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Abstract

This paper introduces a novel method of lin-
earization, casting it as a model-theoretic in-
terpretation. Within Model Theory, an inter-
pretation is a way of understanding a struc-
ture through the lens of another structure– in
this sense, linearization is an interpretation of
a tree’s string yield through the lens of the tree.
Such a formal characterization allows us to ex-
plicitly codify locality into the post-syntax (in
line with Embick and Noyer (1999)). This
has strong potential implications for the na-
ture of syntax-phonology interaction in terms
of formal complexity and typological predic-
tions of phrasal phonology. Crucially, casting
linearization in this way also opens the door
for a closer unification of how we understand
the computational properties of interfaces be-
tween linguistic modules more generally.

1 Introduction

Model Theory is a subfield within mathematical
logic that is used to formally reason about struc-
tures and the properties they satisfy. There has
been a rich tradition of using Model Theory within
generative semantics. More recently however, re-
search in theoretical computational linguistics has
shown that Model Theory is an extremely use-
ful tool for understanding syntax, phonology, mor-
phology, and phonetics as well. Due to Model The-
ory’s abstract and domain-general nature, there is
a great deal of freedom in the sorts of structures
that can be defined and the mappings between
them, making it well-suited for linguistic theoriz-
ing.

For example, Model Theory has been used in
syntax to formally reason about the computational
properties of Government and Binding Theory
(Rogers and Nordlinger, 1998). More recently,
Model Theory has been used extensively by pho-
nologists to understand both phonological well-
formedness of structures (Strother-Garcia et al.,

2016; Jardine, 2017) as well as mappings between
underlying structures and surface structures (Oak-
den, 2021; Bhaskar et al., 2020). In Nelson (2024),
model-theoretic interpretations are used to model
autosegmental coupling graphs, as well as transfor-
mations between them and string representations,
showing a use case in the phonetics-phonology in-
terface. In (Petrovic, 2023), Model Theory is used
to reason about the computational nature of mor-
phological processes. In terms of complexity, this
type of formalization also allows for a richer un-
derstanding of the tight relationship between learn-
ability and computational simplicity with respect
to typological predictions (Lambert et al., 2021;
Rawski, 2021).

Knowing that model-theoretic representations
have given novel insights to our formal under-
standing of separate linguistic modules, a natural
question arises: How can we use knowledge of
these modules independently to understand their
interaction? Namely, if model-theoretic represen-
tations allow us to understand the formal prop-
erties of semantics, syntax, phonology, morphol-
ogy, phonetics in isolation, and we know that it
is extremely well-suited for understanding the re-
lationships between different structures, then it
should also serve as an invaluable tool for under-
standing the formal properties of their interfaces.
This paper is a step in this direction, showing
that linearization can be understood as an inter-
pretation of linear post-syntactic representations
through the lens of hierarchical syntactic represen-
tations. While this is one particular use case for
the much broader endeavor of using Model The-
ory investigations of the interfaces, this opens up
the door for a great body of research while making
novel observations about the nature of lineariza-
tion.

The paper is organized as follows. Section 2
gives an introduction to Model Theory, discussing
string models and interpretations. In Section 3, we
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discuss linearization and show how it can be for-
mulated as an interpretation from trees to strings
and sketches an approach toward incorporating a
simple case of movement into the analysis. Sec-
tion 4 discusses some broader theoretical implica-
tions for this view of linearization.

2 Model Theory

A signature S is simply a collection of functions,
relations and constants. The discussion here will
be limited to dealing with relations, so we will
stick to signatures that contain only relations, not
functions or constants. A relational model is a pair
⟨D | r1, . . . rn⟩ where D is some domain, and
each ri is a k-ary relation from the signature S
over elements in the domain D. In place of model,
the word structure is also commonly used. Here,
k-ary simply means that the relation ri takes k el-
ements of D as its arguments. For example, p(x)
where x ∈ D would be a unary relation, q(x, y)
where x, y ∈ D would be a binary relation, etc.
The focus of this section is on using these models
to define strings and mappings between them.

