Adjunction in (T)SL Syntax

Kenneth Hanson
Department of Linguistics
Stony Brook University
mail@kennethhanson.net

Abstract

Adjunction is intuitively a local operation, yet
its subregular complexity is dependent on both
the geometry of the syntactic representation
as well as the specific model of adjunction
assumed. Here, I propose a model of adjunction
which is strictly local (SL) over Minimalist
Grammar (MG) dependency trees, and which
incorporates the core properties of optionality,
iteration, invisibility to selection, and adjunct
ordering restrictions. Non-locality is avoided in
cases of recursive adjunction, and an interesting
treatment of several other formal properties of
adjunction is made possible.

1 Introduction

In the last several years, a two-level classification
of the computational complexity of syntax has
emerged: local dependencies such as selection are
strictly local (SL) over trees, while non-local de-
pendencies such as movement, agreement, and case
assignment are tier-based strictly local (TSL), a
straightforward generalization of SL in which a sub-
set of non-salient elements are ignored (Graf, 2018,
2022b; Hanson, 2023b, 2025; Vu et al., 2019). This
closely matches past results on local and non-local
phonological dependencies, which are predomi-
nantly SL and TSL over strings, respectively (Heinz,
2018), providing evidence of cognitive parallelism
across linguistic domains (Graf, 2022a).

The placement of adjunction within this scheme,
however, has remained unclear, as formal models
of adjunction vary in their subregular complexity
(Graf, 2014). Furthermore, the complexity of ad-
junction interacts with that of selection: in the
derivation tree language for a Minimalist Grammar
(MG) with recursive adjunction, the complexity of
selection is increased to TSL (Graf, 2018). This is
not a terrible state of affairs, as it would mean that
the overall complexity of much of syntax is quite
low, and uniform across operations. At the same

133

time, selection is typically considered to be highly
local. For example, a verb may select the category
of its complement, but not the complement of its
complement, let alone more distant items, yet this is
exactly what we would predict if selection was TSL.
Similarly, most of the key properties of adjunction
require only a SL grammar (Hanson, 2023a). We
therefore ask: can the non-locality of adjunction,
and by extension selection, be eliminated?

The answer is affirmative. With minor adjust-
ments, the MG dependency tree model defined in
Graf and Kostyszyn (2021) can easily accommodate
a linguistically satisfactory SL model of adjunction,
which includes the core properties of optionality,
iteration, invisibility to selection, and ordering re-
strictions among adjuncts. The primary change re-
quired is to generalize the model to unranked trees,
which have no maximum branching factor. This is
highly natural from a mathematical perspective, and
brings several added benefits. Selection remains
SL, as does the combined grammar for selection
and adjunction, even allowing for a degree of varia-
tion in the position of adjunction. The model also
provides an interesting perspective on the distinc-
tion between left and right adjuncts which suggests
doubling down on separation between dependency
structure and constituency structure, relegating the
latter to the post-syntactic map.

The remainder of this paper proceeds as follows.
First, I introduce the necessary background on
adjunction, MG dependency trees, and strictly local
string and tree languages (2). Next, I implement
a strictly local grammar for MG dependency trees
which includes selection as well as adjunction in
the style of Frey and Girtner (2002) (3). From
there, I refine the system to incorporate recursive
adjunction (4) and adjunct ordering restrictions
(5), building on insights from Graf (2018) and
Fowlie (2013). Finally, I address some alternatives
and potential complications for the proposed model,
and directions for future research (6).

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 133-143.
Eugene, Oregon, July 18-20, 2025

did :: T* wh* G~ |
| N
e Vreppt T™

/

\
'Z speak :: P* D* V~

\

|
I

\ /\
she :: D™ epp~ to:: D* P‘//
‘ //
which :: N* D™ wh™
\

reporter :: N~

DP
which reporter;

Cp
/\
C/
/\
C TP
did
DpP
she;

IS
\

TI
PN
T VP
RN
\\,—lj \'4

N
~

\'%
~~._ speak

PP
PN
ti

to

Figure 1: MG dependency tree (left) and phrase structure tree (right) for Which reporter did she speak to?

2 Background and model

This section briefly describes the properties of ad-
junction that we aim to capture, the MG dependency
tree model, and SL. grammars over strings, ranked
trees, and unranked trees. More complex formal
languages play no role in the core analysis, though
several TSL and M[ulti]TSL string languages ap-
pear in 6; see Appendix A for a brief overview
and example grammars.

2.1 Properties of adjunction

We are concerned primarily with the following
properties of adjunction:

1. Optionality — an adjunct may be added or
removed without affecting wellformedness
Iteration — if one adjunct may be added in
some context, then any number may be added
Ordering restrictions — when two or more
phrases adjoin to the same head, there may be
restrictions on their order

Invisibility for selection — the properties of a
phrase are determined by the those of its head,
not those of any adjunct

Some simple examples of adjectival modification
are provided below. (la) demonstrates optional-
ity and iteration: any combination of adjectives
denoting size, color, and material can be used, as
long as they occur in that order. The remaining
examples show that other logically possible orders
are degraded.

(1) a.
b.

c.
d.

a (big) (blue) (wooden) house
7?7 a blue big house
?? a wooden big house

7?7 a wooden blue house

134

Property #4 is more subtle. Empirically, it means
that every phrase represented by (1a) has the same
external distribution. Theoretically, it means that
the features of the noun ‘house’ project, not those
of the adjectives. This is easily lost in models of
adjunction in which the adjective selects the noun,
and can interfere with the locality of selection.

