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Abstract

We present a method for analysing context-
sensitive word meanings using BERT embed-
dings and Gaussian Mixture Models in the
fields of lexical pragmatics and Conceptual
Engineering. Our methodology generates vi-
sual conceptual landscapes that reveal how
words cluster in different contexts, demon-
strated through a case study examining the term
PLANET. We provide quantitative metrics for
meaning stability and contextual variation, use-
ful for researchers studying lexical pragmat-
ics and meaning change. We also provide an
open-source tool which offers an accessible
interface for generating visualisations and met-
rics, requiring minimal technical expertise. Re-
sults show that even seemingly straightforward
terms exhibit complex meaning landscapes that
resist simple definition, highlighting the impor-
tance of context-sensitive analyses, combining
quantitative metrics and qualitative approaches.
This work bridges theoretical pragmatics and
computational linguistics, offering empirical
grounding for studying how word meanings
shift across contexts.

1 Introduction

Language is a complex, dynamic system, con-
stantly evolving and adapting to the contexts in
which it is used. Words are not static entities but
are deeply embedded in networks of meaning, in-
fluenced by both linguistic and extra-linguistic fac-
tors. This variability in meaning has long been of
interest to linguists, especially in the context of
polysemy, the phenomenon of words having multi-
ple related senses (e.g. paper as a physical object
vs. a scholarly article), and modulations (Reca-
nati, 2010), whereby contextual factors fine-tune
a word’s interpretation without generating a dis-
crete sense (e.g. an ATM swallowing a credit card).
We refer to the combination of these polysemous
senses and modulation as contextual meaning vari-
ation, a category encompassing both stable sense

multiplicity and more fluid, context-dependent in-
terpretive shifts.

Contextual meaning variations are not merely
theoretical concerns – they have significant impli-
cations for real-world applications. Conceptual En-
gineering (CE) is one such domain that directly en-
gages with these issues. CE is concerned with iden-
tifying and addressing deficiencies in how words
are used, including issues such as vagueness, ambi-
guity, and biases that distort clear communication
(Cappelen and Plunkett, 2020; Cappelen, 2018).
Much attention in CE is given to ‘improving’ words
in isolation, but the challenge of modifying word
meanings is complicated by the very nature of
words: they exist within networks of meanings
that shift across different contexts.

In this paper, we propose an interdisciplinary
approach that bridges CE, lexical pragmatics, and
computational linguistics. We create a tool and
method that helps address the practical challenges
faced by those navigating the complexities of lexi-
cal meaning (e.g. conceptual engineers) by leverag-
ing natural language processing (NLP) techniques
to map the intricate relationships within word mean-
ings designed to be broadly useful for researchers
in semantics and pragmatics.

Specifically, we use language models such as
BERT (Devlin et al., 2019) to generate contextu-
alised embeddings for a selection of words fre-
quently targeted by conceptual engineers, drawn
from the spoken component of the British National
Corpus 2014 (Love et al., 2017). Using Gaussian
Mixture Models (GMMs), we analyze these em-
beddings to uncover how words cluster in different
contextual settings, allowing us to visualise and
understand the conceptual landscapes of words
– how meanings interconnect and shift based on
context. These visualisations and metrics map the
intricate landscape of meanings associated with a
lexical item. Unlike traditional corpus methods
such as collocation analyses, our approach con-
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denses embeddings into clear visual representa-
tions, highlighting the proximity, distinctness, and
relationships between meanings while accounting
for contextual and distributional complexities. By
mapping the conceptual landscapes of words, we
offer lexical pragmaticists and conceptual engi-
neers a way to approach the delicate task of un-
derstanding contextual variations with greater pre-
cision, while simultaneously advancing the capabil-
ities of NLP research to handle complex, context-
dependent word meanings. This includes appli-
cations in word sense disambiguation (WSD) and
dialogue systems.

