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Abstract
When considering the acquisition of un-
derlying representations (URs), two com-
mon challenges are often levied against
the inclusion of abstract URs in phonolog-
ical theory: (1) permitting abstract URs
causes the search space of potential URs
to grow to a computationally intractable
degree, and (2) learners have no recourse
through which to prefer minimally ab-
stract URs over increasingly abstract alter-
natives when both types of URs model the
data with equal success. This paper di-
rectly addresses the second issue by imple-
menting aMaxEnt learner equipped with a
bias that penalizes disparities between UR
inputs and their corresponding outputs.
By favoring mappings with minimal diver-
gence, the bias generates a preference for
minimally abstract URs when competing
candidates perform equally well in model-
ing the data. In addition, the paper pro-
poses a conceptual framework for address-
ing the first issue, in which the space of
potential URs is organized so that candi-
dates are considered serially, beginning
with those that exhibit the fewest dispar-
ities. This method offers a potential strat-
egy for avoiding the added compute time
introduced by permitting UR abstraction.

1 Introduction
A subject of significant debate since the ad-
vent of generative phonology concerns the
level of abstraction that underlying represen-
tations (URs) are permitted to assume (Ken-
stowicz and Kisseberth, 1979). Classic gener-
ative phonology holds the rather strong posi-
tion that a UR can be completely covert in rela-
tion to all of its allomorphs, never showing its
true identity in surface forms. However, from
a learning perspective, permitting this level of
abstraction poses serious challenges. One of

the most compelling objections is that covert
URs render the learning problem intractable.
Two key difficulties arise. First, the space of
potential URs that a learner must consider be-
comes prohibitively large. When highly ab-
stract URs are allowed, the search space ex-
pands dramatically, exceeding what can feasi-
bly be explored in its entirety by a learner (Al-
bright, 2002; Jarosz, 2015, 2019; Wang and
Hayes, 2025).
Most models attempt to solve this issue by

curtailing the level of abstraction URs can
take, in essence shrinking the search space to
a manageable size. For instance, Wang and
Hayes (2025) constrain the search space by
restricting the abstractness of candidate URs
using a hierarchy of representational abstrac-
tion defined in Kenstowicz and Kisseberth
(1977, ch.1). Themodel is impressive and suc-
cessfully accounts for analyses at various lev-
els of abstraction, but it fails to account for
datasets requiring covert URs, like the Pun-
jabi nasality pattern considered in this paper.
The second issue that arises when learning

covert URs is that the learner has no means
through which to prefer a less abstract UR
over a highly abstract UR if both representa-
tions succeed in modeling the data. One par-
ticularly promising approach aimed at allevi-
ating this computational burden is outlined in
O'Hara (2017) with the use of a Maximum
Entropy (MaxEnt) grammar called MaxLex.
O'Hara provides compelling evidence from
Klamath showing that a stem-final [i]-[ø] al-
ternation in words like [ʔeːw-a] 'is deep' ∼
[ʔeːwitkʰ] 'deep' cannot be captured by either
epenthesis or deletion but instead requires a
covert UR, /e/, that deletes when not in the
initial syllable, unless deletion would produce
an illicit consonant cluster, in which case /e/
is raised to [i]. Importantly, /e/ is covert in
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the stem-final position of stems like /ʔeːwe/
because it never surfaces in any allomorph.
Moreover, O'Hara demonstrates that MaxLex
has an emergent preference for minimally ab-
stract URs, driven by an L2 Gaussian Prior
that attempts to minimize increases in the
weights of faithfulness constraints.
In this paper, I primarily address how the

learner might come to prefer minimal UR ab-
straction. I first show that MaxLex fails to
prefer minimally abstract URs over increas-
ingly abstract alternatives for a set of non-
alternating pre-nasal vowels in Pakistani Pun-
jabi (Paramore, 2023). This failure arises be-
cause both the minimally abstract UR and
more abstract alternatives provide equally ac-
curate accounts of the data and require identi-
cal changes in faithfulness constraint weights
to do so. As a solution, I propose an updated
MaxLex learner equipped with a disparity bias
that penalizes changes in UR→SR mappings.
The effect of this bias is that, if two URs model
a set of data equally well and do not differ in
the minimization of the MaxLex L2 prior, the
learner selects the UR that generates the min-
imum number of disparities. In addition to
creating a preference for minimal UR abstrac-
tion, this disparity bias has potential to pro-
vide a mechanism through which the learner
can efficiently search the space of potential
URs without needing to stipulate its contents,
as discussed in section 6.