There are other properties of adjunction that we
might also want to treat, but these four will be
our focus, since they are directly related to the
subregular complexity of adjunction. In 6.3, we
will briefly touch on another structural property:
the c-command paradox for right adjuncts.

2.2 MG dependency trees

Here, we briefly outline the MG (Minimalist Gram-
mar) dependency tree model as defined in Graf and
Kostyszyn (2021).!

In MG (Stabler, 1997, 2011), lexical items pair a
phonetic exponent with a string of features which
control how they may combine in a syntactic deriva-
tion. Standard MGs have two types of binary fea-
tures, controlling the operations Merge and Move.
For Merge, we have selector features (F*) and cat-
egory features (F~). For example, the determiner
the has features N* D~. For Move we have licensor
features (f*), marking the landing site of movement,
and licensee features, marking the head of the mover
(f7). For wh-movement, the landing site bears wh*
and the mover bears wh™. Additional operations
require adding further feature types; we will do this
for adjunction momentarily.

MGs generate a language of derivation trees,
which encode the sequence of operations of
Merge/Move/etc. Several variants exist; here we
use dependency trees, in which all nodes are lexical

'The model first appears in Graf and Shafiei (2019). A
nearly identical framework can also be found in Kobele (2012).

items (traditional derivation trees will be revisited
in 4). Figure 1 shows a dependency tree for a
simple sentence with wh-movement along with the
corresponding phrase structure tree. The daughters
of each node are its arguments, ordered by asymmet-
ric c-command (that is, reverse order of selection).
Movement is represented only via features; arrows
are provided for visual convenience only.

When we say that selection is SL, we mean that
licit and illicit arrangements of selector and cate-
gory features can be distinguished using a SL tree
grammar. Importantly, the complexity of selection
itself could change if other operations are included
in the tree language. We show that this does not
occur in the dependency tree model: not only does
adding movement not matter (as is well established)
but adjunction can safely be added as well.

2.3 SL languages and grammars

SL string languages and grammars are defined in
terms of k-factors, which are substrings of a string
augmented with edge markers. For example, the
3-factors of the string abc are:

{xxa, xab, abc, bex, cxix}

A positive SL-k grammar is a set of permitted
k-factors, while a negative SL-k grammar is a set of
forbidden k-factors. Here, we make use of positive
grammars (interconversion is always possible). For
example, a positive SL-3 grammar consisting of
just the above factors would generate the string abc
and no others. If we add the factors {cab, bca},
then we can also generate abcabc, abcabcabce, etc.
By further adding {abb, bbc}, we can optionally
double the b to produce abbc, abcabbc, etc.

A string language is strictly k-local (SL-k) iff it
can be described using a positive or negative SL-k
grammar. As a regular expression, the language of
the above example is (ab(b)c)*. See Rogers et al.
(2013) for a formal definition and further context.

SL languages/grammars are easily extended to
ranked trees, which have a fixed maximum branch-
ing factor. They can be further extended to un-
ranked trees, which have no such restriction, by
associating each node with an SL string language
that constrains its string of daughters.” We consider
each of these cases in turn.

2Such a tree language cannot be implemented with a
standard bottom-up deterministic tree automaton (BDTA).
Instead, the states of the daughters are processed by a finite
state string automaton, and final state of the string automaton

is combined with the mother node’s label to determine its state.
See Comon et al. (2008) for details.

2.4 Ranked trees, selection

Traditionally, regular and subregular tree languages
are defined over ranked trees, in which each element
has a fixed number of daughters, known as its
rank. The maximum branching factor of a tree is
therefore bounded by the highest ranked element it
contains. For such trees, a SL-k tree grammar is
just a set of permitted/forbidden subtrees of height &
(Rogers, 1997). For the grammar which generated
the example in Figure 1, these include the following,
among others:

(2) Some permitted subtrees of height 2

g Vteppt T™
|
speak :: P* D* vV~

speak :: P* D* V™

she:: D™ epp~ to::D* P~

which :: N* D~ wh~
\

reporter :: N~

to:: DY P~
which :: N* D™ wh~

Of course, this can and should be condensed into
a format which encodes the relevant generalizations,
e.g., every verb with the selector features P* D*
should have exactly two daughters, bearing D~ and
P~, in that order. We will do this in the next section.
For now, we note that because the largest portion of
the tree we need to examine is of height 2 and the
number of possible subtrees is finite, we can list all
licit/illicit subtrees, so selection is SL-2.

2.5 Unranked trees, adjunction

We base our system on the work of Frey and Girt-
ner (2002), who treat adjunction as asymmetric
Seature checking. We add a new class of adjunction
features, notated F¥. Modifying adjectives, for
example, bear N¥, since they adjoin to NPs. Ad-
junction features must be checked against a match-
ing category feature, but the category feature of
the head remains unchecked. This contrasts with
Merge and Move, whose positive features must be
checked against negative features in a one-to-one
manner. Adjunction is therefore optional, and may
also iterate.