2 Related Work

While this tool and methodology have wide-
ranging applications, we focus on CE as a case
study. CE is inherently practical, aiming to actively
modify word meanings rather than merely theo-
rising about them. This dimension makes it even
more crucial to have robust methods that allow for
precise, context-aware revisions to word meanings,
ensuring that any interventions are both effective
and sensitive to the complexities of language.

2.1 Conceptual engineering

CE is an emerging area of analytic philosophy con-
cerned with improving the tools we use to think
and communicate, namely, our words and concepts,
when these are found to be defective in some way
(Cappelen, 2018; Koch et al., 2023; Isaac et al.,
2022). These ’defects’ may be theoretical (e.g.
vague, misleading, or imprecise terms) or socio-
political (e.g. terms that encode harmful ideolo-
gies). A prominent example is Haslanger (2000),
who argues that biologically grounded definitions
of terms like WOMAN and RACE should be replaced
with socially grounded ones to better reflect struc-
tural realities and serve emancipatory goals. In this
sense, CE is a normative project.

Here, we provide empirical tools that can be
used by CE practitioners, and, crucially, also by
those who wish to critique or scrutinise their ef-
forts. If CE is to be practised at all, it should be
done with a full understanding of how meanings
actually function across different contexts of use.
This paper seeks to separate diagnosis from pre-
scription, and this is where linguistic analysis has
a crucial role to play. We offer a method for map-
ping the actual complexity of word usage, making
it possible to ask more informed questions about

what kind of change is feasible, who it affects, and
where resistance might arise. For a more nuanced
discussion of these facets, see Haket (forthcoming).
In this sense, the framework is not a blueprint for
linguistic intervention, but a diagnostic system for
meaning dynamics.

2.2 Lexical Pragmatics
Lexical pragmatics is concerned with how meaning
is shaped by context, particularly the influence of
pragmatic factors such as speaker intent, discourse
context, and social norms. Meaning can vary signif-
icantly across different contexts, with words taking
on multiple meanings depending on their use. Pol-
ysemy has been a key focus in pragmatics, with
scholars like Grice (1989) and relevance theorists
(Wilson and Sperber, 2006) exploring how contex-
tual cues guide these inferences on the utterance
level, and lexical semanticists/pragmaticists explor-
ing the potential for these contextual meaning vari-
ations on a lexical level (e.g. Del Pinal 2015).

CE has often treated meanings as fixed,
dictionary-style entries that can be revised in iso-
lation (Cappelen, 2018). However, psycholin-
guistic research shows that understanding speaker
meaning in everyday discourse frequently bypasses
full semantic decoding (Gibbs, 1984; Gibbs and
Moise, 1997; Bezuidenhout and Cutting, 2002).
This suggests that CE should shift its focus from
static semantic definitions to the dynamic, context-
sensitive meanings that arise in real-world use (Pin-
der, 2020). However, these present a fundamental
challenge that has been undertheorised in the CE
literature. Utilising this insight means that concep-
tual engineers must consider not only stable seman-
tic meanings of words but also the ways in which
meaning shifts across contexts, through polysemy
or through processes like narrowing, broadening,
and metaphorical extension. By incorporating con-
textual meaning variations into CE, we can more
precisely map how word meanings function across
discourse and avoid overly simplistic or static revi-
sions

2.3 Computational Lexical Pragmatics
If conceptual engineers indeed need to shift their fo-
cus to these lexical pragmatic meanings, they need
a way of accessing, analysing, and understanding
them. After all, these kinds of meanings may not
necessarily appear in dictionaries. The challenge
lies in systematically analysing how words are ac-
tually used across different contexts, a task that
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has traditionally been difficult to approach at scale.
However, recent advances in computational linguis-
tics, particularly through word embeddings like
BERT (Devlin et al., 2019), have revolutionised
the study of meaning variation. BERT’s contex-
tual embeddings have been shown to capture dis-
tributional patterns in language, aligning with the
American branch of distributionalism (esp. Harris
1954) that semantically similar words tend to occur
in similar contexts (Chiang and Yogatama, 2023;
Ferret, 2021). BERT’s ability to learn such patterns
through its masked language modeling objective
has revolutionised our ability to study meaning
variation.