2 MaxLex
The basic learning procedure taken by
MaxLex is similar to other MaxEnt learning
models (e.g. Hayes and Wilson, 2008; Pater
et al., 2012; Wang and Hayes, 2025). Two
general stages characterize the process. In
the first stage, the learner is oblivious to mor-
phological alternations and paradigmatic re-
lations, and, as a consequence, the identity
of underlying forms and mappings from those
underlying forms to surface realizations is not
considered. Instead, the learner has been
confronted with a wealth of linguistic data
and focuses on acquiring fluency in language-
specific phonotactics, an aspect of the gram-
mar that remains unchanged regardless of
what the underlying forms turn out to be.
In computational terms, at the outset of

the phonotactic stage, MaxLex is fed a batch
of data, a set of constraints with intermedi-
ate weights (e.g., 50), and the parameters
for what constitutes a violation. Equipped
with this information, the learner uses gradi-
ent descent optimization to minimize an ob-
jective function (in this case, the negative log-
likelihood of the data) by adjusting the con-
straint weights appropriately until it arrives
at the minimum possible value. A grammar
with a 100% probability of producing the ob-
served data will have an objective function
value of zero, but a grammar with only a 50%
probability of producing the observed data
will result in a much higher objective function
value.
In the second stage of learning, MaxLex

becomes morphologically aware, understand-
ing that words are constructed from mor-
phemes, and those morphemes sometimes
appear in phonologically distinct ways, de-
pending on the context. For instance, dur-
ing the phonotactic stage, the learner ignores
the morphological relationship between the
Punjabi words [sɑɑ] 'breath' and [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃]
'breaths', focusing only on phonotactic well-
formedness. In the morphologically aware
stage, however, the learner has discovered
that the same morpheme for 'breath' occurs
in both words and seeks to assign a single UR
that can map to both of the observed forms.
As such, the learner is confronted with a more
complex learning problem in which it must
work to determine what combination of con-
straint weights and underlying form probabili-
ties maximizes the likelihood of observing the
data to which it has been exposed (Jarosz,
2006a,b).
A crucial aspect of the morphologically

aware learning stage that MaxLex capitalizes
on is the way in which abstraction is miti-
gated in the choice of potential URs. Specif-
ically, the objective function in MaxLex is
constructed from the negative log-likelihood
of the data plus the value of an L2 Gaus-
sian Prior that prefers to use constraints ac-
tive elsewhere in the grammar to account for
abstract phonological patterns rather than al-
tering the weight of novel constraints to ac-
complish the same task.1 The negative log-

1Both Pater et al. (2012, p.66) and Wang and Hayes
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likelihood (NLL) of a dataset, given in equa-
tion 1, is calculated by determining the combi-
nation of constraint weight (w) and UR proba-
bility (π) values that maximize the likelihood
(thereby minimizing the NLL) of observing a
set of observed words (Oi - On).

NLL = − ln

[
n∏

i=1

(P[Oi | (w, π)])
]

(1)

To increase grammar restrictivity, the L2
Gaussian prior shown in equation 2 inherently
favors markedness constraints with maximum
weights of 100 and faithfulness constraints
with minimum weights of zero. This bias is
implemented by taking the squared difference
of actual weight values (wi) from their ideal
weight (ci).2 If, however, the language data
confronted by the learner indicates that dif-
ferent constraint weights would improve the
success of the grammar in modeling the data
(i.e., sufficiently lowering the NLL), these bi-
ases can be overcome. Thus, if a faithful-
ness constraint is given a non-zero weight to
model some phonotactic pattern in the first
stage of language learning, that same con-
straint will be preferred over a novel con-
straint with a zero weight to model another
pattern concerning underlying forms, assum-
ing both constraints can account for the ob-
served data equally well. This preference to
use the already-active faithfulness constraint
falls out from the fact that the MaxLex prior
seeks to minimize deviations in constraint
weights from their optimal values. Because
of this, O'Hara argues that a segment's UR is
naturally restricted in its potential for abstrac-
tion by this bias.

OLex(w, π) = NLL +
∑

wi∈w

(wi − ci)
2

σ2
i︸ ︷︷ ︸

L2 Gaussian Prior

(2)

The success of MaxLex in learning covert
URs is demonstrated by examining a stem-
final [i]∼[ø] alternation in a set of Klamath
(2025, p.17, 34-35) incorporate similar biases favoring
markedness constraints over faithfulness constraints.

2ci is set to 100 for markedness constraints and zero
for faithfulness constraints. O’Hara (2017) uses σ2

i as a
plasticity constant (which he sets at 20 for markedness
constraints and 25 for faithfulness constraints) to mod-
ulate how much deviations from ideal weights impact
the value of the objective function.

verbs, which, as O'Hara (2017) shows, capital-
izes on a faithfulness constraint that is active
in another area of the grammar to account for
the alternation. As O'Hara delineates in de-
tail in his computational proof, Maxlex takes
advantage of these faithfulness constraint
weight differences when deciding upon the
optimal covert UR. However, that same learn-
ing process used to constrain UR abstraction
in the Klamath [i]∼[ø] alternation is unavail-
able for the URs of non-alternating pre-N vow-
els in Punjabi.