In the MG dependency tree model, it is extremely
natural to treat adjuncts as dependents of their heads,
preceding all specifiers and complements. This
is implicitly assumed by Shafiei and Graf (2020)
in their model of adjunct islands, and I do the
same in Hanson (2023a) to handle adjunct ordering.
However, neither work formalizes this, nor do they
treat recursive adjunction. Below are dependency
trees for DPs with 0, 1, 2, and 3 NP adjuncts,
respectively.

135

(3) Adjuncts as dependents of the head

the wolf the big wolf the big bad wolf
the :: N* D~ the :: N* D~ the :: N* D~
\ \ \
wolf :: N™ wolf :: N™ wolf :: N™
\
big :: N® big :: N® bad :: N®
the big bad scary wolf
the :: N* D™
\
wolf :: N™
big :: N¥ bad:: N¥ scary :: N®

There are two key things to notice here. First,
the noun and its selector remain adjacent, as does
the string of adjuncts and their head. This means
that adjunction to XP is invisible to selection of
XP by another head Y, as desired. Second, there
is no finite bound on the number of daughters of
a node. We therefore require unranked trees, in
which the daughters of a node no longer form a
tuple, but a string. Rather than exhaustively listing
licit subtrees, the label of each node is mapped to a
daughter string language, which may be infinite;
many examples are given in the following sections.
As for the formal implementation, the definition
of an MG dependency tree language needs to be
adjusted slightly, though we do not do this here.’

In the next section, we construct a generalized
SL grammar for unranked trees which handles both
selection and adjunction, and show that it works for
the above structures, among others. In the following
sections, we make some minor adjustments in order
to incorporate recursive adjunction and adjunct
ordering hierarchies.

2.6 Classes of tree grammars

The computational complexity of a tree language
need not be uniform in both the vertical and horizon-
tal dimensions. Adapting the terminology of Graf
and Kostyszyn (2021), a SL-i[SL-j] tree grammar
has a window of i in the vertical dimension and j in
the horizontal dimension, the latter corresponding
to the daughter string languages. It is also possible
to use more a more powerful mechanism in one
or both dimensions. For example, the analysis of

3The first order constraints in Graf and Kostyszyn (2021)
are meant to be combined with an appropriate axiomatization
for the class of ranked finite trees; our modified version should
be instead be combined with the class of unranked trees.
Backofen et al. (1995) provide first-order theories of both
ranked and unranked trees which are minimally different and
have the desired properties, though infinite trees are not ruled
out, as this requires at least monadic second order logic.

136

movement in Graf (2022b) is TSL with a window
of 2 in both dimensions, making it TSL-2[TSL-2],
while the analysis of case in Hanson (2023b) is
MTSL-2[TSL-2], as it involves multiple tree tiers.
For present purposes, the window in the vertical
dimension will never vary (it is not obvious how
a window larger than size 2 would even work),
but the window of the daughter string languages
may vary depending on the number of arguments.
When the window in the horizontal varies by daugh-
ter string language, we take the upper bound as
representative.

3 Adjunction without non-locality

We begin by constructing a SL. grammar which
covers selection and adjunction for unranked trees,
implementing the system from the previous section.
We then augment the system to include recursive
adjunction and adjunct ordering restrictions. The
approach is closely mirrors the use of TSL tree
grammars in Graf (2018) and subsequent work
except that the tier projection step, needed only for
long-distance dependencies, is omitted.

For now, we make no distinction between left and
right adjuncts: their position in the dependency tree
represents only their structural (=scopal) position.
We present a potential problem with this assumption,
as well as a solution, in 6.3.

3.1 Selection

First, consider the case where a node has only
arguments or adjuncts among its daughters, but
not both. The rules for selection and adjunction in
isolation are exceedingly simple, being finite and
SL, respectively. We begin with selection.

(4) Select: If anode bears the sequence of selector
features Xy*, ..., Xy*, then its ith daughter
from the right must bear category feature X;~,
forall1 <i<nt

For example, devour is an obligatorily transitive
verb, with selector features Dt D*. Therefore, its
daughter string language consists of all strings of
length two in which the category of each itemis D™
There is a finite number of selector features on any
given lexical item, and the lexicon itself is finite,
so the daughter string language of each node is
finite, and therefore also strictly local. Specifically,
if the number of arguments is n, the daughter string
language is SL-(n+1). In the case of devour:

4Recall that the arguments of a node appear in reverse
merge order.

(5) Selection grammar for devour (SL-3)
G* ={xxD~,xD"D7,D D™, D" xKx}

The complete grammar is a map from the label
of the mother to the grammar for its daughter string,
based only on its selector features. If the maximum
number of selector features is », then in the classi-
fication introduced in 2.6, the complexity of the
tree grammar is SL-2[SL-(n+1)], since we make
use of a window which is of height 2 and width
(n+1).

3.2 Adjunction

Next, we introduce our adjunction rule.

(6) Adjoin: If a node bears category X~, then it
may bear zero or more daughters bearing X~.
No other daughters with adjunction features
are allowed.

For example, wolf bears N™, so it may have
zero or more daughters bearing N*. If we map the
label of each node to just its adjunction feature, the
daughter string language for each category X can
be described with the positive grammar {xx, XX,
X®X®, X*x}, and is therefore SL-2. Since devour
and most other verbs have at least one argument,
we provide a concrete example for wolf instead:

(7) Adjunction grammar for wolf (SL-2)
Gt = {xx, xN¥, N*N* N*x}

As stated, neither of the above rules works for
nodes with both arguments and adjuncts among its
daughters. Now we combine the two cases.