2.1 Strings

Consider the string apba. It contains only the seg-
ments {a,b,p} and there are four elements, the first
bearing a, the second bearing p, the third bear-
ing b, and the fourth bearing a. Let the domain
D = {0, 1, 2, 3} represent the indices of the string
and the alphabet (set of symbols) Σ = {a, b, p}
represent the labels each index can bear. For each
of these symbols, define a unary relation that in-
dicates whether or not an index x of the string
bears that symbol: so there are three unary rela-
tions a(x), b(x), p(x). For our string apba, it is the
case that a(0), p(1), b(2), and a(3) are all true, and
any of these relations for other domain elements
will be false. Each index bears a label, but there
must be some way to tell what precedes what in
our string. This can be done by relating the indices
through a binary precedence relation. Strict prece-
dence �(x, y) states that x comes before y with
nothing else in between. A string model for apba
using strict precedence �(x, y) is shown below:
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Figure 1: String Model with Strict Precedence

Alternatively, one could use general precedence
< (x, y) where x comes before y at any point in
the string. Whether a structure is defined using
general precedence or strict precedence directly
affects the sorts of generalizations one can make.
For example, using strict precedence it is natural to
ban immediately adjacent segments like a ban on
any obstruent immediately following a nasal (say,
a *NT constraint), whereas using general prece-
dence it is natural to ban sequences of segments
like long distance sibilant harmony that bans an S
following an s anywhere in the string (say, a *s
. . . S constraint). For a broader picture of how rep-
resentations and the nature of constraints relate to
one another in phonology, see Heinz (2018). This
difference will have important implications for the
motivation of the view of linearization argued for
here.

2.2 Interpretations
Informally, a logical interpretation is a mapping
that takes an input structure Σ in a signature S and
uses logical expressions to recast it as an output
structure Γ in a signature G, shown abstractly in
Figure 2. One way to imagine this is interpreting
an output structure Γ through the lens of an input
structure Σ. It is also convenient to imagine this as
a transformation, where an input structure is trans-
formed into an output structure. Here, the term
logical transduction is used.

Σ Γ

S-structures G-structures

Input Output

Figure 2: General Sketch of a Logical Transduction

Let G be our output signature with relations
r
′
1, . . . , r

′
n. For each relation r

′
i in the output sig-

nature G, there must be a definition which is de-
fined using only relations ri from the input sig-
nature S or more complex helper predicates con-
structed from them. There is also a copyset C =
{1, . . . ,m} that copies pieces of the input struc-
ture to be (potentially) used by the output structure.
Essentially for each node x in the input structure
Σ, depending on the size of the copyset, a corre-
sponding copy is used: there can be an x0 copy, x1
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copy, x2 copy, and so on up to m, meaning that the
input structure will grow linearly depending on the
size of the copyset.

Consider the input signature S (from the string
model for abpa in Figure 1) and the output signa-
ture G, containing precedence relations that medi-
ate precedence between copies:

S = {a(x), b(x), p(x),�(x, y)}
G = {a0(x), p0(x), b0(x), a1(x), p1(x), b1(x),
�0,0 (x, y),�0,1(x, y),�1,0(x, y),�1,1(x, y)}

In the output signature G, the relations σ0(x) mean
that x’s 0-th copy is labeled with the symbol σ and
σ1(x) mean that x’s 1-st copy is labeled with the
symbol σ. The relations �i,j(x, y) mediate strict
precedence between different copies in the output.
In other words, �i,j(x, y) means that x’s i-th copy
strictly precedes y’s j-th copy in the output. This
is made clear in the example that follows.

Using these two signatures, we will construct an
input S-structure Σ, an output G-structure Γ, and
an interpretation will be constructed between them
that epenthesizes a’s between a p followed by a
b. This can be written as a standard rewrite rule
∅ → a/p_b. Note that a copyset of C = {0, 1}
is needed because the string will grow in length
by one node any time there is a ‘pb’ substring.
We proceed by defining each relation in the output
signature using relations from the input signature.
The interpretation is shown pictorially in Figure 3.

