
BMRS-Net: Learning BMRS Predicates as Decision Trees

Yifan Hu*

University College London
yifanhu@umass.edu

Abstract

This paper explores two applications of learn-
ing Boolean Monadic Recursive Scheme
(BMRS) feature predicates, leveraging their
analogy to binary Decision Trees. Through two
case studies, the paper demonstrates how these
applications can successfully fit some datasets
and analyze new phonological transformations
in a decision-based approach, while retaining
high transparency and interpretability.

1 Introduction

Phonology has traditionally been guided by frame-
works such as the Sound Pattern of English (SPE)
and Optimality Theory (OT) to understanding trans-
formations and constraint satisfaction (Chomsky
and Halle, 1968; Prince and Smolensky, 2002).
However, there is an increasing interest in more
computationally oriented models that can handle
large datasets and adapt dynamically to new lin-
guistic context. One such model is the Boolean
Monadic Recursive Scheme (BMRS), a decision-
based approach that utilizes recursive functions and
Boolean logic, making it particularly compatible
for extensive phonological analysis (Bhaskar et al.,
2020; Chandlee and Jardine, 2021).

BMRS is structured around “if-then-else” ex-
pressions, which resemble the nodes of a binary
Decision Tree where each decision leads to fur-
ther branches and conditions. This decision-based
structure associates it closely with computational
models used in data science and machine learning
(Quinlan, 1986). While BMRS predicates were
typically defined manually (e.g., Hua et al., 2021;
Oakden, 2021; Zhu, 2023; Jardine and Oakden,
2023), recent work demonstrates that decision tree
learning algorithms can classify and stratify con-

* Research conducted while the author was affiliated with
University College London. The author will begin a PhD
program at University of Massachusetts Amherst in September
2025. This paper is a revised version of his MA dissertation.

trastive phonological features accordingly (Chan-
dlee, 2023), suggesting a potential for these algo-
rithms to automate the learning of BMRS feature
predicates.

This paper employs the Classification and Re-
gression Trees (CART) algorithm as a tool for au-
tomating the generation of BMRS feature predi-
cates (Breiman et al., 1984; Pedregosa et al., 2011;
Geron, 2019). We conceptualize a type of bi-
nary decision trees, termed BMRS-Trees, where
the root and each intermediate node utilize only
one Boolean attribute. Additionally, by connecting
multiple BMRS-Trees in parallel, we can output a
comprehensive phonological feature matrix – this
network-like structure is termed the BMRS-Net.

2 Preliminaries

2.1 Boolean Monadic Recursive Schemes
(BMRS)

BMRS (Bhaskar et al., 2020; Chandlee and Jar-
dine, 2021) can best be conceptualized as an index-
by-index UR-to-SF (Underlying Representation-
to-Surface Form) transducer. It processes each
index individually, starting from index 1 and iter-
ating rightwards. To illustrate, in then mapping
from the input string x1x2 . . . xN to the output
string y1y2 . . . yN , index 1 is the first to be assessed
by BMRS’ feature predicate, returning a Boolean
value True (denoted by⊤ in this paper, or numeric
1 in vectors and matrices) or False (⊥ or 0) that
determines the output y1, then index 2, index 3, un-
til N . Each output character yi is produced based
primarily on its corresponding input character xi,
and the whole input string also provides contextual
information, as well as all the yi’s predecessors in
the output string. Given its index-by-index nature,
BMRS requires its input and output be of the same
length for error-free index iteration.1

1Readers unfamiliar with BMRS transduction may refer to
Appendix A for a running example after finishing 2.1.

108
Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 108-122.

Eugene, Oregon, July 18-20, 2025

BMRS utilizes two position functions to navi-
gate and manipulate string indices: the predeces-
sor p and successor s, defined for any index i in a
string of length N as:

p(xi) =

{
xi−1 if i > 1

_ if i = 1

s(xi) =

{
xi+1 if i < N

_ if i = N

The underscore _ serves as a boundary symbol at
both ends.2

Recursively nesting position functions allows
access to any preceding and succeeding characters
of any given index, indicated by superscripts, e.g.:

p2(xi) = p(p(xi))

s3(xi) = s(s(s(xi)))

A superscripted asterisk (∗) indicates an arbitrary
number of nestings, e.g.: 3

p∗(xi) = p(xi), p(p(xi)) or p(p(p(. . . (xi))))

Σ denotes the Symbol Set or Alphabet, encom-
passing all characters all possible characters in both
input and output strings; the modified Σ_ incorpo-
rates the boundary symbol _. Feature predicates
for each symbol σ in Σ are defined as:

σ(x) =

{
⊤ if x ⊨ σ

⊥ if x ⊭ σ

These feature predicates assess whether the char-
acter x at the current index “satisfies” or “models”
the symbol σ, returning either ⊤ or ⊥.4 When ap-
plied to output strings, they are subscripted with an
o to differentiate their application context, e.g.:5

σo(xi) =

{
⊤ if yi ⊨ σ

⊥ if yi ⊭ σ

A well-formed BMRS predicate might include:
2The standard implementation uses a left edge (⋊) and

right edge marker (⋉) instead (Bhaskar et al., 2020; Chandlee
and Jardine, 2021), but in this paper use of _ is equivalent.

3The asterisk notation is an ad hoc reader-friendly simpli-
fication. Precise definition will be give in Footnote 6.

4Σ can denote beyond mere “symbols”: when Σ denotes a
set of phonological features (e.g., [front], as in Section 3.2) and
x denotes some segment (e.g., [i]), then saying “[i] satisfies
(or ⊨) [front]” makes more sense.

5σo(xi) is a target feature predicate, see Section 3.1.

1. Symbolic feature predicates, which are sim-
ple checks like σ(x) that directly assess the “match”
of a symbol at the current index;

2. Position-embedded feature predicates,
more complex predicates like σ(p(x)), σ(s2(x))
or σ(p∗(x))6 that evaluate the “match” of symbols
at positions relative to the current index; and

3. Conditional logic, which refers to construc-
tion of “if-then-else” statements upon symbolic fea-
ture predicates, position-embedding feature predi-
cates, and ⊤/⊥, e.g., if σ(x) then ⊤ else σ(p(x)).

2.2 Decision Tree
. . . is a supervised learning model is used for clas-
sification and regression tasks (Quinlan, 1986;
Breiman et al., 1984). It recursively splits the
dataset based on input attributes, forming a tree
where each node represents a decision, and each
branch corresponds to a possible outcome. The leaf
nodes return the predicted output.