3.3 Combining the constraints

Recall that we assume all adjuncts to precede all ar-
guments. Therefore, the combined daughter string
language template is the concatenation of the two.

(8) Select + Adjoin: If a node bears the sequence
of selector features X1, ..., Xy and category
feature Y, then its daughter string consists of
zero or more daughters bearing Y~ followed
by n daughters bearing category feature X;~,
from right to left, forall 1 <i < n.

SL languages are not in general closed under
concatenation, so we must show that concatenation
is possible in this case. Specifically, we show
that the combined daughter string language schema
has a factor width equal to the higher of the two
source grammars: if z is the maximum number of
selector features, then the combined grammar is
SL-2[SL-k], where k is the greater of {2, (n+1)}.

The construction is as follows. First, we convert
the SL-2 adjunction grammar to SL-(n+ 1) by
padding its factors, and also remove any factors
that allow a string to end without any arguments.
Second, we add these to the factors of the selection
grammar. Finally, we add any factors needed to
transition from an adjunct to the highest argument.

A concrete example for devour is shown below.
As before, we map each node label to just its ad-
junction or category feature for brevity.

(9) Combined grammar for devour (SL-3)
Gt = {xxD”, xD™D", D'D"X, D KK,
XXV, XVEVE VIV xV*D~, VV*D,
VD™ D"}

Let us apply this grammar to the node devour
in the dependency tree for the sentence The big
bad wolf quickly devoured the little pig, shown
below. For simplicity, we truncate the tree at the
VP level and omit movement features. The reader
may confirm that all 3-factors of the daughters of
devour are licit. To ensure that the entire tree is
licit, we repeat this procedure for every node.

(10) a. Dependency tree:
devour :: D* D* V~

quickly :: V¥ the :: N* D~ the :: N* D™
WOlf‘ZZ N~ pig :‘: N~
big :: N¥ bad :: N*¥ little‘:: N~
b. DS of devour: V¥ D™ D~
c. 3-factors of DS: {xxV®, VD7,

V¥D™D7,D D™ x, D" xKx}

The construction is essentially identical for items
with three or more arguments. For those with just
one, the selection grammar is already SL-2, so
no padding of the adjunction factors is required.
For items with no arguments (including the verb
rain and many nouns), we are back to the plain
adjunction grammar, which remains SL-2.

To briefly review, we achieved a combined SL
model of selection and adjunction over unranked
trees, whose grammar is a mapping from node labels
to daughter string languages, each of which is SL,
for a combined complexity of SL-2[SL-k], with
k > 2. Now, we introduce recursive adjunction.

4 Recursive adjunction

We follow the lead of Graf (2018) by reintroducing
category features on adjuncts. For example, mod-
ifying adjectives carry A~ N¥, and adverbs carry

137

either Adv™ A™ or Adv~ V*. Below is an example
adverbial modification of adjectives, which in turn
modify a noun.

(11) the very big very bad wolf

the :: N* D™
wolf‘:: N~
big :: A~ N* bad :: A=~ N*
very :: Adv’ A® very A‘dv’ A*

Locality is clearly preserved in the dependency
tree model, since adding an adverb under an ad-
jective does not interrupt adjacency between the
adjective and the head noun, just as adding an adjec-
tive below a noun does not affect the relation with
the selecting determiner. Furthermore, although
some category features are no longer checked with
a corresponding selector feature, this can be deter-
mined just from the label of the node in question, so
we do not even need to change the SL tree grammar.
We continue to distinguish items with and without
a final adjunction feature, just as before.

At this point, I should briefly describe the prob-
lem that occurs with recursive adjunction in tradi-
tional MG derivation trees. In this system, internal
nodes represent the Merge/Move/Adjoin operations,
and all leaves are lexical items. The derivation tree
for the current example is shown below.

(12) the very big very bad wolf
Merge

the :: N* D~ Adjoin
/\
Adjoin Adjoin

/\
very :: Adv- A® big:: A~ N¥ Adjoin wolf:: N~

very :: Adv- A¥ bad:: A N*

Here, an adjunct and its head are not necessarily
adjacent, and the distance grows without bound
if the adjunct itself serves an an adjunction site.
As a consequence, adjunction is not SL for any
window size. Furthermore, selection is not SL
either, since the distance between the D head and
the N head grows without bound as adjuncts are
added. If not for recursive adjunction, strict locality
of selection could be rescued via a chain analysis
(e.g. D licenses A, which licenses A, which licenses
N). But with recursive adjunction, the intervening
A heads themselves are not guaranteed to lie within
any finite window.

138

According to Graf (2018), Merge and Move are
structure-sensitive TSL (SS-TSL) over derivation
trees (see De Santo and Graf 2019 for the string
case); the complexity of Adjoin is left open, though
it is clearly not SL. Several phonological phenom-
ena are SS-TSL over strings (Graf and Mayer, 2018;
Mayer and Major, 2018), so this is not a catastro-
phe. Additionally, as Graf notes, it would mean
that Merge and Move are extremely closely related
in formal terms, mirroring the view in Chomsky
(2004). However, as the evidence accumulates that
SL and TSL are sufficient for most syntactic phe-
nomena under the dependency tree model (Graf,
2022b; Hanson, 2023b, 2025), one gets the impres-
sion that the need for SS-TSL is an artifact of the
derivation tree representation.