For the labeling relations, every node in the 0-th
copy is going to remain faithful to the input. Noth-
ing is deleted, there are only things to add and so
this copy remains the same. In the 1-st copy, only
nodes labelled with an a will ever appear since that
is the only segment we wish to add (since b’s or p’s
will never be epenthesized). For the precedence
relations, strict precedence will hold between two
nodes in the 0-th copy if they aren’t a p strictly
followed by a b. The only time a 0-th copy will
strictly precede a 1-st copy is when there is an a be-
ing inserted, namely between a p strictly followed
by a b. The only time a 1-st copy will precede a 0-
th copy is when it is the b in the configuration just
described. There will never be strict precedence
between elements both in the 1-st copy, since this
would correspond to adding two a’s in a row.

In Figure 3, the dashed nodes represent copies
of nodes that are not used in the interpretation.
When the copyset is constructed, all copies have
the potential to be used, but the actual definitions

of the labeling and precedence relations determine
which are actually used. In this mapping, an in-
put string apba will map to apaba, since the a was
epenthesized between the p and b, whereas an in-
put string abapa would simply map to abapa since
there are no ‘pb’ substrings.
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Figure 3: a-epenthesis between p and b

Thinking more generally, this is an example of
how an output string has a particular form based
on specified conditions on its corresponding input
string. Thus, we are interpreting the output string
through the lens of the input string. Shifting fo-
cus to linearization, an output string structure has
a particular form based on specified conditions on
its corresponding input tree structure. To under-
stand this more clearly, tree models must first be
defined.

3 Linearization as an Interpretation

3.1 Tree Models

It is standard practice within model-theoretic syn-
tax to define trees with respect to a domain D ⊊
N of nodes, a binary general dominance rela-
tion �∗(x, y) and a left-of/precedence relation ≺
(x, y) as in Rogers and Nordlinger (1998). There
are many theoretical reasons to suggest that they
should instead be defined over something more
closely resembling syntactic selection instead of
a precedence relation, but in order to keep the dis-
cussion more tractable, this convention serves as a
suitable starting point. Some ways that this can be
embellished for a more well-rounded account will
be discussed in later sections.

Note that the domain ranges over the natural
numbers N, but the order that they appear doesn’t
matter so long as the relations are consistently de-
fined. For convenience, the convention here re-
flects the order that they are introduced to the
derivation, assuming a bottom up derivation.1

1One could also choose to use Gorn addresses as in Lam-
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There must also be labels for the nodes of our
tree, so let Σsyn be an input alphabet of labels for
nodes of our tree. Since our nodes can bear a wide
range of different syntactic properties, this alpha-
bet can be partitioned into the following sets of
lexical labels, categories, features, and movement-
licensing features:

• L = {THE, MAN, LOVES, CAKE, . . . }

• C = {V, V, C, D, N, PERF, . . . }

• F = {SG, PL, 1, . . . }

• LIC = {+wh, -wh, +nom, -nom, . . . }

Thus, Σsyn = L ∪ C ∪ F ∪ LIC, and each
σ ∈ Σsyn has a corresponding unary relation
σ(x) specifying some piece of syntactic informa-
tion. This is one particular choice of how to en-
code this information relationally, inspired by Min-
imalist Grammars (Stabler, 1996), but many other
options are available. While this is not strictly
necessarily, a labelless syntax is assumed (Collins,
2002), such that non-terminal nodes without lexi-
cal labels (bearing no σ ∈ L) represent instantia-
tions of Merge.2

We will start with a simplified, abstract example
for clarity and it will be expanded when movement
is discussed. Consider the input signature:

Σ = {�∗(x, y),≺ (x, y), σi(x)}

where:

• �∗(x, y) is the binary general dominance re-
lation

• ≺ (x, y) is the binary, asymmetric prece-
dence relation

• σi(x) are unary relations for every σi ∈ Σsyn

To keep the discussion tractable while introduc-
ing the main properties of linearization, only lexi-
cal labels are encoded in this structure, but the gen-
eral points about how labels carry over to the out-
put structure hold for the other category and fea-
ture labels. A simplified example of an S-structure

bert et al. (2021), where domain elements are strings in
{0, 1}∗ where a 0 indicates a left child and a 1 indicates a
right child.