This paper focuses on binary classification de-
cision trees, where all attributes (including the tar-
get attribute) are Boolean. The training data is
typically in a table, with each row representing a
data instance and each column an attribute for split-
ting. The last column is by convention the target
attribute, which the Decision Tree aims to predict.
An example table is presented in Table 1:

Attribute 1 Attribute 2 Attribute 3 Target
⊤ ⊤ ⊥ ⊥
⊤ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊥
⊤ ⊥ ⊤ ⊥
⊥ ⊤ ⊥ ⊤
⊥ ⊤ ⊤ ⊤
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊤

Table 1: Example Attribute Table

Our implementation uses the scikit-learn library
(Pedregosa et al., 2011), which defaults to the Clas-
sification and Regression Tree (CART) algorithm
for growing Decision Trees (Breiman et al., 1984).
When applied to the dataset in Table 1, CART gen-
erates the Decision Tree shown in Figure 1:

6Technically, p∗(x) is undefined and not a formal term
used in BMRS. Below, we will first provide a precise definition
of the functions p∗ and s∗:
p∗(σ, xi) = if σ(xi) then ⊤ else (if _(xi) then ⊥ else p∗(σ, p(x)))
s∗(σ, xi) = if σ(xi) then ⊤ else (if _(xi) then ⊥ else s∗(σ, s(x)))

For simplicity, we will write both functions as σ(p∗(x)) and
σ(s∗(x)) in the rest of the paper.

109

Attribute 1

⊥
⊤

Attribute 2

⊤
⊤

Attribute 3

⊤
⊤

⊥
⊥

⊥

⊥

Figure 1: Example Decision Tree

While the Tree-growing algorithm is well-
established (see Appendix B for a detailed expla-
nation of CART), our focus will primarily revolve
around extracting robust attributes (feature predi-
cates in the context of BMRS, see Section 3.1).

3 BMRS-Tree

3.1 Implementation
As BMRS calculates output feature predicates
index-by-index, extracting features for the CART
attribute table also requires index-by-index pro-
cessing. Given Σ and a UR x1x2 . . . xN to SF
y1y2 . . . yN mapping, we propose that at each in-
dex i the following categories of feature predicates
be aggregated:

Symbolic Feature Predicates: These represent
whether an input character xi matches each symbol
σ in Σ, denoted as:

Asymbolic = {σ(xi) | σ ∈ Σ}

Local Feature Predicates: To capture phonolog-
ical dependencies from adjacent symbols, we de-
fine local feature predicates within a length of scan-
ning window L(cf. Hua et al., 2021), with L = 2
by default:

Alocal = {σ(pk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}
∪ {σ(sk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}

Here, _ helps BMRS capture the absolute dis-
tance from the boundary, such as _(p(xi)) denoting
whether x1 is the first character, or _(s2(xi)) de-
noting whether xi is penultimate.7

7Strictly speaking, _(s2(xi)) does not express “current in-
dex i being penultimate” with complete accuracy: supposing
i already being final, then its successor of successor is still
the boundary symbol _. Hence, in this paper, every position-
embedded feature predicate with respect to _ inherently carries
a second check that its predecessor/successor is not the bound-
ary symbol _ (see below). But for simplicity, we still use
_(s2(xi)) to denote penult(xi) in the rest of the paper.

penult(xi) = if _(s2(xi)) then (if _(s(xi)) then ⊥ else ⊤) else ⊥

Global Feature Predicates: These capture long-
distance dependencies by scanning bidirectionally
through the input, without precise index position-
ing:

Aglobal = {σ(p∗(xi)) | σ ∈ Σ}
∪ {σ(s∗(xi)) | σ ∈ Σ}

Output-Dependent Feature Predicates: Based
on Output Strictly-Local (OSL) transformations
identified by (Chandlee, 2014) (see also Chandlee
and Jardine, 2014; Chandlee et al., 2015, 2018),
these predicates focus on the most recent output.
We define two sets, local and global:

AlocalOutput = {σo(pk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}
AglobalOutput = {σo(p∗(xi)) | σ ∈ Σ}

It’s worth noting that output-dependent predicates
AlocalOutput and AglobalOutput differ from input-
related Alocal and Aglobal by including only one
position function p, meaning they are restricted to
left-subsequential. Unlike (Oakden, 2021), which
used both left- and right-subsequential OSL func-
tions, this paper prohibits right-subsequential OSL
functions to avoid backtracking, in line with the
no-backtracking mechanism of BMRS. Once an in-
dex returns an output, none of its predecessors can
be reevaluated to adjust earlier outputs. Similar to
Alocal and Aglobal, AlocalOutput and AglobalOutput

embed an accurate memory of a length L scan-
ning window and a vague memory of long-distance
dependencies with respect to the output, essential
for modeling phonological transformations where
previous outputs influence the current index.

Target Feature Predicates: This category con-
tains Boolean representations of the current index’s
output, with each feature predicate within it serv-
ing as the target attribute (the last column of an
attribute table) and represented as a BMRS-Tree,
denoted as:

Atarget = {σo(xi) | σ ∈ Σ}

A visual demonstration of the aggregation of
feature predicates is presented in Figure 2, where
each category is labeled with its number and set
name, with superscripts p or s denoting left- or
right-subsequential categories (cf. Oakden, 2021);
application scopes are indicated by solid lines (ac-
curate memory) or dashed lines (vague memory).
All categories except Atarget (1 to 4) constitute the
set A of “Attributes” in Section 2.2:

A = Asymbolic ∪Alocal ∪Aglobal ∪AlocalOutput ∪AglobalOutput

110

1. Asymbolic

2. Ap
local

2. As
local

3. Ap
global

3. As
global

x1 x2 xi−L xi−1 xi xi+1 xi+L xN−1 xN

5. Atarget

4. Ap
localOutput

4. Ap
globalOutput

y1 y2 yi−L yi−1 yi

Figure 2: Aggregation of Feature Predicates at index i

The procedure of aggregating feature predicates
is to arrange all the instances we extract into an
attribute table, as displayed in Table 2, where the
header row contains the names of each attribute
a ∈ A, with each attribute ai being an individual
column. By convention the last header corresponds
to one target attribute atarget ∈ Atarget, the target
BMRS-Tree to be learned from this attribute table.

a1 a2 a3 · · · a|A| atarget
Idx 1 of Data 1 ⊤ ⊤ ⊥ · · · ⊥ ⊤
Idx 2 of Data 1 ⊤ ⊥ ⊥ · · · ⊤ ⊤

...
. . .

...
Idx N of Data 1 ⊥ ⊤ ⊤ · · · ⊥ ⊥
Idx 1 of Data 2 ⊤ ⊥ ⊥ · · · ⊥ ⊤
Idx 2 of Data 2 ⊥ ⊥ ⊥ · · · ⊤ ⊥

...
. . .

...

Table 2: Example Attribute Table for BMRS-Tree

For the table content, every row is filled in with an
instance extracted from one certain index within
a certain piece of data, which represents a compre-
hensive snapshot of the phonological states around
that index position in the string. The attribute table
grows iteratively as we traverse through all possible
indices across every piece of data.