This requires elaboration since, as a reviewer
remarks, there is an inherent trade-off between rep-
resentational and computational complexity, such
that one can often be reduced by increasing the other.
In this case, the information in each representation
is comparable, with sister order in the dependency
replacing the extra nodes of the derivation tree,
but the computational complexity of the former is
lower. Furthermore, the range of patterns which
SL/TSL can produce have wide empirical support,
while SS-TSL serves primarily to factor out the
extra nodes of the derivation tree. An exception
can be found in Principle B of the binding theory,
which seems to require SS-TSL (Graf and Shafiei,
2019), mirroring the occasional SS-TSL pattern in
phonology, but this does not seem to be needed for
most operations. In summary, the dependency tree
model allows us to minimize the overall complexity
of the system while also providing the best fit to the
known typology.

5 Adjunct ordering restrictions

The adjustment we made for recursive adjunction
also lays the groundwork for encoding adjunct
ordering restrictions. The basic insight by Fowlie
(2013) is that a principled treatment of adjunction
ordering requires a pair of features rather than a
single adjunction feature. By tracking both the
position in the hierarchy and the adjunction target
simultaneously, we can avoid resorting to low level
tricks such as adding unmotivated empty categories
or exploding the lexicon.

Rather than implementing her exact system, we
make use of the pairing of category and adjunc-
tion features already in play. Specifically, we split

our adjunction features by adding an index corre-
sponding to the position the item must take in the
relevant ordering hierarchy. The primary difference
between our approach and Fowlie’s is that while she
uses paired features primarily to label adjunction
nodes in the derivation tree, we label the adjuncts
themselves. Consider again the example from (1),
repeated below with its dependency tree.

(13) abig blue wooden house
a:N* D~
\

house :: N~

big :: A7 Ny® blue :: A~ N2 wooden :: A~ N3~

In this case, we included only three indices, but
we can include as many as we need as long as the
number of positions is finite. In the style of the
preceding examples, the rule is as follows:

(14) Ordered adjunction: If a node bears cat-
egory feature X which has n positions in
its adjunction hierarchy, then any pair of
daughters d;, dj bearing X;~ and X;~, where
1 <i < j < n, must be ordered such that d;
precedes d;.

As discussed by Hanson (2023a), ordered ad-
junction is SL-2, just like simple adjunction, even
allowing for iteration, e.g. the big big big blue house.
Viewed as a finite state automaton, the daughter
string language is just the reflexive transitive closure
of the order of adjunction categories. Rather than
clutter the above definition, we proceed directly to
the template which covers all cases:

(15) Adjunction grammar for category N (SL-2)
Gt = {xx, xN;~, XNo~, xN3~, Ny¥No~,
NgzN;gz, N1zN1z, Ngzsz, N3:N3z, N1:l><,
sz[)(’ N3zl><}

This grammar can then be combined with the
selection grammar as before.

It is natural to ask whether it might be better to
split the category feature of the adjunct rather than
the adjunction feature. This would also presumably
work, and would in fact be more faithful to Fowlie’s
system. One small downside is that increases the
size of the lexicon somewhat. For example, if we
split category A into S(ize)/C(olor)/M(aterial)/etc.
then predicational use of adjectives will require
duplicate lexical entries for all selecting heads (be,
seem, etc.). The same is true of adjective modifiers
such as very. While Fowlie presents some poten-
tial solutions, the present approach sidesteps these

139

problems altogether, as the effects of the split are
isolated to just the context where they are desired.
We further discuss this alternative in Section 6.4.

6 Extensions and alternatives

At this point, we have achieved what we set out
to do: we have constructed a simple SL model of
adjunction which handles all of the properties spec-
ified at the outset, and which avoids non-locality
in cases of recursive adjunction. Now, we address
some other issues which have not been our focus,
some possible extensions of the current system,
and how some other systems compare. For brevity,
some of the string languages in this section are de-
fined using regular expressions, with the grammars
relegated to Appendix A.

6.1 Ordered and unordered adjuncts

So far, we have mostly ignored adjuncts without
ordering hierarchies, which traditionally include
PPs. To a certain degree, there is not much to say
about them since, if they are indeed unordered with
respect to each other, then the simple adjunction
grammar from Section 3 will do the job. The fact
that they are linearized to the right in English can
be seen as a part of the mapping to the surface,
independent of the dependency tree.

However, there is potential danger to the SL anal-
ysis when we consider both ordered and unordered
adjuncts together. Suppose for the sake of argument
that PPs can be interspersed among adjectives or
adverbs (as determined by scope), and that they can
also iterate in each position. This would yield a
daughter string language along the following lines:

(16) Ordered APs and unordered PPs
P*-A}-P*-AY-P*- AL P*

Such alanguage is not SL, since we need adjacent
items in the adjective hierarchy to appear in the
same window yet there is no limit to the number
of P heads which may intervene. It is uncertain
whether this scenario is actually realistic, but if
so, then the daughter string languages for selection
and each type of adjunction become TSL, and the
combined language would be Multi-TSL (MTSL;
see De Santo and Graf 2019), since the tiers for
each would be different. Even if such constructions
exist, it could be that left and right adjuncts are
not actually interspersed in the dependency tree, in
which the daughter string language remains SL-2.
We consider this possibility in Section 6.3.