2A series of well-formedness conditions can be defined
that more accurately reflect standard syntactic assumptions
(the nodes that select project, encoding feature percolation,
etc.), some of which will be explored later with respect to
movement.

in the signature Σ is shown in Figure 4 over the
arbitrary, abstract alphabet Σsyn = {THE, MAN,
LOVES, THE, CAKE}.

8
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�∗ �∗

≺

6

THE

5

MAN

�∗ �∗

≺ 3

LOVES

2

�∗ �∗

≺

1
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0

CAKE

�∗ �∗

≺

Figure 4: Linearization Toy Example

Considering this example, setting aside the is-
sue of movement for later, the linearization intu-
itively yields the string “THE MAN LOVES THE

CAKE”. However, this is a nontrivial task since
branches can be of arbitrary finite length. The next
section lays out an interpretation using First-Order
Logic to yield a string defined using strict prece-
dence.

3.2 Remarks on Linearization
The main contribution of this work is to show that
linearization can be concisely understood as an in-
terpretation between trees and strings. In order to
formalize this, it is crucial to first establish some
theoretical assumptions of both input trees and out-
put strings.

There is a rich body of work debating the status
of linearity and recursion and their presence in syn-
tax and phonology (Scheer, 2012, 2023; Idsardi
and Raimy, 2013; Idsardi, 2018; Elfner, 2015; Ito
and Mester, 2012; Cheng and Downing, 2021;
Miller and Sande, 2021). This paper adheres to the
view that (i) narrow syntax contains recursion but
lacks linearity and (ii) phonology contains linear-
ity but lacks recursion. To understand this, look-
ing at work by Idsardi and Raimy (2013) is help-
ful. They outline three types of linearization, one
of which, immobilization, plays a key role here.
Immobilization transforms hierarchical structures
built via Merge into ordered structures by intro-
ducing adjacency relations. There is a subtle but
crucial point here with respect to the status of lin-
earity in the computation of narrow syntax. The
structure building taking place during narrow syn-
tactic computation is blind to linearity, but linear-
ity is a necessary reflex of externalization given
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the temporal nature of the speech stream. So there
must be a stage after syntactic structures are built
which imposes linearity, and this is precisely the
function of immobilization. The finer details of
immobilization are beyond the scope of this paper,
but similar model-theoretic tools are well-suited to
formalize it. In this framework, we assume that
“flattening” occurs after adjacency relations are es-
tablished. Thus, the input trees of our linearization
are the recursive hierarchical trees built by the nar-
row syntax once they have been embellished with
adjacency information, hence the use of the prece-
dence relation ≺ (x, y).

In what follows, we define this mapping using
First-Order Logic, ensuring that the process re-
mains sufficiently restrictive from a computational
perspective. This formulation allows linearization
to be expressed in a purely declarative manner
rather than as a derivational process. It also fun-
damentally codifies the notion of locality into the
representation, which is known to be important for
the post-syntax (Embick and Noyer, 1999).

3.3 Tree-Flattening as an Interpretation
Consider an input S-structure, a tree denoted Σ,
and an output string G-structure, a string denoted
Γ, representing the concatenation of Σ’s leaves in
the correct order. Recall that the relations of our
output string must be defined in terms of those
input relations (namely, �∗,≺, σi or helper pred-
icates built using these) and this is precisely the
sense in which the output string is being inter-
preted in terms of the input tree.