3 Pakistani Punjabi

Pakistani Punjabi is an Indo-Aryan language
spoken by about 78 million people, primar-
ily in the Punjab province of Pakistan (Bashir
and Conners, 2019). Long vowels in Punjabi
contrast in nasality, but this contrast is neu-
tralized before nasal consonants (e.g., [tɑɑ]
'warmth' vs. [tɑ̃ɑ̃] 'that' but [tɑ̃ɑ̃n] 'melody' vs.
*[tɑɑn]). Additionally, Punjabi exhibits a pro-
cess of nasal harmony, in which contrastive
/ṼṼ/ vowels trigger the leftward spread of
nasalization, with glides and vowels partici-
pating and other consonants acting as block-
ers, as shown in Table 1i. Pre-N vowels, on
the other hand, surface as categorically nasal-
ized and phonetically identical to contrastive
/ṼṼ/ vowels, but they do not trigger nasal
harmony (Table 1ii) (Paramore, 2023).
To account for the phonetic indistinguisha-

bility of /VVN/ and contrastive /ṼṼ/ vowels
in terms of their nasality coupled with the
fact that only contrastive /ṼṼ/ vowels trig-
ger nasal harmony in Punjabi, /VVN/ vow-
els must be analyzed as underlyingly [-nas]
without ever surfacing as such. In this view,
the nasal harmony pattern in Punjabi serves
as a straightforward example of counterfeed-
ing opacity, in which underlyingly oral pre-N
vowels undergo a predictable process of nasal-
ization. Nevertheless, only underlying /ṼṼ/
vowels trigger nasal harmony. Harmony in
Punjabi is thus sensitive to whether a vowel
is underlyingly oral or nasal – even for vow-
els that are always phonetically nasal. This
implies that /VVN/ vowels have abstract oral
URs that are consistently distinct from their
phonetic forms.
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i. /sɑɑ-ʋɑ̃ɑ̃/ → [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'breath-PL'
ii. /tɑɑʋɑɑn/ → [tɑɑʋɑ̃ɑ̃n] 'penalty'

Table 1: Nasal Harmony in Punjabi.

i. [sɑɑ] 'breath' ii. [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'breaths'
iii. [ʊʃɑɑ] 'morning' iv. [ʊʃɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'mornings'
v. [gɑ̃ɑ̃] 'cow' vi. [gɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'cows'

vii. [tʃʰɑ̃ɑ̃] 'shade' viii. [tʃʰɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'shades'
ix. [tɑɑʋɑ̃ɑ̃n] 'penalty' x. [prəʋɑ̃ɑ̃n] 'accepted'

Table 2: Punjabi surface forms fed to MaxLex

4 MaxLex and Punjabi pre-N vowels
In attempting to learn the opaque nasaliza-
tion patterns in Punjabi, MaxLex begins with
an initial phonotactic learning stage. The ob-
served data fed to the learner is given in Ta-
ble 2. Forms 2i-iv show that underlyingly
oral vowels are nasalized via nasal harmony
when the appropriate suffix is attached (in
this case, the plural marker). The forms in
2v-viii show the learner that a nasality con-
trast exists for vowels; otherwise, the learner
may choose to analyze the vowels in 2i-ii as
underlyingly nasal to explain the nasal har-
mony distinctions found between /VVN/ and
contrastive /ṼṼ/ vowels. Finally, the forms in
2ix-x provide the learner with examples of the
underapplication of nasal harmony for non-
alternating /VVN/ vowels.
Individual Python scripts were developed

for the phonotactic learning stage and mor-
phologically aware learning stage to carry out
the computational optimizations. The con-
straints used in the learner are provided in Ta-
ble 3 with the initial weights set at 50, along
with the weights acquired in the phonotactic
learning stage in the rightmost column. Most
of these constraints are straightforward, but
a few merit further explanation.3 First, as is
well known, the standard parallel evaluation
architecture of MaxEnt learners presents diffi-
culty for the successful acquisition of opaque
processes like nasal harmony in Punjabi (Mc-
Carthy, 2000, 2007). To handle this, I choose
to analyze the nasality patterns using con-
textual faithfulness constraints (Hauser and
Hughto, 2020), but other approaches capable
of handling counterfeeding opacity in a paral-
lel framework are equally viable. At its root,

3See 5 in the appendix for a full set of constraint
definitions.

the contextual faithfulness constraint schema
penalizes changes to a specified feature for
a segment that occurs in a specified context
in the input. The contextual faithfulness con-
straint relevant to the Punjabi nasalization
data, ID[nas]/_V, penalizes changes in nasal-
ity to a segment occurring before a vowel that
is oral in the input. When high-ranked, this
constraint precludes underlying oral vowels
− as /VVN/ vowels are proposed to be here −
from continuing the transmission of nasal har-
mony to its immediately preceding segment.
Another important note is the inclusion of

ID[rd] and *LOWRD in the constraint set. For
reasons that will become clearer when dis-
cussing the updated learning algorithm in sec-
tion 5, I provide the learner with two po-
tential covert URs to choose between. The
restrictedly abstract and intuitively most ap-
pealing covert UR for a /VVN/ vowel like
[ɑ̃ɑ̃] in [tɑɑʋɑ̃ɑ̃n] is /ɑɑ/. /ɑɑ/ possesses an
identical feature set to [ɑ̃ɑ̃] except for one
disparity: nasality. Because nasality is the
key underlying feature that results in distinct
harmony patterns for /VVN/ and contrastive
/ṼṼ/ vowels, it makes sense for nasality to
be the only feature that changes between the
UR and SR of /VVN/ vowels. With that said,
MaxLex does not contain an inherent mech-
anism to act upon this sensible conclusion.
Instead, the learner is free to choose any
covert UR that models the data and minimizes
changes in constraint weights from their bi-
ases, regardless of whether there are one or
fifty feature disparities in the UR→SR map-
ping.
To focus on the learner's preference for min-