Learning a target BMRS-Tree follows the same
procedure as vanilla Decision Trees, using CART
after arranging the attribute table. However, its
evaluation differs significantly. Traditional Deci-
sion Tree evaluation focuses on cross-validation to
prevent overfitting. In contrast, BMRS-Tree eval-
uation focuses on the purity of leaf nodes. To fit
phonological data, CART minimizes Entropy in
the leaf nodes (Shannon, 1948). In the case of
non-variable mappings, we propose that all leaf
nodes in a well-fitted BMRS-Tree must achieve
zero Entropy, i.e. they are 100% pure. The rea-

sons are as follows:8

1. BMRS-Tree learning aims to reconstruct de-
terministic phonological rules, rather than to gen-
eralize over unseen data (test set). In the two case
studies discussed in Sections 3.2 and 4.2, all possi-
ble data are provided as the training set.9 Thus, the
training data should not be treated as samples from
a larger distribution, but as a complete represen-
tation of the rule-governed system. The learning
task then requires the model to fully capture and
account for all observed patterns.

2. Non-variable mappings require each input to
correspond to exactly one output, i.e., no free varia-
tion or probabilistic choice. If a leaf node contains
multiple output classes, it introduces ambiguity, im-
plying that a single context could trigger more than
one realization. This contradicts the nature of non-
variability and obstructs the derivation of a clear,
well-defined rule. Zero entropy ensures that each
decision path leads to a unique and unambiguous
output—one that is interpretable, consistent, and
faithful to the phonological data.

3. In traditional machine learning, overfitting
refers to a model capturing too many exceptions
or “outliers,” reducing its ability to generalize. In
contrast, exceptions in phonology are integral to
the language and must be explicitly modeled; they
are not noise to be ignored. Thus, requiring all leaf
nodes to be 100% pure doesn’t lead to overgener-
ation; rather, it helps prevent it. BMRS naturally
handles exceptions through structured exception-
filtering logic, represented using a series of em-
bedded “if exception1(x) then path1 else path2”
expressions.

In summary, the BMRS-Tree’s uniqueness lies in
its 100% accurate fit: its goal is to reconstruct the
system rather than generalize from partial data. For
interpretability, the BMRS-Tree can be validated
against real phonological data, deriving rules and
constraints from it (see Section 3.2 for a case study),
which could be compared with already observed
patterns.

3.2 Case Study 1: High Tone Shift in Kibondei

In our toy grammar, which is loosely based on
the high tone shift patterns observed in Kibondei

8We will leave open the question of variability for the
future.

9In Section 3.2, all training data have string lengths ranging
from 1 to 8. However, we propose that the BMRS-Tree learned
from the training set can also successfully generalize to strings
longer than 9, due to the use of Global Feature Predicates,
which are distance-insensitive.

111

(Merlevede, 1995; Lamont, 2024), elements can
be high-toned (denoted by H), low-toned (L), or
unspecified for tone (0). For simplicity, it is as-
sumed that no more than one high-toned element is
present in the input. The grammar operates under
the following hypothetical rules:

Rule 1: L in the UR faithfully surfaces (L→ L;
L ↛ H , L ↛ 0).

Rule 2: H shifts to the penultimate element if
possible (e.g., H000→ 00H0). It can only replace
0 and leaves the original position in 0.

Rule 3: H cannot shift across L. If an L inter-
venes between the H and the penultimate element,
then H shifts only up to the L (e.g., H000L000→
000HL000; H000L000 ↛ 0000L0H0).

Rule 4: H cannot surface on the final element.
Underlyingly final H shifts to the penultimate posi-
tion if possible (e.g., 000H → 00H0), and deletes
if the penultimate position is occupied by an L
(e.g., 00LH → 00L0; 00LH ↛ 0HL0).

To demonstrate the learning results of BMRS-
Trees, we generated a dataset of UR-SF pairs, with
each string having a length between 1 and 8, suffi-
cient to capture potential long-distance dependen-
cies in the high tone shift. The algorithm used to
generate the dataset is provided in pseudocode in
Appendix C. Ten representative data samples are
presented in Table 3:

Data UR SF Data UR SF
1 H00L 00HL 6 000H00L 00000HL
2 LH000 L00H0 7 L0000HL L0000HL
3 000L0H 000LH0 8 00H0000L 000000HL
4 LH0L00 L0HL00 9 L0H000L0 L0000HL0
5 LH000L0 L000HL0 10 L0H0000L L00000HL

Table 3: Data Samples of Kibondei High Tone Shift

The first step in attribute aggregation is to enu-
merate each symbol σ ∈ Σ: Σ = {H,L, 0}.

Next, by aggregating feature predicates from
each index within each data (see Section 3.1), we
obtain the attribute table for learning the BMRS-
Tree of the target feature predicate Ho(x). Run-
ning CART on this table (see Section 2.2) with
scikit-learn generates the Tree diagram of Ho(x),
displayed in Figure 3.

The BMRS-Tree begins at the root node L(x),
which checks for the presence of L at the current
index. If L(x) = ⊤, Rule 1 ensures that H cannot
occur at the same index, returning ⊥ for Ho(x).

Continuing down, the BMRS-Tree evaluates
whether the current index is valid to receive H
shift: Rule 3 ensures that an L at the succeeding

L(x)

⊥
⊤

L(s(x))

H(x)

⊤
⊤

H(p(x))

⊤
⊤

H(p∗(x))

Ho(p
∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊥

⊥

⊤
_(s2(x))

Ho(p
∗(x))

⊥
⊤

H(s(x))

⊤
⊤

H(x)

⊤
⊤

H(p∗(x))

⊤
⊤

⊥
⊥

⊥

⊥

⊥

⊤
⊥
⊥

⊥

⊥

Figure 3: BMRS-Tree Ho(x)

index (L(s(x)) = ⊤) blocks this shift, allowing
the current index to be a valid alternative; Rule 2
prefers high tone shifts to the penultimate position,
which is evaluated by _(s2(x)).10

Rule 3 also implicitly ascertains that the clos-
est H can successfully shift to the current index
without encountering an intervening L:

When the immediate successor is L (L(s(x)) =
⊤), then the BMRS-Tree returns ⊤ if an H exists
either at the current index (H(x) = ⊤) or the im-
mediately preceding index (H(p(x)) = ⊤). The
challenge arises when locating H among all prede-
cessors, evaluated by H(p∗(x)). If H(p∗(x)) = ⊤,
it confirms an H at some index to the left but
doesn’t verify if it’s blocked by an L. A common
solution is to recursively test two competing ele-
ments H and L to decide which one appears earlier
when looking ahead backward, using a manually-
formulated function defined as:

Hprec(x) = if H(p(x)) then ⊤ else

if L(p(x)) then ⊥ else Hprec(p(x))

This function finds the closest H or L backward
from the current index, successfully indicating
whether an H can shift without interruption.