As before, two pieces are necessary: (i) which
nodes from the input are relevant for the out-
put and (ii) how they are ordered with respect to
each other. The ordering will be a relation called
lin(x, y) to indicate that x and y in the input tree
meet the conditions for x to strictly precede y in
the linearized output string. Intuitively, only the
leaves will be contained in the output structure,
but the ordering between them may not be read-
ily clear at first glance. Taking the tree in Figure 4,
its intended linearization shown pictorially below
in Figure 5. The example will proceed by reason-
ing why the ordering is the way it is, which will
lead to the formal definition.

60

THE

50

MAN

30

LOVES

10

THE

00

CAKE

lin lin lin lin

Figure 5: Output of Linearization Toy Example

We only want to include leaf nodes in our out-
put string, and because the input will not grow
in the output, we only need a single copy set
C = {0}. In fact, this interpretation can be seen
as a mapping that “forgets” the hierarchical infor-
mation and “connects” the leaves in the correct
order via linear precedence. We define a predi-
cate leaf(x) := ¬∃y[�∗(x, y)] that says a node
x is a leaf node iff there is no node y that it dom-
inates. Thus, the labeling relations will take the
following form for each item in the input alphabet
σi ∈ Σsyn:

THE0(x) := THE(x) ∧ leaf(x)

MAN0(x) := MAN(x) ∧ leaf(x)

...

To better understand why the output string has the
linear order it does, some more helper predicates
are defined. A left-leaf is a leaf that has noth-
ing preceding it, and a right-leaf is a leaf that
precedes nothing. Formally,

left-leaf(x) := leaf(x) ∧ ¬∃y[≺ (y, x)]

right-leaf(x) := leaf(x) ∧ ¬∃y[≺ (x, y)]

Using these, we can define predicates to indicate
whether a given node is the left-most leaf of a
particular node, and another to indicate if a given
node is the right-most leaf of a particular node.
For a given node, whichever node is the (unique!)
leaf below it such that nothing is further left is its
left-most leaf and whichever node is the (unique!)
leaf below it such nothing is further right is its
right-most leaf.

The relevance of these becomes clear when
thinking about where lin(x, y) holds true in the
tree in Figure 4. Let’s observe each case: First,
lin(6, 5) because both 6 and 5 are leaves and
≺ (6, 5). Next, lin(5, 3) because there is a node
whose right-most leaf is 5 and it precedes a node
whose left-most leaf is 3, so no other leaves can be
in between them. Next, lin(3, 1) because 3 pre-
cedes a node whose left-most leaf is 1. Finally,
lin(1, 0) for the same reason lin(6, 5), namely
both are leaves and ≺ (1, 0).

Thus, in all of these scenarios, expressing strict
precedence in the output requires reference to left-
most and right-most leafhood. Every node has a
left-most and right-most leaf, and every leaf node
is its own right-most and left-most leaf (since dom-
inance is taken to be reflexive). Defining one more
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helper predicates aids in readability. The follow-
ing predicate indicates that a node y is dominated
by x and dominates z and so we say that y is be-
tween x and z in the tree:

between(x, y, z) := �∗(x, y) ∧�∗(y, z)

Now having seen the importance of these config-
urational relationships to linearization, the formal
definitions for right-most and left-most leafhood
are as follows:

• A node x is the left-most leaf of a node y iff
for all the left-leaf nodes z that y dominates,
the only one with nothing further left is x:

lml(x, y) := ∀z[(�∗(y, z) ∧ left-leaf(z)

∧ ∀s[between(y, s, z)
∧ ¬∃t[≺ (t, s)]]) ↔ z = x]

• A node x is the right-most leaf of a node y iff
for all the right-leaf nodes z that y dominates,
the only one with nothing further right is x:

rml(x, y) := ∀z[(�∗(y, z) ∧ right-leaf(z)

∧ ∀s[between(y, s, z)
∧ ¬∃t[≺ (s, t)]]) ↔ z = x]