imally abstract URs, I provide MaxLex with
one additional potential covert UR, /ɒɒ/. Just
like its unrounded counterpart /ɑɑ/, the low
round back vowel /ɒɒ/ is quite similar to
its corresponding SR, [ɑ̃ɑ̃], except it contains
two disparities rather than one: nasality and
roundedness. Importantly, any increasingly
abstract UR (e.g., diacritics) would suffice in
the following discussion, but /ɒɒ/ is an espe-
cially good candidate because it is more ab-
stract than /ɑɑ/ (/ɒɒ/ never surfaces in Pun-
jabi and has more disparities in the input-
output mapping) but only minimally so. Thus,
/ɒɒ/ serves as a stand-in for any overly ab-
stract covert UR that needs to be ruled out,
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Constraint Type initial w final w
ID[nas] faith. 50.00 51.37

IDFIN[nas] faith. 50.00 44.83
SPRD-L[nas] mark. 50.00 92.83
*NASOBS mark. 50.00 100.00
*NASG mark. 50.00 99.48

ID[nas]/_V contfaith. 50.00 100.00
*VVN mark. 50.00 100.00
ID[rd] faith. 50.00 0.00

*LOWRD mark. 50.00 100.00

Table 3: Constraint weights after phonotactic
learning with MaxLex.

and if /ɒɒ/ is ruled out, potential URs with
greater disparities will also be ruled out.4
The weights acquired in the phonotactic

learning stage of MaxLex demonstrate three
phonotactic restrictions in Punjabi that must
hold regardless of the particular UR chosen
for /VVN/ vowels. First, low round vowels
never surface in Punjabi, so *LOWRD is un-
dominated and ID[rd] is inactive and set to
zero. As shown in (1), this weighting relation-
ship appropriately unrounds all inputs con-
taining /ɒɒ/ with a probability of 1.0.
(1) Low Round vowels never surface

/sɒɒ/ *LOWRD
100.00

ID[rd]
0.00 H P̃

a. + sɑɑ -1 0 1.0

b. sɒɒ -1 -100 4e−44

Another phonotactic restriction MaxLex ac-
quires is the absolute ban on nasal obstruents
in Punjabi. To accomplish this, *NASOBSmust
outweigh SPRD-L, as in (2).

(2) Obstruents never nasalized
/sɑɑʋɑ̃ɑ̃/ *NASOBS

100.00
SPRD-L
92.83 H P̃

a. + sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃ -1 -92.83 0.999

b. sɑ̃̃ɑ̃ʋ̃ɑ̃ɑ̃ -1 -100 8e−4

Finally, in order for /VVN/ vowels to sur-
face consistently as nasal vowels, either *VVN
or SPRD-L must outweigh ID[nas]. In fact,
both constraints end up outweighing ID[nas],

4Note that a covert UR like the nasalized low back
round vowel /ɒ̃ɒ̃/ only has a single disparity in its map-
ping to [ɑ̃ɑ̃] (roundedness), so it would tie /ɑɑ/ in its
performance on the disparity component of the objec-
tive function. However, just like the concrete UR /ɑ̃ɑ̃/
fails to model the lack of harmony triggered by /VVN/
vowels in Punjabi, any other nasal vowel would run into
the same issue.

Constraint Type initial w final w
ID[nas] faith. 51.37 3.36

IDFIN[nas] faith. 44.83 99.96
SPRD-L mark. 92.83 5.65

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.19

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑ̃ɑ̃n/ 1.0

Table 4: Constraint weights and UR probabilities
with concrete URs only

resulting in /VVN/ vowels always surfacing
as nasal, as in (3).

(3) /VVN/ vowels always nasalized
/siin/ *VVN

100.00
ID[nas]
51.37

SPRD-L
92.83 H P̃

a. + sĩĩn -1 -1 -144.2 1.0
b. siin -1 -2 -285.66 3e−62

Once the morphologically aware learning
stage begins, MaxLex recognizes that surface
alternations such as [sɑɑ] and [sɑ̃ɑ̃] belong
to the same underlying morpheme. We will
first consider the use of concrete URs to
model the data. For our purposes, the im-
portant morphemes are those containing non-
alternating pre-N vowels like [tɑɑʋɑ̃ɑ̃n]. Be-
cause [tɑɑʋɑ̃ɑ̃n] only exhibits a single surface
form, only one concrete UR is available to
MaxLex, and using it prevents MaxLex from
accurately modeling the data. The results for
constraint weights and UR probabilities with
only concrete URs are given in Table 4. Again,
because [tɑɑʋɑ̃ɑ̃n] does not exhibit morpho-
logical alternations, there is only one poten-
tial UR, and it receives all of the probability
as the correct UR for modeling the data.
However, using only concrete URs results in

the model's inability to successfully learn the
appropriate constraint weights and an almost
zero probability of learning the correct nasal-
ization pattern of forms with /VVN/ vowels.
This is exemplified by the tableau in (4). Be-
cause the URs for both /VVN/ and contrastive
/ṼṼ/ vowels are identical, MaxLex cannot
correctly learn the pattern. When presented
with /tɑɑʋɑ̃ɑ̃n/, the learner incorrectly as-
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signs almost all the probability to the candi-
date that exhibits nasal harmony.