More specifically, the clustering and analysis
of these kinds of embeddings have led to impres-
sive results in a variety of tasks, particularly WSD
(Soler and Apidianaki, 2021). BERT embeddings
can capture both contextual variations, with the
spatial location of embedded words shifting based
on their surrounding context (Coenen et al., 2019),
and semantic distinctions between different word
meanings and usages (Erk and Chronis, 2022; Chro-
nis and Erk, 2020). This dual capability is sup-
ported by multiple empirical findings: embeddings
of non-polysemous words show higher similarity
than polysemous words (Cevoli et al., 2023; Wil-
son and Marantz, 2022), and BERT’s clustering
results correlate strongly with human judgments
about meaning similarities (Soler and Apidianaki,
2021). BERT can also capture various other lin-
guistic phenomena including metaphorical uses,
syntactic roles, and constructions (Giulianelli et al.,
2020).

2.4 Aims of this research
Our work makes a threefold contribution to the
field. First, we shift the focus of conceptual engi-
neering from static, dictionary-style definitions to
the dynamic, context-dependent variations in mean-
ing that arise in discourse, emphasising the impor-
tance of lexical pragmatics for conceptual revision.
Second, we apply well-established computational
lexical tools, such as embedding and clustering
techniques, to conceptual engineering, demonstrat-
ing how these methods can identify meanings that
need revision based on empirical, context-sensitive
data. Third, we provide a practical tool for both
conceptual engineers and researchers in lexical
pragmatics, enabling the analysis of meaning varia-
tion in context and helping to identify inconsisten-
cies or ambiguities. By integrating pragmatic the-

ory with computational techniques, our approach
allows for a more systematic analysis of both sta-
ble meanings and context-dependent shifts, making
the revision process more aligned with pragmatic
understanding.

3 Methods

In this section, we present a brief overview of the
data used, and the computational methods.

3.1 Data

The Spoken British National Corpus (BNC) con-
sists of 1,251 anonymised, unscripted, face-to-face
conversations recorded from 672 volunteers from
a range of socioeconomic and demographic back-
grounds designed to be a representative sample of
the British population (Love et al., 2017). The con-
versations were collected from 2012 to 2014 in a
variety of contexts, including business meetings
and radio phone-ins, and therefore are represen-
tative of everyday vernacular speech. Work on
spoken language is underrepresented in previous
empirical work on CE, despite it being the primary
mode of communication. As such, we chose to
focus our research on this area. The Spoken BNC
is released under the Spoken BNC2014 User Li-
cence for non-commercial research and teaching
purposes.

3.2 Contextual embeddings

BERT (Devlin et al., 2019) is a widely used
transformer-based language model, trained on
masked token prediction and next-sentence like-
lihood. Unlike generative models, BERT is bi-
directional, attending to both preceding and fol-
lowing tokens. We use the 336M parameter bert-
large-uncased model, chosen for its balance of per-
formance, efficiency, and simplicity in analysing
semantic meaning in the Spoken BNC. BERT’s
low-resource, low-complexity nature makes it ideal
for researchers with limited computational power,
to complete our method in under 24 hours. BERT
is released under an Apache 2.0 license.

BERT generates contextual embeddings, unique
embeddings for each token based on its context,
in contrast to static embeddings like word2vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014), which provide a single global representa-
tion of a word, ignoring local context. As has been
noted, this makes BERT particularly suitable for
investigating lexical pragmatic effects: BERT cap-
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Figure 1: An example of how the target word BROWN is turned into a contextual embedding, e. For a target word
the C tokens before and after w are input to BERT. The final embedding e for the target word is then the wth row of
the embedding matrix X output from the final hidden layer. A collection of embeddings taken from n sentences are
then collated into the matrix E, which is then reduced to 2D and fitted to a GMM.

tures contextual nuances, while static models ab-
stract away this variability.