Now that these have been given, note that each
of the cases above made some mention of x and y
being the left-most or right-most leaf of two higher
nodes where one precedes the other, we can call
these t and s.3 Any of these configurations leading
to x strictly preceding y in the output string can
be condensed into the following single condition,
also shown pictorially in Figure 6:

lin(x, y) := ∃t∃s[≺ (t, s)∧rml(t, x)∧lml(s, y)]

t s

x y

≺

rml(x, t) lml(y, s)

Figure 6: Conditions for Strict Precedence in Output

3Since any leaf is its own left-most leaf and right-most, it
can be true that either t = x or s = y or both.

What we have done is reduced precedence be-
tween any two nodes in the output string to a sin-
gle declarative condition between nodes the input
tree: the node x will strictly precede y iff this con-
dition holds. One of the primary strengths of this
result is that it doesn’t cast linearization in terms
of a procedure, but rather it reduces it to under-
lying knowledge about the structural relationship
between linguistic elements. Another critical prop-
erty of this method of linearization is that it is de-
finable using First-Order Logic, which is desirable
from a formal complexity standpoint. This is be-
cause it limits its use of quantification to individual
elements as opposed to sets of elements as would
be the case in Monadic Second Order Logic. This
is a nice result with respect to computational com-
plexity, since it is subregular.

There is an important question regarding the
choice of strict precedence in the output string. Re-
call from the earlier discussion of strings that the
choice of representation (strict or general prece-
dence) affects the available generalizations one
can define. Using strict precedence it is natural
to ban immediately adjacent segments like a ban
on any obstruent immediately following a nasal
(say, a *NT constraint). For example, with an
alphabet of Σ = {V,N,T,D}, such a constraint
would accept the string VNDV but reject the string
*VNTV. In fact, this is a strictly local constraint
since it depends only on a window of two ele-
ments (Chandlee, 2014). In contrast, using gen-
eral precedence it is natural to ban sequences of
segments like long distance sibilant harmony that
bans an S following an s anywhere in the string
(say, a *s . . . S constraint). For example, with
an alphabet of Σ = {S,s,v,c}, such a constraint
would accept the string ScvcvS but reject the string
*scvcvS. This is not strictly local because it con-
tains a dependency between elements that can oc-
cur arbitrarily far away from one another. 4 The
choice of strict precedence in the definition of lin-
earization here formally hard-codes locality into
our post-syntactic representations. The output of
our linearization is a string of nodes labeled with
morphosyntactic information and if they are re-
lated via strict precedence, this prunes out arbi-
trary, word-level parallels of these long distance
generalizations. Thus, post-syntactic operations at

4However, it is possible to define Tier-Based Input or Out-
put Strictly Local functions that have a relativized form of ad-
jacency via a particular feature or category, thus naturally con-
straining the ability to make long-distance generalizations.
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this level of representation can be modeled using
ISL functions.

This simplified example did not contain any
feautural information, but this will become rele-
vant when sketching a potential analysis imple-
menting movement. As a start, encoding stan-
dard syntactic mechanisms like selectional require-
ments and feature percolation can be stated as
well-formedness conditions on our input trees. As
an example, suppose we had a well-formedness
condition in our trees that said a non-terminal node
only bears a category label, for example D, iff it
has two children x, y where x shares the category
D and ≺ (x, y), which enforces that the selecting
node will project its features to its parent. Another
example, suppose we define a well-formedness
condition for movement features f which states
that if a leaf node bears a -f feature, this -f fea-
ture must percolate upward to its maximal projec-
tion. These are some ways to understand how this
method of linearization could be expanded going
forward for a more all-encompassing account.