(4) Failure of Concrete URs to model Pun-
jabi nasalization

/tɑɑʋɑ̃ɑ̃n/ *VVN
100.00

SPRD-L
5.65

*NASG
0.19

ID[nas]
3.36 H P̃

a. tɑɑʋɑ̃ɑ̃n -3 -16.95 0.012

b. tɑɑʋɑɑn -1 -4 -1 -125.96 6e−50

c. tɑ̃ɑ̃ʋ̃ɑ̃ɑ̃n -1 -1 -2 -12.56 0.988

Up to this point, the learning process
has followed the same general pattern as
the Klamath [i]-[ø] alternation discussed in
O'Hara (2017). The phonotactic patterns
were learned, and using a concrete UR for
/VVN/ vowels resulted in a failure to accu-
rately predict the observed data. Now, just as
for Klamath, MaxLex is provided two covert
URs to consider when modeling the data. The
results of the morphologically aware learning
stage with /ɑ̃ɑ̃/, /ɑɑ/, and /ɒɒ/ included as
potential URs are provided in Table 5. Here,
the final constraint weights are quite simi-
lar to the weights when concrete URs were
the only potential option, but the inclusion
of the covert representations as potential URs
for forms with /VVN/ vowels allows MaxLex
to accurately model the data, with a .98 to-
tal probability of observing the correct sur-
face forms for all words fed to the learner.
However, while MaxLex is successful in mod-
eling the data with the inclusion of these
two covert URs, it is unsuccessful in discrim-
inating between them, instead assigning an
equal 0.5 probability to both covert URs. In
other words, the MaxLex prior cannot distin-
guish between a restrictedly abstract UR like
/ɑɑ/ and an unnecessarily abstract UR like
/ɒɒ/. The reason for this is that changes
in constraint weights from the phonotactic
to the morphologically-aware learning stage
are identical regardless of which covert UR is
used. To permit the nasal harmony pattern in
forms with contrastive /ṼṼ/ vowels, ID[nas]
and *NASG need to lower so that their com-
bined sum is less than SPRD-L. This change
holds regardless of whether the UR for the
/VVN/ vowel in [tɑɑʋɑ̃ɑ̃n] is /ɑɑ/ or /ɒɒ/.
Additionally, ID[rd] − the faithfulness con-
straint associated with the increasingly ab-
stract UR, /ɒɒ/− remains at zero without any
pressure to increase. This is because no al-

Constraints Type initial w final w
ID[nas] faith. 51.37 0.07

IDFIN[nas] faith. 44.83 100.00
SPRD-L mark. 92.83 5.42

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.02

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑɑn/ 0.5
/tɑɑʋɒɒn/ 0.5
/tɑɑʋɑ̃ɑ̃n/ 0.0

Table 5: Constraint weights and UR probabilities
with abstract URs included

ternation exists for /VVN/ vowels, so faithful-
ness constraints are not driving their surface
realization. In cases like Punjabi, then, when
an alternation does not exist but a covert UR
is still needed, the MaxLex prior fails to re-
strict abstraction because minimally abstract
URs like /ɑɑ/ and increasingly abstract URs
like /ɒɒ/ do not rely on distinct constraint
weights to accurately model the data.
5 Learning via Disparity

Minimization
In this section, I propose an update to the
MaxLex learner that generates a preference
for minimally abstract URs over increasingly
abstract alternatives, even when the mini-
mally abstract UR does not outperform the in-
creasingly abstract UR in either its accuracy in
modeling the data or its deviation from a prior
on constraint weights. Specifically, if the dis-
parity component in equation (3) is added to
the objective function, assigning probability
to URs that introduce disparities increases the
loss. Consequently, abstraction will only be
preferred if doing so sufficiently increases the
likelihood of observing the data.

D(IOj) =

kj∑

i=1


1{sIij⊕sOij=∅} +

∑

f∈F
1{sIfij ̸=sOfij}



2

(3)
As shown in the equation, the disparity

value for the jth input-output mapping is com-
puted by summing squared segment-level dis-
parity terms across all kj aligned segments.
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Each term within the summation compares
the ith input segment (sIij) with the corre-
sponding output segment (sOij). Two indica-
tor functions contribute to segment-level dis-
parities: the first returns 1 if exactly one of
the two segments is null (i.e., an insertion
or deletion has occurred); the second iterates
over all features f in the feature set F , re-
turning 1 whenever the corresponding input-
output segments differ on that feature. When
either sIij or sOij are null, the second term con-
tributes 0 vacuously, since the null segment
has no features over which to compare. In
effect, incentivizing the minimization of the
disparity bias encourages the learner to ac-
quire input-output mappings with as few dif-
ferences as possible between corresponding
segments. Squaring segment-level disparities
before aggregating them results in a quadratic
increase of the disparity bias as the number
of disparities for a given segment increases,
thereby enacting harsher penalties for under-
lying segments that are increasingly divorced
from their realization.
The inclusion of a disparity bias in the