By comparison, learned from real dataset, the
BMRS-Tree introduces a refined method by using
an output-dependent feature predicate Ho(p

∗(x)),
which checks if an H has been output among all
predecessors. If H(p∗(x)) = ⊤ and Ho(p

∗(x)) =
⊥, it confirms that this H can shift to the current in-
dex, simplifying the decision-making process with-
out recursive backtracking.

10See Footnote 7 for discussion.

112

When the current position is penultimate
(_(s2(x)) = ⊤), the BMRS-Tree also ascertains
that Ho(p

∗(x)) = ⊤ for an uninterrupted H shift,
validating subsequent paths: H(s(x)) follows Rule
4 for final H shifts, and H(x) and H(p∗(x)) check
for H at the current index or among predecessors.

In general, the BMRS-Tree intricately captures
interactions of H and L in an artificial dataset
by integrating output-dependent feature predicates,
simplifying and optimizing the process of locat-
ing valid H shifts. This approach enhances its
capability of handling wider range of phonological
transformations (Oakden, 2021).

4 BMRS-Net

4.1 Implementation
Using phonological features as embeddings allows
parallel processing of multiple BMRS-Trees, form-
ing a complex network-like structure, referred to
as BMRS-Net. This paper proposes a method of
vectorization that treats phonological features as
Boolean values (cf. Prickett, 2021).

Central to this method is the redefinition of each
symbol σ ∈ Σ. Traditionally seen as mere symbols
(characters) in strings, in the BMRS-Net symbols
in Σ are understood as underlying components (i.e.
phonological features) of each segment. Thus, Σ
can be defined as:

Σ = {[F1], [F2], . . . , [Fm]}

where each [Fi] represents a Boolean phonological
feature that returns either ⊤ (1) or ⊥ (0); m equals
|Σ|, the size of the Symbol Set, which signifies the
total count of unique features.

Each segment ω from the vocabulary V (also
referred to as the phoneme inventory) is then rep-
resented as an (m + 1)-dimensional vector. This
vector is constructed by assessing each phonolog-
ical feature [Fi] for ω, plus an extra 0 as the final
element, which represents an additional phonologi-
cal feature specifically for the boundary symbol _.
This boundary feature returns ⊤ only when evalu-
ated on the boundary symbol _. Formally, a char-
acter ω in V can be represented by the vector:

v⃗ = ([F1](ω), [F2](ω), . . . , [Fm](ω), 0)

We introduce the embedding matrix E, a one-
to-one mapping from each segment to its vector
representation, expressed as:

E : ω → v⃗

The notation E(ω) = v⃗ denotes the vector asso-
ciated with a segment ω, and its inverse function
E−1(v⃗) = ω denotes the retrieval of the original
segment from its vector representation.

By definition, BMRS-Net is the parallel connec-
tion of m+ 1 BMRS-Trees, where m = |Σ|.

The embedding matrix E facilitates transforma-
tion of phonological data into a vector format, es-
sential for BMRS-Net processing. It computes the
output vector v⃗o for a given input segment ω. The
input vector v⃗ with respect to the input segment ω
and the corresponding output vector v⃗o are respec-
tively defined as:

v⃗ = E(ω)

v⃗o = ([F1]o(ω), [F2]o(ω), . . . , [Fm]o(ω), 0)

As can be noticed, v⃗o includes the same fea-
tures as v⃗, with an additional zero for the bound-
ary symbol _. Once v⃗o is computed, the inverse
function of E is employed to retrieve the corre-
sponding segment for further analysis or process-
ing. The retrieved segment, denoted as ωo, is ob-
tained through:

ωo = E−1(v⃗o)

Figure 4 visualizes the BMRS-Net transforma-
tion of a given index i (each grey block denotes an
individual target feature predicate):

E(xi) =xi

[F1](xi)

[F2](xi)

[F3](xi)

[Fm](xi)

0

v⃗i

[F1]o(v⃗i)

[F2]o(v⃗i)

[F3]o(v⃗i)

[Fm]o(v⃗i)

[BOUNDARY]o(v⃗i)

0

1

0

1

0

= v⃗io yi = E−1(v⃗io)

Figure 4: BMRS-Net11

4.2 Case Study 2: Rhotacization in Mandarin
This phenomenon refers to the transformation of
a non-rhotic sound into a rhotic one, typically re-
sembling a [õ]-like sound (Chao, 1968; Lu, 1995;
Eckert, 2018). It generally occurs at the syllabic
level, and adding the suffix -@~ induces alternations
within the rhyme.

The dataset, summarized in Table 4, draws from
research by Lin (1989), Duanmu (2007), and Zhu

11For simplification, [F]o(v⃗) denotes the same as
[F]o(E

−1(v⃗)).

113

(2023). This training set includes only the rhyme
components (nucleus + coda) of stems plus the suf-
fix -@~. Glide components in the onset parts of URs
are also included if they trigger Mid Vowel Alterna-
tion (discussed later in this section); rhotacization
can also alter some segments into glides in SFs.

UR SF UR SF UR SF UR SF
i-@~ j@~ u-@~ u~ @-@~ 7~ @i-@~ @~
in-@~ j@~ un-@~ u~ j@-@~ je~ ai-@~ a~
iN-@~ j@̃~ uN-@~ ũ~ 4@-@~ 4e~ @u-@~ ou~
y-@~ 4@~ a-@~ a~ w@-@~ wo~ au-@~ au~
yn-@~ 4@~ an-@~ a~ @n-@~ @~
yN-@~ 4@̃~ aN-@~ ã~ @N-@~ @̃~ 1-@~12 @~

Table 4: Mandarin Rhotacization Dataset

Observing the dataset, we can make several gen-
eralizations, some consistent with Zhu (2023):

1. Alveolar nasal coda [n] does not nasalize
the surrounding vowel, while velar nasal [N] does.
Both nasal codas are deleted in SFs.

2. The segment undergoing rhotacization in
the SF varies significantly depending on the nuclei
of the stems in URs. When the stem nucleus is:

• High front vowels [i]/[y] (Column 1 Table 4):
[i] and [y] reduce to glides [j] and [4], with
[@~] becoming the nucleus in SF; the suffix
vowel [@~] becomes the nucleus in the SF.

• Back or low vowel [u]/[a] (Column 2 Table
4): [u] and [a] remain as the nucleus and un-
dergo rhotacization; the suffix vowel [@~] then
deletes.

• Mid vowel [@] (Column 3 Table 4): [@] firstly
undergoes Mid Vowel Alternation, summa-
rized in Table 5, then the altered vowel be-
comes the nucleus and undergoes rhotaciza-
tion; the suffix vowel [@~] deletes.