3.4 Incorporating Movement

There are many ways one could imagine incorpo-
rating movement to this analysis. One potential
way is to assume that we have a tree-to-tree map-
ping, where the input tree is a pre-movement tree
and the output is a post-movement tree. While
this does split the division of labor, a notable draw-
back of this approach is that it would require two
separate interpretations: one solely for completing
movement and another for linearization. There is
also the question of how to encode movers. This
could be done by embellishing the alphabet with
movement traces, where our trees would instead
have trace labels at the launching sites and lexical
labels at their landing sites. This would drastically
increase the length of the alphabet since this would
presumably require a trace corresponding to each
label already in L.

Another potential alternative would entail alter-
ing some of our representational assumptions for
input trees. Our input trees could be modified to
include a separate relation to encode movement.
For example, suppose we had a relation M(x, y)
where x is the the highest node of a mover and y
is a node immediately dominating a movement at-
tracting head. This could then be used to define
a structural input condition to determine the place-
ment of x’s children in the output string.

The alternative sketched here assumes move-
ment takes place concurrently with linearization,
sketched using an example in Figure 7. While an
analysis in which trees are built with a syntactic se-
lection relation as opposed to precedence may re-
flect the nature of syntactic computation more ac-
curately, this would be beyond the scope of this pa-
per. Incorporating the exhaustive well-formedness
conditions, movement configurations, successive
cyclic movement or enforcing relativized minimal-
ity in all generality would be considerably much
more involved than is possible here, but such an
analysis is left for further work. Given the fact that
most work in model-theoretic syntax has assumed
the sorts of representations used here, this is suffi-
cient for the central points regarding linearization.

In the tree in Figure 7, substructures that con-
sist of movers are darkened for clarity. In the out-
put string, the string yield of the movers is out-
lined with a dashed box to clarify that these are
the leaves of an entire substructure with relevant
properties from the input. There are two moving
substructures in this tree. One is the substructure
with the root 9, the phrase “THE MAN”, driven
by a nom feature and the other is the substructure
with the root 2, the phrase “WHICH CAKE”, driven
by a wh feature. In the output string, the moved
phrase driven by nom appears to the left of the at-
tracting head T bearing a +nom feature. Similarly,
the moved phrase driven by wh appears to the left
of the attracting head C bearing a +wh feature bear-
ing a -wh feature.
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Figure 7: Linearization Toy Example with Movement
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What is true about each of these moving sub-
structures with respect to these heads? Each of
them are rooted with a node that bears a -f feature
for some movement-driving feature f, as per the
well-formedness condition posited earlier. Thus,
the yield of this substructure should occur before
the f-movement driving head in the output string,
meaning precisely that the rml of the moving sub-
structure will strictly precede this +f head. In the
case of the nom movement, the output string struc-
ture will have 7 (the MAN-bearing node) strictly
preceding 11 (the +nom-bearing T node). Simi-
larly, in the case of the wh movement, the out-
put string structure will have 0 (the CAKE-bearing
node) strictly preceding 13 (the +wh-bearing C
node). Together with the lin(x, y) condition, this
covers the movers themselves and their relation-
ship to the movement-driving heads.

There are two remaining tasks: we must deter-
mine what precedes the mover once it lands and
the nodes around its launching site. Firstly, it must
be ensured that the mover’s lml comes before
the unique node which would have met lin(x, y)
in the input (where y is the movement attract-
ing head). For example, C will strictly precede
the nom-mover’s lml bearing THE. Similarly, the
node bearing WHICH will be the first node in the
string since there is nothing higher than the attract-
ing head. Secondly, it must be ensured that the
nodes surrounding the mover, if they exist, are con-
nected via strict precedence. In other words, the
next highest node that would have met lin(x, y)
where y is the lml of the mover should strictly
precede the next lowest node that would have met
lin(x, y) where x is the rml of the mover. For ex-
ample, the node bearing T will strictly precede the
node bearing V since they “surround” the launch-
ing site. Similarly, the node bearing EAT will be
the final node in the string since there is nothing
lower than the mover in the input tree.