learner is motivated by both theoretical as-
sumptions and empirical observations about
how underlying representations are selected.
From a modeling perspective, the updated
learner satisfies Occam’s Razor: among com-
peting hypotheses that account equally well
for the data, the disparity bias favors the
simplest one. In the context of UR selec-
tion, increasingly abstract URs introduce addi-
tional complexity by requiring more transfor-
mations between the underlying and surface
forms. In the absence of independent moti-
vation, positing such abstract forms results in
unnecessary representational complexity.
Indeed, linguists often assume that URs re-

flect SRs faithfully unless motivated other-
wise (Kiparsky, 1982; Baković et al., 2022).
This assumption is formalized in Tesar
(2014, p.1) through the principle of surface-
orientedness, whereby “disparities between
input and output are introduced only to
the extent necessary” to satisfy indepen-
dent grammatical restrictions. Similarly,
Prince and Smolensky (1993/2004, p.225–
226) propose the Lexicon Optimization Prin-
ciple, which holds that learners should select

URs that result in the most harmonic output,
minimizing violations unless a more abstract
UR yields a demonstrable advantage. Finally,
empirical evidence supports the notion that
language learners disprefer abstract URs. As
shown by Kiparsky (1973), covert URs are of-
ten reanalyzed over time as surface-true by
successive generations of learners, suggesting
a robust bias in favor of minimizing dispari-
ties.
What follows demonstrates the computa-

tional success of incorporating the disparity
bias into the MaxLex learner. The procedure
begins in the same way as MaxLex, with an
initial stage of phonotactic learning followed
by a morphologically-aware learning stage.
Here, as in the previous section, the algorithm
is provided with two potential covert URs to
consider, /ɑɑ/ and /ɒɒ/. Importantly, these
are the only two URs that need to be con-
sidered under the present analysis to demon-
strate that the model prefers minimal abstrac-
tion. That is, if /ɒɒ/ can be ruled out by
the disparity bias, any other covert UR with
a superset of the disparities of /ɑɑ/ can also
be ruled out. In this case, the UR of /VVN/
vowels must be oral to appropriately model
the data, and /ɑɑ/ only differs from the sur-
face form [ɑ̃ɑ̃] in its nasality value. As such,
any other potential UR that could effectively
model the observed Punjabi forms with a suf-
ficiently high likelihood necessarily possesses
a superset of the disparities of /ɑɑ/ and will,
therefore, be dispreferred by the disparity
bias.
The results of the simulation with the up-

dated learner are provided in Table 6. The
weights the learner arrives at are almost iden-
tical to the weights learned by the original
MaxLex learner. The key difference here
is the probability given to the three poten-
tial URs considered for [tɑɑʋɑ̃ɑ̃n]. Whereas
MaxLex assigned equal probability to both
covert URs because they model the grammar
equally well and minimize the prior to the
same degree, the updated learner assigns es-
sentially all of the probability to the mini-
mally abstract covert UR, /tɑɑʋɑɑn/.
In sum, O'Hara (2017) demonstrated that

MaxLex effectively constrains UR abstrac-
tion in cases where surface alternations are
present and potential covert URs do not dif-
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Constraints Type initial w final w
ID[nas] faith. 51.37 0.00

IDFIN[nas] faith. 44.83 100.00
SPRD-L mark. 92.83 4.61

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.00

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑɑn/ 1.00
/tɑɑʋɒɒn/ 9e−15

/tɑɑʋɑ̃ɑ̃n/ 2e−15

Table 6: Constraint weights and UR probabilities
with abstract URs and the DISPARITY bias.

fer in their disparity count (as in Klamath).
Incorporating an explicit disparity bias into
MaxLex extends its utility by enabling it to
constrain unnecessary abstraction in forms
that lack alternations but still require a covert
UR for an adequate analysis.
6 Traversing the Search Space
The proposed disparity bias in equation (3) is
intimately connected to output-driven maps
defined in Tesar (2014, 2016). Tesar’s frame-
work shows how disparities between underly-
ing and surface forms can be used to organize
the space of potential URs in a way that allows
the learner to search efficiently and avoid un-
necessary computations.
Output-driven phonology imposes entail-

ment relationships on UR-SR mappings based
on their disparity profiles. If a UR maps to
a given surface form with n disparities, then
any UR that maps to that same surface form
with a proper subset of those n disparities
must also be grammatical. For instance, if
the mapping /tɑ/ → [tu] is grammatical, then
/to/→ [tu] must also be grammatical because
/to/ → [tu] possesses a proper subset of /tɑ/
→ [tu]’s disparities. However, this relation-
ship does not hold between URs that have
non-nested disparity sets; for example, /ti/
differs from [tu] in two features (e.g., [front],
[round]), but /to/ differs in only one ([high]).
Because the disparities in /ti/ → [tu] are not
a superset of those in /to/ → [tu], no en-
tailment of grammaticality follows between
these mappings.