• Diphthong (Column 4 Table 4): The coda
vowel [i] deletes, and the “real” nucleus un-
dergoes rhotacization. The coda vowel [u]
undergoes rhotacization while the preceding
vowel remains unchanged or undergoes Mid
Vowel Alternation (@→ o / __ u). In both sce-
narios, the suffix vowel [@~] deletes.

• High central vowel [1] (the last line of Col-
umn 4 Table 4): [1] is assumed to undergo

12Two syllabic fricatives ([z
"
] and [ü

"
]), also called apical

or fricative vowels, or syllabic approximants (cf. Lee-Kim,
2014) are merged into the high central unrounded vowel [1],
according to (Cheng, 1973) and by convention.

rhotacization but surfaces as [@~], with the suf-
fix vowel [@~] being deleted.

Description Rule
Undergoes [+front] assimilation @→ e / {j, 4} __
Undergoes [+back] assimilation @→ o / {w __, __ u}
Surfaces as [7] in open syllable stems @→ 7 / __]σ
Remains unchanged with nasal coda @→ @ / __ {n, N}

Table 5: Mid Vowel Alternations

Given that some segments are deleted in the train-
ing set (Table 4), we propose inserting the symbol
0, representing a zero vector where every output
feature predicate returns ⊥, to indicate deleted ele-
ments in the output.13 This alignment ensures that
each UR-SF pair is of the same length, consistent
with BMRS’ index-by-index nature. The aligned
training set is presented in Table 6:

UR SF UR SF UR SF UR SF
i @~ j @~ u @~ u~ 0 @ @~ 7~ 0 @ i @~ @~ 0 0

i n @~ j 0 @~ u n @~ u~ 0 0 j @ @~ j e~ 0 a i @~ a~ 0 0
i N @~ j 0 @̃~ u N @~ ũ~ 0 0 4 @ @~ 4 e~ 0 @ u @~ o u~ 0
y @~ 4 @~ a @~ a~ 0 w @ @~ w o~ 0 a u @~ a u~ 0

y n @~ 4 0 @~ a n @~ a~ 0 0 @ n @~ @~ 0 0
y N @~ 4 0 @̃~ a N @~ ã~ 0 0 @ N @~ @̃~ 0 0 1 @~ @~ 0

Table 6: Mandarin Rhotacization Data (after alignment)

For Σ, we refer to the Feature Charts from Hayes
(2009) to select relevant phonological features. For
vowels, we include attributes like [high], [low],
[front], [back], and [round]. For the three glides
observed ([j], [4] and [w]), we use [cons] and [syll].
The [nasal] feature covers nasalized vowels and
two nasal codas ([n] and [N]), and additional fea-
tures [COR] and [DOR] help distinguish them.
[rhotic] is specifically used for rhotacized vow-
els.14

Σ contains all the features above plus the
[BOUNDARY] feature; and the Embedding Matrix E
is outlined using this subpart of the Feature Chart
(see Appendix D).

Following the established procedures from Sec-
tions 3.1 and 4.1, we can learn all the target feature
predicates on Σ, provided in Appendix E. Some
representative Tree diagrams will be reproduced in
the following discussion for illustration:

1. Nasal Assimilation is controlled by
[nasal]o(x) (Figure 5a), and is only triggered by a
surrounding [N], represented by [+DOR].

13Similar to early OT methods where unparsed segments
were considered deleted.

14The Hayes (2009) feature for rhotacization is [+COR,
+anterior, +distributed, –strident]. Here for simplicity, we use
the informal feature [rhotic].

114

[DOR](s∗(x))

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
[DOR](p∗(x))

[high](p∗(x))

[front](p∗(x))

⊤
⊤

⊥
⊥

⊤
⊥
⊥

⊤
⊥
⊥

⊥

(a) [nasal]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[low](x)

[round](s∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊤
[round](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊤
⊥
⊥

⊥

(b) [rhotic]o(x)

Figure 5

When [DOR](s∗(x)) = ⊤ ([N] appears among
successors), then all the vowels except [+high,
+front] will be nasalized in the SF, reflected in the
data: [uN-@~]→ [ũ~], [aN-@~]→ [ã~], [@N-@~]→ [@̃~].

When [DOR](p∗(x)) = ⊤ ([N] precedes the cur-
rent index), the output segment will be nasalized
only if there is [+high, +front] among its predeces-
sors, reflected in: [iN-@~]→ [j@̃~], [yN-@~]→ [4@̃~].

2. Rhotacization is controlled by [rhotic]o(x)
(Figure 5b), which decides whether the current seg-
ment can undergo rhotacization in the SF (i.e. to
receive the [rhotic] feature).

The root node [rhotic]o(p
∗(x)) checks whether

[+rhotic] has surfaced before the current segment.
As observed from Table 4, [+rhotic] must be
aligned to the final segment and surface at the fi-
nal position, saying that [rhotic]o(p∗(x)) actually
checks whether the output string has reached the
end: if it has ([rhotic]o(p∗(x)) returns ⊤), then ev-
ery segment from the current position will delete.

In the rest of Figure 5b, all leaf nodes return-
ing ⊤ appear when [round](s∗(x)) returns ⊥,
which imposes a constraint-like condition on that a
vowel cannot receive [rhotic] if it’s followed by a
[+round] element (in Mandarin, [u]).15 This is also
coherent to the dataset: if a vowel is succeeded by
a [u], then [u] is always the one to receive [rhotic].

There are only two leaf nodes returning ⊤ (the
blue nodes), which denote respectively:

• [+front, -low]: [a] (the bottom-left ⊤);

• [-front]: [1], [@] and [u] (the bottom-right ⊤).

3. Glide Formation ([j], [4]) in SFs offers
an explanation for why [+high, +front] cannot
be rhotacized. This glide formation is controlled
by [syll]o(x) (Figure 6a). It also starts with
[rhotic]o(p

∗(x)), restricting that the output string
15In Mandarin, [y] never appears in complex nuclei or diph-

thongs.

(SF) has not yet reached the end. And [syll](x) as-
serts that [-syll] segments won’t surface as [+syll].
The rest of the two intermediate nodes [front](x)
and [high](x) denotes respectively two categories
of vowels that remain [+syll] in the SF:

• [-front]: [@] and [u];

• [+front, -high]: [a].

The bottom-left ⊥ leaf node (in orange) denotes
exactly the category that will possibly be altered to
glides (or even deleted): [+front, +high], consis-
tent with the data in Column 1 Table 4).

4. Mid Vowel Alternation is applied to @
in the stem before deciding whether it receives
[rhotic] or not. It is controlled by three predicates:
[front]o(x), [back]o(x), and [round]o(x) (refer to
Table 9). After being applied to the underlying @,
they are reproduced in Figures 6b, 6c and 6d.