This is only sketched out as an example, but
the entirety of the mapping just described is defin-
able by making modifications to the lin(x, y) con-
dition within First-Order Logic. This is because
in what was just described, it only requires quan-
tification of individual nodes, not arbitrary sub-
sets of nodes, leaving the definition within First-
Order Logic. Even though this substructure can
be arbitrarily large, the only relevant nodes of the
mover to be picked out are its root, rml and lml
and nodes in between are covered by lin(x, y).

An anonymous reviewer points out that the scope
here is limited to a relatively simple case of move-
ment, but further work could provide a more struc-
tured analysis of more complex cases (e.g. multi-
ple movers attracting to a single head, smuggling,
remnant movement, mixed-headedness, etc.) us-
ing these tools and examine whether they remain
within First-Order Logic.

4 Discussion

This novel view of linearization comes with many
theoretical advantages. Firstly, it was shown
(albeit through automata-theoretic as opposed to
model-theoretic means) that Recursive Prosody is
non finite state and thus requires more computa-
tional power (Dolatian et al., 2021). This declar-
ative linearization-as-flattening approach has the
benefit that it only uses First-Order Logic, which
is notably less computationally expensive than
Monadic Second-Order Logic, which is required
for mappings that are finite state or more power-
ful.

This approach may have interesting implica-
tions for our view of the syntax-phonology inter-
face regarding the status of recursion in phonol-
ogy. For a recent view on the debate of the
status of recursive prosodic approaches and pro-
cedural approaches, see Lee and Selkirk (2022);
Newell and Sailor (in press). It is well-known
that there are often mismatches between syntac-
tic and phonological domains (Cheng and Down-
ing, 2016); however, these mismatches often ap-
pear to occur at or very near to Spell-out bound-
aries. Accommodating this notion of “at or very
near to” is extremely amenable to this type of anal-
ysis given its inherent locality properties. If string
yields are embellished with boundary information
(either by means of boundary symbol like ⋊ or
⋉, respectively or relations that hold of a node
φinit(x) or φfin(x), respectively), then it may be
expected that the range of syntax-phonology mis-
matches are accounted for through by employing
Input Strictly Local (ISL) restructuring functions
(Chandlee, 2014), which are very computationally
restrictive. Dobashi (2003, 2019) has work de-
tailing phonological domain restructuring and its
typological implications. These approaches are
nicely compatible and would serve as a fruitful in-
tegration of theoretical and computational results
at the syntax-phonology interface, creating a new
avenue for more formal analyses in this domain.
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There are other computational characterizations
of linearization that exist currently; for example,
(Graf, 2022a,b) gives an elegant formal characteri-
zation which is ISL, a strikingly desirable property
with respect to computational complexity; how-
ever, this does require abiding by quite strong rep-
resentational assumptions about the nature of trees
that are undoubtedly formally well-founded and
rigorous, but have not received a wider adoption
in more general syntactic literature. The analy-
sis makes use of dependency trees, which are rel-
atively uncommon outside of the space of com-
putational syntax. While Graf defines a straight-
forward mapping between more standard phrase
structure trees and dependency trees, the analysis
proposed here takes a view where linearization oc-
curs straight from more standard syntactic repre-
sentations dispensing with the need for such in-
termediate mappings. This also adds to a recent
body of work that has begun to bridge the gap be-
tween theoretical work on the interface and sepa-
rate computational work in phonology and syntax
(Dolatian et al., 2021; Yu, 2021; Vu et al., 2022;
Stabler and Yu, 2023), despite some of the differ-
ing theoretical assumptions regarding the status of
recursion.

5 Conclusion

This paper has presented a novel method of lin-
earization, casting it as a model-theoretic interpre-
tation between strings and trees. It is both compu-
tationally restrictive and hard-codes locality into
the output string representations, all while express-
ing ordering between nodes as a single declara-
tive condition. A potential expansion incorporat-
ing movement was explored through a motivating
example, showing that the tools are amenable to
further modifications. The most central advantage
to this analysis is the fact that it is a step toward
computationally unifying how we think about lin-
guistic modules and their interaction, despite some
of their representational differences.
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