459–
9474.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Lea Löhn, Niklas Kiehne, Alexander Ljapunov, and
Wolf-Tilo Balke. 2024. Is machine psychology here?
On requirements for using human psychological tests
on large language models. In Proceedings of the 17th
International Natural Language Generation Confer-
ence, pages 230–242, Tokyo, Japan. Association for
Computational Linguistics.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in
Neural Information Processing Systems, 34:25192–
25204.

Kathryn Pruitt and Floris Roelofsen. 2011. Disjuntive
questions: Prosody, syntax, and semantics. Handout,
Göttingen.

Ben Prystawski, Paul Thibodeau, Christopher Potts, and
Noah Goodman. 2023. Psychologically-informed
chain-of-thought prompts for metaphor understand-
ing in large language models. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 45.

Anselm Rothe, Brenden M Lake, and Todd Gureckis.
2017. Question asking as program generation. Ad-
vances in neural information processing systems, 30.

Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker,
Tim Rocktäschel, and Edward Grefenstette. 2023.
The goldilocks of pragmatic understanding: Fine-
tuning strategy matters for implicature resolution by
LLMs.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Richard Shiffrin and Melanie Mitchell. 2023. Probing
the psychology of AI models. Proceedings of the Na-
tional Academy of Sciences, 120(10):e2300963120.

Jon Scott Stevens, Anton Benz, Sebastian Reuße, and
Ralf Klabunde. 2016. Pragmatic question answer-
ing: A game-theoretic approach. Data & Knowledge
Engineering, 106:52–69.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Polina Tsvilodub, Michael Franke, and Fausto Carcassi.
2024a. Cognitive modeling with scaffolded LLMs:
A case study of referential expression generation. In
ICML 2024 Workshop on LLMs and Cognition.

11



Polina Tsvilodub, Michael Franke, Robert Hawkins, and
Noah D. Goodman. 2023. Overinformative question
answering by humans and machines. In Proceed-
ings of the 45th Annual Conference of the Cognitive
Science Society. Cognitive Science Society.

Polina Tsvilodub, Paul Marty, Sonia Ramotowska, Ja-
copo Romoli, and Michael Franke. 2024b. Exper-
imental pragmatics with machines: Testing LLM
predictions for the inferences of plain and embed-
ded disjunctions. In Proceedings of CogSci, pages
3960–3967.

Robert van Rooy. 2003. Questioning to resolve decision
problems. Linguistics and Philosophy, 26(6):727–
763.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Julia White, Jesse Mu, and Noah D. Goodman. 2020.
Learning to refer informatively by amortizing prag-
matic reasoning. Preprint, arXiv:2006.00418.

Li Siang Wong, Gabriel Grand, Alexander K. Lew,
Noah D. Goodman, Vikash K. Mansinghka, Jacob
Andreas, and Joshua B. Tenenbaum. 2023. From
word models to world models: Translating from natu-
ral language to the probabilistic language of thought.
ArXiv, abs/2306.12672.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.
2024. Distilling system 2 into system 1. Preprint,
arXiv:2407.06023.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2023. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology.

A QA model

Below, we report the QA model by Hawkins et al.
(to appear), described in Section 2, in more formal
detail.

The base-level respondent that provides literal
responses r to a question q given the world w is
defined as follows:

R0(r | w, q) ∝
{
1 if r is true in w & safe for q
0 otherwise.

The notion of safety is couched in prior work on
semantics of questions and answers (Pruitt and
Roelofsen, 2011) and entails that, for the tested
vignettes, only the literal answers r ∈ {‘yes’, ‘no’}
are evaluated here.

The pragmatic questioner selects a question
given their decision problem, based on the re-
sponses they expect from the base-level respondent
R0. Formally, a decision problem (DP) is a tuple
D =

〈
W,A,U , πW

Q

〉
, consisting of a set of world

states W , a set of options A, a utility function
U : W × A → R, and a probability distribution
πW
Q ∈ ∆(W) capturing the questioner’s prior be-

liefs about the world states. Then, the value of a
decision problem D is the expected utility under a
policy ℵD that chooses options according to their
expected utility:

V (D) = E
a∼ℵD

[
E

w∼πW
Q

[
U(w, a)

] ]

The pragmatic questioner then selects a ques-
tion by soft-maximizing the expectation over the
values of the decision problems D|r,q given likely
responses from the base-level respondent, resulting
in Q(q | D) (see Figure 4), where C(r) and C(q) are
the production costs associated with the response
and question, respectively.