These entailment relationships allow the
learner to organize the space of potential URs
for a given surface form into a structured lat-
tice (Figure 1), with the fully faithful UR at
the top and increasingly abstract URs further
down. Each node represents a potential UR,
and edges lead to forms lower down in the
lattice that differ by one additional disparity.
If a UR at some level of the lattice fails to gen-
erate the observed SR, then all URs that in-
clude a superset of that UR’s disparities (i.e.,
nodes further down the lattice) can be imme-
diately ruled out. This structure allows the
learner to efficiently eliminate broad swaths
of the search space.
Importantly, the use of output-driven

phonology by Tesar (2014, 2016) to structure
the space of potential URs is primarily nega-
tive: it is designed to rule out more abstract
URs based on the failure of a less abstract UR
− one higher in the lattice − to map success-
fully to the surface form. It does not address
how a learner might efficiently traverse the re-
maining space of successful URs that can gen-
erate the correct SR but differ in the number
of disparities they require. Consider again the
example lattice in Figure 1. If a learner con-
siders /to/ as a potential UR for [tu] and finds
that it is successful in modeling the data, no
mechanism exists to prevent it from also need-
ing to consider /tɑ/, /tɒ/, /tõ/, or any other
potential UR that contains a proper superset
of disparities in its /UR/→[SR] mapping to
[tu].
I propose extending output-driven phonol-

ogy in precisely this direction. A learner
equipped with the disparity bias outlined in
the previous section and a likelihood thresh-
old at which success in modeling the data is
'good enough' can use the lattice structure not
only to eliminate chains of incompatible URs,
but also to stop searching the space once this
likelihood threshold has been reached and fur-
ther levels of abstraction only trivially im-
prove the likelihood of observing the data.
More precisely, the search for the optimal

UR could be conducted serially rather than
initializing UR optimization with the full set
of potential URs in contention simultaneously.
A learner would begin by considering URs
with 0 disparities and then move on to gener-
ate and consider URs with successively more
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tu

to

tɒ

tɑ

tõ

tɯ

tɨ

ti

Figure 1: Example lattice for the output form [tu]
(c.f. Tesar, 2016)

disparities as needed. As a result, the size of
the search space would be irrelevant because
the learner does not need to cover the entire
space (or even most of it) to decide on the op-
timal UR.
In sum, the disparity bias does more than

minimize abstraction: it also provides a
principled way to structure and efficiently
search an otherwise infinite space of poten-
tial URs. By combining the lattice structure
from output-driven phonology with a dispar-
ity bias and principled likelihood threshold of
acceptability, the framework not only curtails
unnecessary abstraction but also offers a com-
putationally efficient method for identifying
the optimal UR.

7 Conclusion
This paper introduced a disparity bias as an
addition to the MaxLex learner from O'Hara
(2017) to improve its preference for min-
imally abstract underlying representations
when multiple URs generate the same sur-
face data with similar likelihood. By penal-
izing input-output disparities, the model fa-
vors URs that more closely resemble their sur-
face realizations, thus curtailing unnecessary
abstraction.
In addition to implementing this disparity

bias, the paper outlined a blueprint for ad-
dressing a second major challenge posed by
abstract URs. Specifically, permitting abstrac-
tion causes the space of potential URs to grow
beyond a size that is computationally fea-
sible to search. Drawing on insights from
output-driven phonology, I proposed organiz-
ing the UR space into a lattice structured by
disparity count and conducting a serial search
through this space. By incorporating a likeli-
hood threshold that defines when a UR ade-

quately models the data, the learner can stop
the search once candidates with additional
disparities fail to meaningfully improve the
likelihood of observing data.
While the paper provided a computational

implementation of the disparity bias, the pro-
posed method for structuring and traversing
the UR space remains conceptual. Future
work is required to develop this proposal com-
putationally. This is a non-trivial task. Al-
though concrete URs can be easily identified,
generating the set of potential URs for the
learner to consider at each increasing dis-
parity level poses a combinatorial challenge.
That is, as the number of disparities grows,
the number of combined ways in which a seg-
ment could be altered to achieve that number
of disparities explodes. The matter only wors-
ens when considering multiple segments in a
UR. Thus, additional work is needed to deter-
mine principled ways to constrain the set of
potential URs at each disparity level consid-
ered by the learner.
A second open question concerns the like-

lihood threshold. Although I suggested a
threshold as a stopping point, future re-
search must investigate how this value can be
grounded empirically. It may be that no sin-
gle threshold is appropriate across a popula-
tion of learners, and that the stopping crite-
rion must be calibrated on a speaker-specific
basis.
In addition, future work should explore

how the disparity bias interacts with the
MaxLex prior introduced in O'Hara (2017).
This paper has shown that the MaxLex prior
alone is insufficient for limiting abstraction in
the case of Punjabi pre-N vowels. However,
the prior remains crucial in cases like Kla-
math, where multiple URs generate the same
surface form with equivalent disparity counts.
Thus, it should be examined whether the dis-
parity component and the MaxLex prior ever
conflict, and if so, how such conflicts would
be resolved in the learning process.
Finally, the disparity bias was implemented

on data from Punjabi, but its application to
phonological patterns from other languages
that require varying degrees of abstraction is
necessary. The cases discussed in Wang and
Hayes (2025) would be an interesting set of
case studies to begin with in this regard.