All three BMRS-Trees start with [syll](p∗(@)),
checking whether a [+syll] segment (i.e. vowel)
precedes @. This presents a restriction that @ alter-
nates only if it’s the stem’s nucleus or the so-called
“real” nucleus of a diphthong; the @ in the suffix -@~
or as the coda vowel doesn’t alternate (though it
never appears as the coda in Mandarin).

Ascertaining that @ appears as the stem’s nucleus
([syll](p∗(@)) = ⊥, this continues as a prerequisite
in the following discussion), Figure 6b then suc-
cessfully models [+front] assimilation: a [+front]
segment preceding the @ assimilates it into a front
vowel [e] ([front](p∗(@)) = ⊤).

The two upper ⊤ nodes in Figure 6c model
[+back] assimilation: @ is [+back] assimilated
when there exists a [+back] segment before or after
it. Continuing down, [front](p∗(@)) filters out two
front glides ([j] and [4]) that license the [+front]
assimilation; [cons](s∗(@)) filters out two cases
where @ is followed by nasal codas [n] and [N] – the
only two consonants existent in our dataset ([@n-@~]
→ [@~], [@N-@~]→ [@̃~]).
[high](s∗(@)) models another possibility:

pseudo-[+back] assimilation, when followed by a
[+high] segment. This is consistent with the piece
of data: [@-@~]→ [7~], in comparison with [@i-@~]
→ [@~] (the @ followed by [i] doesn’t alternate). In
fact, this is also consistent with Line 3 Table 5
that @ surfaces as 7 in the open syllable stem (cf.
Duanmu, 2007).

Figure 6d is almost identical to the upper part of
6c, both seeking a [+back] environment. To gener-
alize, @ automatically receives [+round] when it re-

115

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
⊥
⊥

⊥

(a) [syll]o(x)

[syll](p∗(@))

⊥
⊤

[front](p∗(@))

⊤
⊤

⊥
⊥

⊥

(b) [front]o(@)

[syll](p∗(@))

⊥
⊤

[back](s∗(@))

⊤
⊤

[back](p∗(@))

⊤
⊤

[front](p∗(@))

⊥
⊤

[cons](s∗(@))

⊥
⊤

[high](s∗(@))

⊥
⊤

⊤
⊥

⊥

⊥

⊥

⊥

⊥

(c) [back]o(@)

[syll](p∗(@))

⊥
⊤

[back](p∗(@))

⊤
⊤

[back](s∗(@))

⊤
⊤

⊥
⊥

⊥

⊥

(d) [round]o(@)

Figure 6

ceives [+back] from its surrounding context, which
is to say, [+back] triggered by “real” [+back]
assimilation innately carries [+round].

All the discussion above serves as an illustra-
tion of complete transparency and interpretability
of BMRS-Trees learned via CART. Collectively,
BMRS-Net successfully fitted the dataset and is
capable of efficiently performing complex string
(vector) transformations.

5 Future Research Directions

First, regarding the class of string functions, the
High Tone Shift in Kibondei can be modeled by
a Subsequential function (Heinz and Lai, 2013;
Heinz, 2018), while the Rhotacization in Mandarin
could be considered Output-Strictly local (Chan-
dlee et al., 2015), at least in this paper, due to its
dependence on the previous output to determine
transformations. However, in our implementation,
all categories of feature predicates (including sym-
bolic, local, global, and output-dependent) were
aggregated to form the attributes used in Deci-
sion Trees for phonological analysis (Section 3.1).
Therefore, it would be beneficial to systematically
analyze which categories of feature predicates are
sufficient to model different string function classes.

Second, the unequal string lengths for Mandarin
Rhotacization (Section 4.2) is handled a little un-
usually in this paper, and the use of zero vector
(0) to indicate deleted segments is obviously not
scalable to inserted one. Thus how to extend the
current implementation to handle both deletion and
epenthesis remains open for further exploration.
According to a suggestion from an anonymous re-
viewer, the use of licensing functions and copy sets,
as discussed in the work of Courcelle and Engel-
friet (2012), offers a promising direction. Besides,
the integration of order-preserving functions (as ex-

plored by Lindell and Chandlee, 2016) could also
enable deriving both deletion and epenthesis.

If the successful categorization of feature predi-
cates for different string function classes is achiev-
able, and handling epenthesis becomes feasible,
then our BMRS implementation could serve as
a versatile tool for analyzing various classes of
string functions and a broader range of phonologi-
cal transformations, with enhanced flexibility and
expressivity.

6 Conclusion

This paper presents the implementation of BMRS-
Trees and BMRS-Net as an automated BMRS pred-
icate learner, requiring only minimal human input,
i.e., symbol (or feature) selection. Their success-
ful application to two non-trivial (yet still limited)
phonological phenomena substantiates their poten-
tial as an automation tool for researching phonolog-
ical transductions, from segmental alternation, dele-
tion to long-distance shifts (with epenthesis left for
future exploration). The results offer a promising
alternative to traditional rule- or constraint-based
approaches, advancing the integration of machine
learning in computational phonology.

Acknowledgments

This work is based on the author’s MA disserta-
tion at University College London. I am extremely
grateful to Andrew Lamont for introducing BMRS
to me, suggesting possible research directions and
reviewing my draft, and to Sebastian Schuster for
discussing and inspiring me about correlations be-
tween BMRS and Decision Trees and reviewing
my draft. I also thank the anonymous reviewers for
their valuable comments and suggestions, which
greatly improved the quality of this paper. All re-
maining errors are my own.

116

References
Siddharth Bhaskar, Jane Chandlee, Adam Jardine, and

Christopher Oakden. 2020. Boolean monadic re-
cursive schemes as a logical characterization of the
subsequential functions. In Language and Automata
Theory and Applications - LATA 2020, Lecture Notes
in Computer Science, pages 157–169. Springer.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone. 1984. Classification and Re-
gression Trees. Wadsworth International Group.

Jeroen Breteler. 2017. Deriving bounded tone with lay-
ered feet in harmonic serialism: The case of saghala.
Glossa: a journal of general linguistics, 2(1).

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.d. thesis, University of Delaware.

Jane Chandlee. 2023. Decision trees, entropy, and the
contrastive feature hierarchy. Proceedings of the
Linguistic Society of America, 8(1):5465.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of the
14th Meeting on the Mathematics of Language (MoL
2015), pages 112–125, Chicago, USA. Association
for Computational Linguistics.

Jane Chandlee, Jeffrey Heinz, and Adam Jardine. 2018.
Input Strictly Local opaque maps. Phonology, 35:1–
35.

Jane Chandlee and Adam Jardine. 2014. Learning
phonological mappings by learning Strictly Local
functions. In Proceedings of the 2013 Meeting on
Phonology (UMass Amherst), Proceedings of the An-
nual Meetings on Phonology. LSA.