We generate contextual embeddings for 24
words, target tokens, that occur within the Spoken
BNC, including words commonly targeted by con-
ceptual engineers such as DUTY, PLANET, TRUTH,
and FAMILY (for a full list see Appendix C). These
were chosen due to their significance for CE, which
usually targets social, moral, political, or philosoph-
ical meanings.

We define the context window, C, as half the to-
tal number of tokens in the input, excluding the tar-
get token, Tw. For a single occurrence of the target
token in the text, the total number of tokens fed into
BERT is then 2C+1, where Tw is the middle token:
[T1, ..., TC , Tw, TC+2, ..., T2C+1]. BERT therefore
takes as input a 2C + 1 length utterance. The last
layer hidden-state is taken as the output – an embed-
ding matrix X ∈ R(2C+1)×d. The word contextual
embedding is then the wth row, e = Xw ∈ R1×d.
For n separate occurrences of that target token
within the text can be represented by the occur-
rence matrix E ∈ Rn×d.

3.3 Conceptual landscapes

A Gaussian Mixture Model (GMM) is a method
of modelling multimodal data using a combination

of K unimodal distributions. We use a GMM to
perform unsupervised soft clustering on the embed-
ding matrix E after dimensionality reduction with
principal component analysis (PCA). We optimise
K and the number of principal components for
each word using the Silhouette score (Rousseeuw,
1987). We then perform a robustness analysis using
the Adjusted Rand Index (ARI) (Rand, 1971). The
ARI measures the similarity between two sets of
cluster assignments. Practically, the ARI ranges
between [0,1] with 0 indicating entirely random
assignments, and 1 indicating perfect agreement
between the two cluster assignments. We fix the
number of principal components, and then use 1000
random initialisations for training the GMM. The
ARI is calculated for all pairs of cluster assign-
ments for the 1000 random initialisations. We cal-
culate the ARI with (i) 2 principal components, and
(ii) the optimal number of principal components.
The final labels are calculated by aggregating the
results of the 1000 runs into a consensus matrix
and using hierarchical clustering on this consensus
matrix.

To construct the conceptual landscapes we use
the GMM fit to the first two principal components
with the optimal number of clusters, and find the
log-likelihood scores over a defined space (Figure
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1). Limitations and ethical considerations of this
methodology can be found in Appendices A and B.

3.4 Metrics
We use four main metrics to describe the land-
scapes: maximum explained variance (MEV), self-
similarity, intra-group similarity, and inter-group
similarity. The definitions used here closely follow
those from Ethayarajh (2019).

MEV If target token Tw appears in sentence i
then ei is the corresponding embedding. The val-
ues σ1, ..., σm are then the first m singular values
of the centered occurrence matrix. The MEV is
the proportion of variance explained by the first
principal component, given by

MEV(w) =
σ2
1∑
i σ

2
i

(1)

and ranges over [0, 1]. MEV indicates the extent
to which a contextual embedding could be replaced
by a static embedding. If MEV is high it means
that the first principal component alone accounts
for most of the variation in how a word is used
across all its different contexts in the corpus. Even
though a given model (such as BERT) produces dif-
ferent embeddings for a word in each context, these
embeddings are not scattered randomly. Instead,
their differences lie mostly along a single primary
axis of meaning variation. You could therefore,
in principle, project all the contextual embeddings
onto this single line with relatively low loss of in-
formation about their overall distribution. A word
with a high MEV therefore indicates a uniform con-
sistency of word usage (for example, if the word
BARK is always used in the context of “like a dog”).
Conversely, if the MEV is low, then no one vector
can adequately capture to variation in usage. In
terms of CE then, the MEV measures the extent to
which changing the semantic meaning is likely to
influence speaker meanings.

Self-similarity The self-similarity is the aver-
age cosine similarity between embedding vectors,
given by

Sim(w) =
1

n2 − n

∑

i

∑

j ̸=i

cos (ei, ej) (2)

and ranges over [0, 1]. For CE, this metric gives a
value of how much variation we see within the word.
A word with a high self-similarity is constrained in

its diversity of usage and meaning, whereas a low
self-similarity indicates high diversity in usage.