163



References
Adam C. Albright. 2002. The identification of bases

in morphological paradigms. Ph.D. thesis, UCLA.
Eric Baković, Jeffrey Heinz, and Jonathan Rawski.

2022. Phonological abstraction in the mental lexi-
con. Oxford Academic.

Elena Bashir and Thomas J. Conners. 2019. A
descriptive grammar of Hindko, Panjabi, and
Saraiki. Mouton-CASL Grammar Series. De
Gruyter Mouton.

Ivy Hauser and Coral Hughto. 2020. Analyzing
opacity with contextual faithfulness constraints.
Glossa: a journal of general linguistics, 5(1):1--33.

Bruce Hayes and Colin Wilson. 2008. A maxiu-
mum entropy model of phonotactics and phono-
tactic learning. Linguistic Inquiry, 39(3):379--
440.

Gaja Jarosz. 2006a. Rich lexicons and restrictive
grammars - Maximum likelihood learning in Opti-
mality Theory. Ph.D. thesis, Johns Hopkins Uni-
versity.

Gaja Jarosz. 2006b. Richness of the base and
probabilistic unsupervised learning in Optimal-
ity Theory. In Proceedings of the Eighth Meet-
ing of the ACL SPecial Interest Group on Computa-
tional Phonology, pages 50--59.

Gaja Jarosz. 2015. Expectation driven learn-
ing of phonology. University of Massachusetts
manuscript.

Gaja Jarosz. 2019. Computational modeling of
phonological learning. Annual Review of Linguis-
tics, 5:67--90.

Michael Kenstowicz and Charles Kisseberth. 1977.
Topics in Phonological Theory. Academic Press.

Michael Kenstowicz and Charles Kisseberth. 1979.
Generative phonology: description and theory.
New York: Academic Press.

Paul Kiparsky. 1973. Abstractness, opacity, and
global rules, pages 57--86. Tokyo: TEC.

Paul Kiparsky. 1982. How abstract is phonology?,
chapter 6. Foris Publications.

John J. McCarthy. 2000. Harmonic serialism and
parallelism. In Proceedings of the 30th meeting of
the North East Linguistic Society, pages 501--524.

John J. McCarthy. 2007. Hidden Generaliza-
tions: Phonological Opacity in Optimality Theory.
Sheffield: Equinox.

Charlie O'Hara. 2017. How abstract is more ab-
stract? learning abstract underlying representa-
tions. Phonology, 34:325--345.

Jonathan Charles Paramore. 2023. Covert URs:
evidence from Pakistani Punjabi (talk). In
Formal Approaches to South Asian Languages
(FASAL) 14.

Joe Pater, Robert Staubs, Karen Jesney, and Brian
Smith. 2012. Learning probabilities over un-
derlying representations. In Proceedings of the
Twelfth Meeting of the Special Interest Group on
Computational Morphology and Phonology, pages
62--71.

Alan Prince and Paul Smolensky. 1993/2004. Op-
timality Theory: constraint interaction in Genera-
tive grammar. Malden, Mass: Blackwell Publish-
ers.

Bruce Tesar. 2014. Output-Driven Phonology. Cam-
bridge: Cambridge University Press.

Bruce Tesar. 2016. Phonological learning with
output-driven maps. Language Acquisition,
24(2):148--167.

Rachel Walker. 2003. Reinterpreting transparency
in nasal harmony, pages 37--72. Amsterdam:
John Benjamins.

Yang Wang and Bruce Hayes. 2025. Learning
phonological underlying representations: the
role of abstractness. Linguistic Inquiry.

A Appendix
(5) Constraints used in Modeling Punjabi

i. SPRD-L[nas] (cf. Walker, 2003, 47)
For every occurrence of a [+nas] feature
in a prosodic word, if that [+nas] feature
is dominated by some segment, assign a
violation for every segment to the left of
that segment in the prosodic word that
does not dominate the [+nas] feature.

ii. *NASOBS (Walker, 2003, 51)
Assign a violation for every obstruent
that dominates a [+nas] feature.

iii. *NASG (Walker, 2003, 51))
Assign a violation for every glide that
dominates a [+nas] feature.

iv. ID[nas]
For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A.
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v. IDFIN[nas]
For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A in the final syllable of a prosodic word.

vi. *VVN
Assign a violation for every vowel that
dominates a [-nas] feature when directly
preceding a nasal consonant.

vii. ID[nas]/__V
Let A be a segment that occurs before an
oral vowel, __V, in the input. Assign one
violation if the output correspondent of
A does not have the same specifications
for [nas] as A.

viii. ID[rd]
For every segment, A, assign a violation
if the output value for the [rd] feature
dominated by A does not match the input
value for the [rd] feature dominated by
A.

ix. *LOWRD
Assign a violation for every vowel that
dominates a [rd] feature and a [low] fea-
ture simultaneously.
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