Jane Chandlee and Adam Jardine. 2021. Computational
universals in linguistic theory: Using recursive pro-
grams for phonological analysis. Language, 93:485–
519.

Yuanren Chao. 1968. A Grammar of Spoken Chinese.
University of California Press, Berkeley, California.

Chin-Chuan Cheng. 1973. A Synchronic Phonology of
Mandarin Chinese. De Gruyter Mouton, Berlin, New
York.

Noam Chomsky and Morris Halle. 1968. The sound
pattern of english.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
Structure and Monadic Second-Order Logic, a Lan-
guage Theoretic Approach. Cambridge University
Press.

San Duanmu. 2007. The Phonology of Standard Chi-
nese, 2nd edition. Oxford University Press Inc., New
York.

Penelope Eckert. 2018. Meaning and Linguistic Varia-
tion: The Third Wave in Sociolinguistics. Cambridge
University Press.

Aurelien Geron. 2019. Hands-On Machine Learning
with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems,
2nd edition. O’Reilly Media, Inc.

Bruce Hayes. 2009. Introductory Phonology. Wiley-
Blackwell Publication, UK.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195. De
Gruyter Mouton.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MoL 13),
pages 52–63, Sofia, Bulgaria.

Wenyue Hua, Huteng Dai, and Adam Jardine. 2021.
Learning underlying representations and input-
strictly-local functions. In Proceedings of the 37th
West Coast Conference on Formal Linguistics, pages
143–151. Cascadilla Proceedings Project.

Adam Jardine and Christopher Oakden. 2023. Comput-
ing Process-Specific Constraints. Linguistic Inquiry,
pages 1–9.

Andrew Lamont. 2024. Shift is derived. Journal of
Linguistics.

Sang-Im Lee-Kim. 2014. Revisiting mandarin ‘apical
vowels’: An articulatory and acoustic study. Journal
of the International Phonetic Association, 44(3):261–
282.

Yen-Hwei Lin. 1989. Autosegmental Treatment of Seg-
mental Processes in Chinese Phonology. Phd disser-
tation, The University of Texas at Austin, Austin.

Steven Lindell and Jane Chandlee. 2016. A logical
characterization of input strictly local functions. Pre-
sented at the Fourth Workshop on Natural Language
and Computer Science, in affiliation with LICS 2016.

Yunzhong Lu. 1995. Putonghua de Qingsheng he Er-
hua [Neutral Tones and Rhotacization in Mandarin].
Shangwuyinshuguan, Beijing, China.

Andrea Merlevede. 1995. Een schets van de fonologie
en morfologie van het bondei. Ma thesis, Leiden
University, Leiden. Written in Dutch.

Christopher Donal Oakden. 2021. Modeling Phono-
logical Interactions Using Recursive Schemes. Ph.d.
dissertation, Rutgers University, School of Gradu-
ate Studies, New Jersey. Degree granted in October
2021.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research, 12:2825–2830.

117

Brandon Prickett. 2021. Learning Phonology With
Sequence-To-Sequence Neural Networks. Ph.d. dis-
sertation, University of Massachusetts Amherst.

Alan S. Prince and Paul Smolensky. 2002. Optimality
theory: Constraint interaction in generative grammar.
Technical Documentation 991031549929204646,
Rutgers University, Rutgers University. Essentially
identical to the Tech Report (July 1993), with new
pagination but the same footnote and example num-
bering; corrections of typos, oversights, and outright
errors; improved typography; and occasional small-
scale clarificatory rewordings.

J. Ross Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1:81–106.

C. E. Shannon. 1948. A mathematical theory of com-
munication. The Bell System Technical Journal,
27(3):379–423.

Ziling Zhu. 2023. Modeling mandarin rhotacization
with recursive schemes. Proceedings of the Linguis-
tic Society of America, 8(1):5510.

A Modeling Tonal Shift and Spread with
BMRS

Below is a brief example of BMRS transduction on
a tonal system.

Saghala (Breteler, 2017) has a tone system that
contrasts only high-toned elements (denoted by H)
with unspecified ones (0). An underlying H shifts
to the next position and then spreads one position
further to the right (e.g., 00→ 00, H00→ 0HH ,
H000→ 0HH0, 0H00→ 00HH).

Assuming Σ = H, 0, we can define Ho(x) to
check whether the current index outputs H:

Ho(x) = if H(x) then ⊥ else (if H(p(x)) then ⊤ else H(p2(x)))

This captures the rightward shift-and-spread be-
havior of H . The tree diagram in Figure 7 also
visualizes this same behavior:

H(x)

⊥
⊤

H(p(x))

⊤
⊤

H(p2(x))

⊤
⊤

⊥
⊥

⊥

⊥

Figure 7: Ho(x)

Table 7 illustrates the index-by-index transduc-
tions on two input-output mappings:

0 1 2 3 4 0 1 2 3 4
input _ H 0 0 0 _ 0 H 0 0

H(x) ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥
H(p(x)) ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
H(p2(x)) ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤
Ho(x) ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤
output _ 0 H H 0 _ 0 0 H H

Table 7: H000→ 0HH0, 0H00→ 00HH

B Classification and Regression Tree
(CART) Algorithm

CART (Breiman et al., 1984) builds binary trees.
When used for classification, CART aims to split
the data into subsets that are as “homogeneous”
(pure) as possible with respect to the target at-
tribute.

Entropy, borrowed from Information Theory
(Shannon, 1948), is a common metric to quantify
the degree of homogeneity or impurity in a dataset,
and is employed as the split criterion in this paper.
For a binary classification task that returns Boolean
values, Entropy H of a dataset D is defined as:

H(D) = −p0 log2(p0)− p1 log2(p1)

where p0 and p1 refer respectively to the propor-
tions of instances returning ⊥ in the dataset and
to that of instances returning ⊤. Entropy H(D)
reaches its maximum when ⊤ instances and ⊥ in-
stances are equally distributed (the dataset D being
the most “heterogeneous” or impure) and its min-
imum (zero) when the dataset contains only one
class (completely pure).

CART grows a Decision Tree in these steps:

1. Calculate Initial Entropy: The algorithm
begins by calculating the Entropy of the entire
dataset H(D), which gives a baseline measure
of impurity.

2. Evaluate Each Attribute and Choose the
Best Split: For each attribute, CART firstly
considers its split and calculates the Entropy
of two resulting subsets. It then computes the
Information Gain, which is the reduction in
Entropy from the initial dataset to the com-
bination of its two subset. The Information
Gain IG from splitting dataset D on attribute
A is defined as:

IG(D,A) = H(D)−
(
|D0|
|D| H(D0) +

|D1|
|D| H(D1)

)

where D0 and D1 denote the subsets formed
by the split on attribute A, and |D0|, |D1|

118

and |D| denote respectively the number of
instances in the corresponding set.