6.2 The position of adjunction

In the above analysis, we assumed that all adjuncts
precede all arguments in the derivation tree, which
is equivalent to the assumption that all adjunction
occurs at the XP level. It is also conceivable
that adjuncts could occur in other positions. For
example, Frey and Gértner (2002) assume that
manner adverbs attach to the verb before the object
does in their analysis of German.

We should therefore consider the possibility that
the position of adjunction features within the MG
feature string may vary. Indeed, one could make the
argument that the SL model predicts such variation.
In the example just cited, all manner adverbs follow
the complement, which is an easy change. We might
also ask whether there exist any systems which
are not SL. For example, consider a hypothetical
language in which PP adjuncts can be inserted freely
in any position, similar to (16):

(17) Hypothetical non-SL version of devour
P*-D-P*-D-P*
This particular example would again be MTSL.
If adjunction is SL, then such adjunction paradigms
should not exist, even if some other variants do.

6.3 Left vs. right adjuncts

Right adjuncts in English are unordered, with con-
stituency and scope diagnostics suggesting that the
outer adjuncts are higher, but c-command diagnos-
tics such as NPI licensing go the other way.

(18) a. John saw [no one] [anywhere].

b. * John saw [anyone] [nowhere].
(Ernst, 1994)

In previous work (Graf and Shafiei, 2019;
Hanson, 2025), a relation called d/erivational -
command, which combines the dominance and
left-sister relations of the dependency tree, serves
as the analog of c-command in the phrase structure
tree. The NPI data can therefore be accommodated
if we assume that right adjuncts appear after all
arguments in the dependency tree.

(19) Abbreviated dependency tree for (18a), show-
ing d-command relations
e VET™
\

saw :: D* D* V™

John::D~ mnoone: D~

v

anywhere :: Adv~ V~

In doing so, we affirm the idea that sister order
encodes command at the expense of losing a direct

140

correspondence to constituency and scope. These
would instead need to be introduced in the mapping
from the dependency tree to the corresponding
phrase structure tree. Such an approach would be
reminiscent of the dual model of ‘cascade syntax’
and ‘layered syntax’ in Pesetsky (1996). I leave the
exploration of this possibility to future work.

6.4 Adjunct subcategories

As mentioned in Section 5, the closest alternative
to the proposed approach to adjunct ordering—
splitting the category rather than the adjunction
feature—introduces some lexical redundancy in-
dependent of that introduced by the inclusion of
adjunction features. But perhaps we could do
away with adjunction features entirely and rely
on the local context to identify adjunction, as in
Fowlie (2013). The structure of the daughter string
language would be essentially identical, just with
N1¥/N2~/N3~ substituted by S™/C~/M~, and so on.
This has been done for example (15) below:

(20) Adjunction grammar for category N (SL-2)
Gt ={xx, xS, xC™, xM~,S"C~,C" M,
$°§,CC,MM,Sx,C x, M x}

Aside from creating some lexical redundancy in
the selectors of S/C/M/etc., a major disadvantage of
such a model from a subregular perspective is that
arguments and adjuncts of the same category can
no longer be easily distinguished for long-distance
operations such as movement, as sisterhood in the
dependency tree is not preserved by projection to
a tree tier. Arguments and adjuncts are usually
thought to differ in their behavior with respect to
movement (both as movers and as containers for
movers), casting doubt on the viability of such an
approach, though see 6.6 for a counterargument.

6.5 Selectional approaches

As noted by Fowlie (2013), models that attempt to
reduce adjunction to selection suffer from various
formal and linguistic shortcomings, particularly in
accounting for ordering hierarchies. For example,
we could implement a functional sequence, e.g. D
< S < C <M <N, by including empty elements
to fill the unused slots. Each modifier needs a
single lexical entry, but the empty items have no
independent morphological or semantic motivation
and are therefore “nothing more than a trick to hold
the syntax together” (Fowlie, 2013, p. 16).

(21) Functional sequence

wooden :: N* M~ g Nt M~
blue :: Mt C~ g MY C™
big:: C* S~ g::C*s™
the :: ST D~

Conversely, we can avoid empty heads by means
of lexical homophony, but the lexical redundancy
factor is far worse than other alternatives, on the
order of n? (ibid.). Even if we dismiss the increased
memory burden, the pattern feels particularly acci-
dental when analyzed in this way, as there is nothing
which prevents items of the same category from
selecting a different set of ‘next’ elements.

(22) Massive homophony

wooden — N* M~

blue - N* G~ /M* C~

big > N* S~ /M* S~ /C* S~

the - N* D~ /M* D~ /C* D~ /S* D~

A third alternative, not considered by Fowlie,

utilizes ‘adjunctizer’ heads which introduce the
adjunct itself as a specifier. This contains the scope
of redundancy to a small subset of the lexicon, but
then we are back to the problem of unmotivated
empty elements.

(23) Adjunctizer heads
M-ADJ — N* M* M~
c-apy —» N* C* C~ /M* C* C~
s-apy —» N* §* S~ /M* S* S~ /C* S* S~
the - N* D~ /M* D~ /C* D~ /S* D~
In each case, the difficulty of distinguishing ar-
guments and adjuncts which we noted earlier still
applies. Overall, it seems to be preferable to keep
adjunction as a distinct operation, and factor out
ordering restrictions into the SL grammar.