The pragmatic respondent then reasons about the
pragmatic questioner’s choice of question in order
to infer their likely decision problem:

π
D|q
R1

(D) ∝ Q(q | D) πD
R1

(D)

Finally, the pragmatic respondent chooses a re-
sponse by soft-maximizing the expected utility of
the response given their posterior beliefs about the
questioner DP. Utility is defined as a (parameter-
ized) combination of informativity (defined via KL
divergence) and action-relevance (defined via the
decision problem value), resulting in R1(r | q) (see
Figure 4).

A.1 Parameterization of the QA model
As commonly done for probabilistic modeling, in
order to run simulations with the QA model param-
eters of the model were specified by the modelers
or with elicited human data (Hawkins et al., to ap-
pear). For each vignette, the set of alternative ques-
tions included polar questions about the availability
of each of the possible options individually, and a
wh-question inquiring about all possible options.
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Figure 4: Formal definitions of the pragmatic questioner Q(q | D) and respondent R1(r | q).

The set of available pragmatic answers included
answers of all categories described in Section 3.1.

In order to specify the utility functions of the
questioner DPs, a web-based experiment was run
with human participants. Participants (N = 453)
were asked to provide slider ratings for each pos-
sible option (e.g., iced tea, iced coffee, soda,
Chardonnay), given another option as the goal. The
full space of possible combinations was elicited.
The slider ratings were on a scale of 0–100. Impor-
tantly, participants were asked to rate how happy
they think a person would be to receive an option,
given the target, resulting in abstract conditional
preferences. The DP utilities for each vignette were
bootstrapped from human preferences in the QA
model simulations. Human results for ratings of
the alternatives, given the option used as the target
in the free production experiments as the goal (e.g.,
the iced tea) are shown in Figure 5 (left) together
with respective LLM module predictions. Human
and GPT-4o-mini ratings correlated highly, and
supported the intuitive ordering of the relevance of
alternatives (e.g., the competitor received higher
ratings than the unrelated option for a given target).

B Prompts

Prompts for all LLM modules are presented below
in Figures 6–14.

B.1 Semantic Evaluators

The base-level semantic evaluator only evalu-
ates the set of literal responses {‘yes’, ‘no’}. The
pragmatic respondent semantic evaluator evaluates
the set of possible overinformative responses. In
models where the set of pragmatic responses is pre-
specified, the possible responses are of the form
“I’m sorry, we don’t have {target}. {continuation}”,
where the continuation was constructed for all re-
sponse types (no-options, competitor, similar, unre-
lated, all-options responses).

C Human Experiment on Goal Inference

In an exploratory goal inference study, participants
(N=35) were shown vignette contexts without the
available options, followed by the question asked
by a speaker. Participants were asked to name
three plausible goals in three separate text fields
that the questioner might have in mind when ask-
ing the question. We focused on distinguishing
whether participants named goals focused on ac-
quiring the target mentioned in the question, on
acquiring more general information, or on goals
related to more specific aspects of the situation.

Participants were most likely to infer specific
goals (0.42 of the responses), followed by target-
related goals (0.35 of the responses). More general
information-seeking goals were less likely (0.17
of the responses), and some responses were non-
classifiable (0.06).

We then manually analyzed the proposals of the
LLM goal proposer module. Qualitatively, the
target-related goals mostly were about acquiring
the target or an item with the same functional fea-
tures (e.g., when the target was veggie pizza, the
functional feature would be being a vegetarian op-
tion), both for humans and LLMs. The specific
goals produced by humans often involved more
details than just acquiring the target, e.g., acquir-
ing the target for a friend, or mentioned different
specific preferences participants came up with. In
contrast, the specific goals produced by LLMs were
less likely to mention social aspects like acquiring
something for a friend, and more likely to pro-
duce possible more specific questioner preferences
(e.g., “asking about certain dietary restrictions”).
The more general goals produced by humans and
LLMs often mentioned learning about the set of
available alternatives.
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Figure 5: Left: GPT-4o-mini utilities plotted against human utilities, R = 0.92. Right: Qwen-2.5-32B-Instruct
utilities plotted against human utilities, R = 0.93.