The attribute that yields the largest Informa-
tion Gain is selected for that split.

3. Split the Subsets Recursively: The process
of splitting based on Information Gain contin-
ues recursively for each subset, creating deci-
sion nodes and branches, until all instances in
a subset belong to the same class, or no further
information gain can be achieved (because all
the attributes are used up).

4. Assign Leaf Nodes: When no further splits
are possible or necessary, the remaining data
in each terminal node is assigned a label based
on the majority class within that subset, form-
ing a leaf node.

Focusing on reducing uncertainty at each step,
CART constructs Decision Trees that classify the
dataset as accurately as possible, while being rel-
atively easy to interpret and to visualize using the
scikit-learn library.

C Algorithm to Generate the Dataset for
High Tone Shift in Kibondei

Algorithm 1 Generate Input Strings

Require: min_len, max_len
Ensure: A list of input strings consisting of H (at

most 1), L, and 0
1: inputs← []
2: for length← min_len to max_len do
3: strings ← all combinations of L and 0 of

length
4: for all s ∈ strings do
5: Append s to inputs
6: for i← 0 to length(s)− 1 do
7: modified← s with character at posi-

tion i replaced by H
8: Append modified to inputs
9: end for

10: end for
11: end for
12: return inputs

For reference, when min_len = 1 and
max_len = 8, Algorithm 1 returns a list of length
4096, i.e., containing 4096 possible inputs.

Algorithm 2 Map Input to Output

Require: A string input
Ensure: The output string after applying the

BMRS transduction
1: if input ends with 0H then
2: Replace the suffix 0H with H0
3: end if
4: if input ends with LH then
5: Replace the suffix LH with L0
6: end if
7: Replace every substring matching pattern

H(0*)L with:
8: same number of 0’s as in the match, fol-

lowed by HL
9: if input ends with a substring matching pattern

H0+ then
10: Replace it with:
11: one fewer 0 followed by H0
12: end if
13: return input

D Mandarin Feature Chart

Phonological features selected for Section 4.2 are
presented in Table 8.16

[high] [low] [front] [back] [round] [cons] [syll] [nasal] [COR] [DOR] [rhotic] [BOUNDARY]

i 1 0 1 0 0 0 1 0 0 0 0 0
y 1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0
u 1 0 0 1 1 0 1 0 0 0 0 0
u~ 1 0 0 1 1 0 1 0 0 0 1 0
ũ~ 1 0 0 1 1 0 1 1 0 0 1 0
e 0 0 1 0 0 0 1 0 0 0 0 0
e~ 0 0 1 0 0 0 1 0 0 0 1 0
@ 0 0 0 0 0 0 1 0 0 0 0 0
@~ 0 0 0 0 0 0 1 0 0 0 1 0
@̃~ 0 0 0 0 0 0 1 1 0 0 1 0
7 0 0 0 1 0 0 1 0 0 0 0 0
7~ 0 0 0 1 0 0 1 0 0 0 1 0
o 0 0 0 1 1 0 1 0 0 0 0 0
o~ 0 0 0 1 1 0 1 0 0 0 1 0
a 0 1 1 0 0 0 1 0 0 0 0 0
a~ 0 1 1 0 0 0 1 0 0 0 1 0
ã~ 0 1 1 0 0 0 1 1 0 0 1 0

j 1 0 1 0 0 0 0 0 0 0 0 0
4 1 0 1 0 1 0 0 0 0 0 0 0
w 1 0 0 1 1 0 0 0 0 0 0 0

n 0 0 0 0 0 1 0 1 1 0 0 0
N 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 0 0 0 1

Table 8: Embedding Matrix

E Mandarin Rhotacization BMRS-Trees

In this appendix, both original Decision Tree dia-
grams generated directly by scikit-learn and their
simplified (remade) versions are presented in Table
9.17

16The feature [BOUNDARY] and the default boundary symbol _
are also included in E, for the sake of completeness.

17As can be noticed from Table 4, all [+cons] segments
(i.e., [n] and [N]) are deleted and don’t surface in the output.

119

The original BMRS-Tree diagrams generated
by scikit-learn can appear perplexing due to its
exceedingly detailed node information, and some-
what counter-intuitive as each node tests whether a
feature predicate returns “False”: the node checks
whether the truth value is <= 0.5. Therefore, origi-
nal and remade versions look like horizontal mirror
images of each other. And given the low readabil-
ity, a remade version is reproduced below in Table
9 and used in the main body of this paper for better
visualization.

One prominently essential parameter exclusively
existing here in Column “Original”, Table 9 is En-
tropy: all terminal leaf nodes’ Entropy equals zero,
which is a key indication of 100% accurate fit.

BMRS-Tree Original Reproduced

[high]o(x)

[high](x)

[rhotic]o(p
∗(x))

⊥
⊤

[round](x)

⊤
⊤

[front](x)

⊤
⊤

⊥
⊥

⊥

⊥

⊤
⊥
⊥

[low]o(x)

[low](x)

⊤
⊤

⊥
⊥

[front]o(x)

[front](x)

[syll](p∗(x))

⊥
⊤

⊤
⊥

⊤
[syll](p∗(x))

⊥
⊤

[front](p∗(x))

⊤
⊤

⊥
⊥

⊥

⊥

Continued on the next page

Therefore, [cons]o(x), [COR]o(x) and [DOR]o(x) always
return ⊥ – this is a side effect of only including the rhymes in
the dataset. [+cons] segments will still surface in the onset.

120

Table 9, Continued
BMRS-Tree Original Reproduced

[back]o(x)

[back](x)

⊤
⊤

[syll](p∗(x))

⊥
⊤

[front](x)

⊥
⊤

[back](s∗(x))

⊤
⊤

[back](p∗(x))

⊤
⊤

[front](p∗(x))

⊥
⊤

[cons](s∗(x))

⊥
⊤

[high](x)

⊥
⊤

[high](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

[round]o(x)

[round](x)

⊤
⊤

[syll](p∗(x))

⊥
⊤

[back](p∗(x))

⊤
⊤

[back](s∗(x))

[front](x)

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊥

⊥

⊥

[cons]o(x)
⊥

[syll]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
⊥
⊥

⊥

[nasal]o(x)

[DOR](s∗(x))

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
[DOR](p∗(x))

[high](p∗(x))

[front](p∗(x))

⊤
⊤

⊥
⊥

⊤
⊥
⊥

⊤
⊥
⊥

⊥

Continued on the next page

121

Table 9, Continued
BMRS-Tree Original Reproduced

[COR]o(x)
⊥

[DOR]o(x)
⊥

[rhotic]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[low](x)

[round](s∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊤
[round](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊤
⊥
⊥

⊥

Table 9: BMRS-Tree Diagrams in Mandarin Rhotaciza-
tion

122