6.6 Additional puzzles

Throughout this paper, I have assumed that the given
generalizations about adjunction are actually cor-
rect, but various exceptions have long been known.
For example, as a reviewer notes, violations of
the adjective order in cases of recursive adjunction
seem less bad compared to simple adjunction.

(24) a. abig blue house
b. 77 a blue big house

(25) a. avery big very blue house
b. ? a very blue very big house

As discussed by Hanson (2023a), there are var-
ious ways in which adjunct orders are more fluid

141

than is often supposed; in languages such as Ger-
man, they seem not to exist (Thomas Graf, p.c.).
It is therefore not clear that they should even be
modeled in the syntactic grammar. For present
purposes, the crucial point is that if we decide to
do so, they remain within the power of SL.
Similarly, I have taken for granted that the
argument-adjunct distinction exists and must be
accounted for. This might also not be so clear cut:
a reviewer cites McInnerney (2022), who argues
that the distinction is not well-supported on syntac-
tic or semantic grounds. This seems compatible
with the central claim of this paper, since selection
and adjunction are SL both in isolation and in com-
bination. It would be only a small step to eliminate
the distinction entirely, with the caveats discussed
in 6.5. That said, given that the study by Mcln-
nerney focuses almost exclusively on PPs, further
investigation is needed to determine whether the
same arguments apply to adjectives and adverbs.

7 Conclusion

I have shown that a linguistically appealing model
of adjunction based on a pairing of category and
adjunction features is SL over MG dependency
trees, inclusive of formal challenges such as recur-
sive adjunction and adjunct ordering restrictions.
Selection and adjunction can be combined into a
single SL daughter string language, and beyond
this, certain variants such as low manner adverb
attachment and the distinction between left and
right adjuncts may be accommodated.

Overall, these results support the classification
of adjunction as a local phenomenon. If it is
determined that the interspersing of ordered and
unordered adjuncts in the dependency tree cannot be
avoided, then the combined complexity of selection
and adjunction increases to SL-2[MTSL-k]. Now
that most major syntactic operations (selection,
adjunction, movement, case, agreement, binding)
have been studied in isolation, the next step is to
determine to what extent the interactions between
them can be handled within the bounds of the
(M)TSL tree languages.

Acknowledgments

This work was partly supported by the Institute for
Advanced Computational Science at Stony Brook
University. My thanks to Thomas Graf and three
anonymous reviewers for their detailed feedback on
earlier versions of this paper.

References

Rolf Backofen, James Rogers, and K. Vijay-Shanker.
1995. A first-order axiomatization of the theory
of finite trees. Journal of Logic, Language and
Information, 4(1):5-39.

Noam Chomsky. 2004. Beyond explanatory adequacy.
In Adriana Belletti, editor, Structures and Beyond,
pages 104-131. Oxford University Press, New York,
NY.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent
Jacquemard, Denis Lugiez, Christof Loding, Sophie
Tison, and Marc Tommasi. 2008. Tree automata
techniques and applications. Online.

Aniello De Santo and Thomas Graf. 2019. Structure
sensitive tier projection: Applications and formal
properties. In Formal Grammar: 24th International
Conference, pages 35-50, Riga, Latvia.

Thomas Ernst. 1994. M-command and precedence.
Linguistic Inquiry, 25(2):327-335.

Meaghan Fowlie. 2013. Order and optionality: Mini-
malist Grammars with adjunction. In Proceedings of
the 13th Meeting on the Mathematics of Language
(MoL 13), pages 12-20, Sofia, Bulgaria.

Werner Frey and Hans-Martin Girtner. 2002. On the
treatment of scrambling and adjunction in minimalist
grammars. In Proceedings of Formal Grammar 2002,
pages 41-52, Trento, Italy.

Thomas Graf. 2014. Models of adjunction in minimalist
grammars. In Formal Grammar: 19th International
Conference, pages 52—68, Tiibingen, Germany.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS 53,
pages 117-136, Chicago, IL.

Thomas Graf. 2022a. Subregular linguistics: bridging
theoretical linguistics and formal grammar. Theoreti-
cal Linguistics, 48(3—4):145-184.

Thomas Graf. 2022b. Typological implications of tier-
based strictly local movement. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2022,
pages 184—193, Online.

Thomas Graf and Kalina Kostyszyn. 2021. Multiple
wh-movement is not special: The subregular com-
plexity of persistent features in Minimalist Grammars.
In Proceedings of the Society for Computation in
Linguistics (SCiL) 2021, pages 275-285, Online.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SSIGMORPHON 2018, pages 151—
160, Brussels.

Thomas Graf and Nazila Shafiei. 2019. C-command de-
pendencies as TSL string constraints. In Proceedings
of the Society for Computation in Linguistics (SCiL)
2019, pages 205-215, New York, NY.

142

Kenneth Hanson. 2023a. Strict locality in syntax. In
Proceedings of CLS 59, pages 131-145, Chicago, IL.

Kenneth Hanson. 2023b. A TSL analysis of Japanese
case. In Proceedings of the Society for Computation
in Linguistics (SCiL) 2023, pages 15-24, Amherst,
MA.

Kenneth Hanson. 2025. Tier-based strict locality and
the typology of agreement. To appear in Journal of
Language Modelling.