Anisotropy (the non-uniform distributions of
words in embedding space) in LLM contextual em-
beddings is well documented (Ethayarajh, 2019). It
is therefore necessary to control for anisotropy by
taking a random sample of embeddings and finding
the total average similarity. This baseline is then
subtracted from the similarities for each word.

Intra-group similarity Let ek,i be the embed-
ding ei assigned to label k with nk members. The
global average intra-group similarity for K groups
is then

Intra =

∑
k

∑
i

∑
j ̸=i cos (ek,i, ek,j)∑

k(n
2
k − nk)

(3)

For CE, this metric measures similarity within
assigned contextual clusters. If the clusters contain
contextually similar usages, this score should be
high. A high intra-group similarity suggests that
the word is used consistently within each cluster,
facilitating more precise and effective CE inter-
ventions. This allows for targeted modifications
to the word’s meaning and usage, making it eas-
ier to implement changes and achieve the desired
conceptual clarity.

Inter-group similarity Let ek,i be the embed-
ding ei assigned to label k, where nl are those
embeddings not assigned to label k. The global
average inter-group similarity for K groups is then

Inter =

∑
k

∑
l ̸=k

∑
i

∑
j cos (ek,i, el,j)∑

k

∑
l ̸=k nknl

(4)

For CE, this metric compares members of a sin-
gle contextual cluster with members from other
contextual clusters. If the clusters are contextu-
ally different from one another, and each individual
cluster contains usages which are contextually sim-
ilar, this score should be low. High inter-group vari-
ation suggests more distinct boundaries between
contexts, delineating specific usages, which can
make CE easier to implement since it can target
specific contexts without interference from others.

3.5 Tool
To facilitate practical application of this method-
ology, we have made a tool publicly available
athttps://github.com/acceleratescience/
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Figure 2: The Silhouette scores (a), optimal number of principal components (b), and optimal number of clusters (c)
for each GMM fit to each word. Bold lines indicate averages, and shaded regions indicate the standard deviation.

conceptual-cartography. The tool provides
an intuitive interface for generating conceptual
landscapes and computing the metrics described in
this paper. Conceptual engineers can input their
target words and corresponding text corpora to
visualise meaning clusters, analyze contextual
variations, and quantify polysemy through our
suite of metrics (MEV, self-similarity, intra-group
and inter-group similarity). This enables precise
identification of meaning variations and supports
evidence-based decision-making in conceptual
revision projects. The tool includes comprehensive
documentation and example analyses, making
it accessible to researchers regardless of their
computational background.

4 Results and Discussion

We applied our methodology to a range of words
commonly targeted by conceptual engineers, span-
ning scientific terms (e.g., WEIGHT, ENERGY,
PLANET), philosophical concepts (e.g., TRUTH,
FREEDOM, KNOWLEDGE), social constructs (e.g.,
FAMILY, MARRIAGE, EDUCATION), and terms re-
lated to technology (e.g., COMPUTER). A complete
list of words analysed can be found in Appendix
C, and presentation of all the calculated metrics for
each word can be found in Table 1 and Table 2.

4.1 Context size

Figure 2 shows the result of optimising the GMM
for (a) Silhouette scores, (b) number of principal
components, and (c) number of clusters for differ-
ent context window sizes for the target words. Note
that the minimum value of the Silhouette score is
achieved at C = 4, and therefore when the total
number of tokens is ∼ 9. The utterance lengths
of the Spoken BNC are approximately power-law

distributed (see 9) with an average utterance length
of ∼ 10. This suggests that taking a single ut-
terance as input to BERT may be insufficient to
capture the full contextual meaning of the target
word. This lends credence to modern approaches
to meaning that emphasise meaning across entire
discourses as opposed to within a single utterance
(Jaszczolt, 2015). As the total number of input
tokens exceeds the average utterance length, the
Silhouette score increases quickly and remains rel-
atively steady, achieving a maximum at C ∼ 40.