1-shot CoT 1-shot example 1-shot explanation 0-shot
Qwen-2.5-32B-Instruct 0.21 0.15 0.25 0.28
Qwen-2.5-14B-Instruct 0.16 0.24 0.22 0.39
Qwen-2.5-7B-Instruct 0.33 0.19 0.50 0.17

Table 1: Jensen-Shannon divergence between human response proportions and the proportions of different response
categories predicted by Qwen models of different sizes under various prompting (lower is better).

Utility Evaluator Prompt

1 In this study we are interested in
how you think about other

people.
2 On each trial , you will be given

some information about a person
: 'Suppose someone wants to
have Italian food.'

3

4 Then we 'll ask how happy you think
this person would be about

other things , given this
information. For instance , we
might ask: 'How happy do you
think they would be if they had
French food instead?'

5 You 'll use ratings from 0-100 to
answer the questions. Return
the rating only.

6

7 Suppose someone wants {goal}. How
happy do you think they would
be if they got {option }?

Figure 6: Utility Evaluator Prompt

Base-level Evaluator Prompt

1 Safe answers to questions only
provide information that the
questioner genuinely does not
know , given what they asked.

2 True answers to questions only
provide information that is
true given the context.

3

4 Here is an everyday situation
where someone asks a question:
{context + question}

5 Here is a potential answer to the
question: {utterance}

6

7 Is the answer safe and true in
this context , according to the
definition above?

8 Return 'yes ' or 'no' only.

Figure 7: Base-level Evaluator Prompt
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Pragmatic Respondent Semantic Evaluator
Prompt

1 True answers to questions only
provide information that is
true given the context.

2

3 Here is an everyday situation
where someone asks a question:
{state}

4 Here is a potential answer to the
question: {utterance}

5

6 Is the answer true in this context
, according to the definition
above?

7 Return 'yes ' or 'no ' only.

Figure 8: Pragmatic Respondent Semantic Evaluator
Prompt

Response Proposer Prompt

1 Safe answers to questions only
provide information that the
questioner genuinely does not
know , given what they asked.

2 True answers to questions only
provide information that is
true given the context.

3

4 Here is a question someone could
ask in an every day situation:
{question}

5 Here are the available options: {
options}

6

7 Generate {num_samples} literal
answers to the question.

8 Return them as a numbered list.

Figure 9: Response Proposer Prompt

Question Proposer Prompt

1 Suppose a person has the following
goal: {goal}

2 The person is in the following
everyday situation: {context}

3 Generate {num_samples} well formed
short questions(s) the person

might naturally ask in the
context to achieve their goal.

Figure 10: Question Proposer Prompt

Goal Proposer Prompt

1 You will be given a context in
which a person asks a question.

2 What plausible different goals
might the person be interested
in, given what they asked?

3 Your task is to generate {
num_samples} alternatives in a
comma separated list.

Figure 11: Goal Proposer Prompt

Prompt-based questioner with goals

1 We are interested in how likely a
person would be to ask the
following question in a simple
context , given their goal.

2 Please return only the likelihood ,
provided on a scale between 0

and 1.
3 Goal: {goal}
4 Context: {state}
5 {utterance}

Figure 12: Prompt-based questioner with goals

Prompt-based questioner without goals

1 We are interested in how likely a
person would be to ask the
following question in a simple
context.

2 Please return only the likelihood ,
provided on a scale between 0

and 1.
3 Context: {state}
4 {utterance}

Figure 13: Prompt-based questioner without goals
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One-shot chain-of-thought prompt

1 You are hosting a barbecue party.
You are standing behind the
barbecue. You have the
following goods to offer: pork
sausages , vegan burgers ,
grilled potatoes and beef
burgers.