Jeffrey Heinz. 2018. The computational nature of phono-
logical generalizations. In Larry M. Hyman and Frans
Plank, editors, Phonological Typology, pages 126—
195. De Gruyter Mouton.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 58—64, Portland, OR.

Gregory M. Kobele. 2012. Eliding the derivation: A
minimalist formalization of ellipsis. In Proceedings
of the 19th International Conference on Head-Driven
Phrase Structure Grammar, Chungnam National Uni-
versity Daejeon.

Dakotah Lambert and James Rogers. 2020. Tier-based
strictly local stringsets: Perspectives from model
and automata theory. In Proceedings of the Society
for Computation in Linguistics (SCiL) 2020, pages
159-166, New Orleans, LA.

Connor Mayer and Travis Major. 2018. A challenge for
tier-based strict locality from uyghur backness har-
mony. In Formal Grammar 2018: 23rd International
Conference, pages 62-83, Sofia, Bulgaria.

Andrew Mclnnerney. 2022. The Argument/Adjunct
Distinction and the Structure of Prepositional Phrases.
Ph.D. thesis, University of Michigan, Ann Arbor, MI.

David Pesetsky. 1996. Zero syntax: Experiencers and
cascades. MIT Press, Cambridge, MA.

James Rogers. 1997. Strict LT, : Regular :: Local :
Recognizable. In Logical Aspects of Computational
Linguistics: First International Conference, LACL
"96 (Selected Papers), pages 366385, Nancy, France.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar: 17th and 18th International Conferences,
pages 90-108.

Nazila Shafiei and Thomas Graf. 2020. The subregular
complexity of syntactic islands. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2020,
pages 421-430, New Orleans, LA.

Edward P. Stabler. 1997. Derivational minimalism.
In Logical Aspects of Computational Linguistics:
First International Conference, LACL 96 (Selected
Papers), pages 68-95, Nancy, France.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
handbook of linguistic Minimalism, pages 617—643.
Oxford University Press, Oxford, UK.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 267-276, New York,
NY.

A Additional adjunction grammars

Section 6 provided examples of daughter string lan-
guages for several hypothetical adjunction patterns,
not all of which are SL. Very briefly, a TSL lan-
guage is one in which certain elements are ignored,
forming a tier projection. Which elements appear
on the tier is determined completely by their labels,
and those that do are treated as if adjacent, subject
to a SL grammar. See Heinz et al. (2011); Lambert
and Rogers (2020) for details. An MTSL grammar
is just the intersection of several TSL grammars
(De Santo and Graf, 2019).

A.1 Ordered and unordered adjuncts

First, the hypothetical language from 6.1, which
freely intersperses ordered AP adjuncts and un-
ordered PP adjuncts, is repeated below. The con-
straints of the grammars are unchanged from our
earlier SL grammars. The only difference is that tier
projection is used to ignore adjuncts of the opposite
type. For simplicity, I use mnemonic labels rather
than MG feature specifications.

(26) Ordered APs and unordered PPs (MTSL-2)
a. Language:
P*-A}-P*-AY-P*- A% P*
b. AP adjunction grammar (TSL-2)
T ={Ay, Ay, A3}
XX, XA, XAy, XA3,

Gt A1Ar, ArAj,
A1A1, A2Ay, A3As3,
A1X, A, AsX
c. PP adjunction grammar (TSL-2)
T ={P}

G*= {xx,xP, PP, Px}

A.2 Unordered adjunction everywhere

If unordered adjuncts can be freely interspersed
with arguments, the result is MTSL, similar to
free mixing of ordered and unordered adjuncts. In
Section 6.2, I predicted that this should not occur.

(27) Unordered adjunction + selection (MTSL-3)
a. Language:
P*-D-P*-D-P*
b. Selection grammar (TSL-3)
T ={D}
G*= {xxD,xDD,DDx, Dxx}
c. Adjunction grammar (TSL-2)
T ={pP}
G*= {xx,xP, PP, PXx}

A.3 Low adjunction

The proposed daughter string language and gram-
mar proposed for low manner adverbs as described
in 6.2 is given below. Unlike the previous gram-
mars, this one remains SL.

(28) Low adjunction equivalent of devour (SL-3)
a. Language:
D-D-Adv*
b. Grammar:
XxD, xDD, DDxX,
Dxx, D D Adv, D AdvAdy,
AdvAdvAdv, D Adv X,
AdvAdyv x, Adv X X

G* =

This could be further generalized to allow differ-
ent types of adjuncts in different positions as long
as they can be distinguished from one another, as
shown below.

A.4 Left and right adjuncts

Inoted in 6.3 that a grammar with left adjuncts at
the beginning and right adjuncts at the end would
be SL, as long as distinct indices are used. In this
case, we can safely allow ordered adverbs on the
left and unordered adverbs and PPs on the right.
For simplicity, I assume a single index R for
right adjuncts, and I do not pad the 2-factors to
3-factors as is technically required (such a factor
should be interpreted as standing in for any 3-factor
that contains it as a substring). Effectively, we
combine the grammars from (9) and (28).

(29) Left and right adjunction (SL-3)
a. Language:
Advy-Adv; - Adv;-D-D - Advy
b. Grammar:

XX, XA, XAy, XAj3,
A1Az, ArAs,
A1Ay, ArAr, A3As,
A1D, A,D, A3D,
XXD, xDD, DDX, DXKX,
DAR,ARAR,ARD(