2 Someone asks: Do you have grilled
zucchini?

3

4 Let 's think step by step. You
reason about what that person
most likely wanted to have.
That they asked for grilled
zucchini suggests that they
might want vegetarian food.
From the items you have pork
sausages and beef burgers are
least likely to satisfy the
persons desires. Vegan burgers
and grilled potatoes come much
closer. Grilled potatoes are
most similar to grilled
zucchini. You reply:

5

6 I'm sorry , I don 't have any
grilled zucchini. But I do have
some grilled potatoes.

Figure 14: One-shot chain-of-thought prompt

D Simulation Results with an
Open-Source LLM

Additionally to the main experiments performed
with GPT-4o-mini, we ran all experiments with an
open-source LLM — Qwen-2.5-32B-Instruct
(Team, 2024), providing insights about advantages
and open questions for our neuro-symbolic model-
ing framework when it is based on LLMs that can
be run locally.

The experimental settings were the same as re-
ported in 3.1. Quantitative results comparing the
predictions of the different models to human results
in terms of JSD improvement over a random base-
line ∆, introduced in 4, are shown in Figure 15.
The results indicate that some models with LLM
evaluators (i.e., semantics and utility evaluators,
models (1) and (3)) perform on par with the models
based on a powerful closed-source LLM, as well
as close to the original probabilistic model. The
high correlation between DP utilities predicted by
Qwen and human results (Figure 5, right) corrob-
orates that such evaluations can also be reliably
elicited from an open-source model. Similarly to
GPT-based models, the performance of the utility
evaluator was more robust than for the literal se-
mantic evaluators, as indicated by the better fit to
human data for model (1). However, for model
(2) and for models introducing a proposer (models
(4)–(5)) the fit of the models decreased. Manual
evaluations of the single modules in these models
indicated that, qualitatively, the generated evalua-
tions and proposals were adequate for the respec-
tive modules. However, this LLM struggled more
to follow formatting instructions, so that process-
ing the proposals for passing them to the neural
evaluator modules was more brittle. Simulation
runs which resulted in unrecoverable parsing er-
rors were excluded form analysis.2 Models which
use a Qwen-based prompted questioner module
((6)–(7)) improved the fit to human data over the
random baseline, although the role of conditioning
the questioner prompt on the goal was opposite to
the GPT-based models.

Qualitative results comparing the proportions of
different response types under different models are
shown in Figure 16. The qualitative patterns sug-
gest that Qwen-based models preferred responses
mentioning a relevant alternative (i.e., competitor
responses) over no options or exhaustive responses.

2For this reason, no results of the full neuro-symbolic
model are reported.
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Figure 15: Improvement of the fit to human data of a model with an open-source Qwen-2.5-32B-Instruct backbone
over a uniform response distribution baseline (higher is better). The horizontal line indicates the performance of the
symbolic probabilistic model. The points indicate averages over simulations.

Figure 16: Proportions of different response categories predicted by Qwen-2.5-32B-Instruct used in different models
(1–7), and with different prompting strategies (8–9).

LLM-only predictions, both in the one-shot chain-
of-thought and the zero-shot prompting conditions,
on the other hand, showed a larger proportion of
exhaustive responses. We also report the JSD val-
ues for predictions from different sizes of Qwen
under different prompting strategies from Tsvilo-
dub et al. (2023) and human results in Table 1.
These results suggest variation in the effectiveness
of such prompting for different model sizes. For
the two larger models, prompts that verbalize the
PCM improve results over zero-shot prompting, al-
though for the 32B model, ablated prompts further
improve the fit to human data, suggesting substan-
tial variation of human-likeness of the predictions
when using only neural modules.

In sum, most neuro-symbolic Qwen-based mod-
els scaffolded with the PCM showed a better fit to
human data than the random baseline, while the
predictions of the LLM alone, even under one-shot
chain-of-thought prompting, showed worse fit than
the baseline. Additionally, given the open availabil-
ity of the LLM, light-weight fine-tuning for bet-
ter formatting instruction-following might offer a
promising avenue for more robust neuro-symbolic
modeling with open-source LLMs. Therefore,
we can cautiously conclude that, given sufficient
instruction-following capabilities for formatting,
the neuro-symbolic framework might allow open-
source LLMs to produce more human-like response
patterns.
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