Importantly, the average number of optimal prin-
cipal components across words and context win-
dows is ∼ 2, and the optimal number of principal
components is 2 for every word, except for DUTY,
and MARRIAGE. For the following sections, we
choose a context window of 40, where the Silhou-
ette score is at a maximum. For all subsequent anal-
yses, the number of clusters is fixed to the optimal
number of clusters for each word (for Silhouette
scores, optimal principal components and optimal
number of clusters for each word, see Figure 8).

4.2 Cluster properties
Figure 3 shows the MEV scores and average self-
similarities after correcting for anisotropy (a), and
the intra-group similarity and inter-group similarity
(b) for the target words. These results are in strong
agreement with Ethayarajh that static embeddings
would be poor substitutes for the contextual em-
beddings obtained from BERT. In addition, we also
found that a control for anisotropy was not neces-
sary when reducing dimensions.

Figure 3c shows that there is an excellent agree-
ment between the ARI scores when using 2 princi-
pal components and when using the optimal num-
ber of components, suggesting that the 2D repre-
sentations capture a substantial amount of the clus-
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Figure 3: (a) Anisotropy-corrected self-similarity (red)
and maximum explained variance (blue). (b) Intra-
(solid line) and inter-group (dashed line) similarity for
the optimal number of principal components (red), and
for 2 principal components (blue). (c) ARI for 1000
GMMs fitted to the optimal number of principal com-
ponents (red), and for 2 principal components (blue).
Error bars are the standard deviations.

tering structure found in the higher-dimensional
space. Secondly, the ARI scores show significant
variability across words. Words such as WEIGHT,
SYSTEM, and FAMILY have high average ARI, and
low variance; words such as INFORMATION, EDU-
CATION, and DUTY, have lower average ARI and
higher variance.

Words with high ARIs cluster consistently across
different initialisations, indicating a well-defined,
stable model, and therefore a well-defined and sta-
ble conceptual landscape. The contexts are likely
to be more distinct and less ambiguous. Words
with lower ARIs may have more ambiguous or
varied contexts, causing the clusters to overlap.
Therefore, the varying levels of stability reflect
the differences between contextual distinctions and
ambiguity. The ARI scores for each word are un-
derstandably correlated with the Silhouette scores
(r = 0.723, p < 0.0001), given both metrics aim
to quantify a measure of cluster quality and stability
albeit from different perspectives.

Figure 4: The conceptual landscapes generated using
the negative log-likelihood of the GMM predictions in
2D for PLANET with 4 clusters.

4.3 Conceptual landscapes

Since the average number of optimal principal com-
ponents is approximately 2, it is therefore reason-
able to use the 2D conceptual landscape as an indi-
cator of contextual word usage without significant
information loss. Figure 4 shows example concep-
tual landscapes for PLANET (for all target words
and landscapes, Figures 6 and 7).

4.3.1 Planet
Due to space constraints and the fact that concep-
tual engineers typically focus on refining meanings
of individual words or closely related sets, this
paper analyses a single term (PLANET) to demon-
strate how empirical methods can inform CE. The
redefinition of PLANET by the IAU in 2006, par-
ticularly the exclusion of Pluto, is one of the most
frequently mentioned case studies in CE (Landes
and Reuter, 2024). Here, it serves here not as a
diachronic case study of semantic change, but as a
touchstone for the challenges conceptual engineers
face when revising the meanings of contextually
variable terms. We examine the current seman-
tic landscape in which such revisions take place.
Specifically, we ask: when a formal body like the
IAU proposes a revision, what kind of semantic
structure is it intervening in—and what does that
structure imply about the likely uptake, resistance,
or diffusion of the revised meaning?

Our analysis reveals both stability and complex-
ity in how PLANET is used. The high ARI of 0.96
indicates consistent, clearly identifiable usage pat-
terns, suggesting distinct meanings that conceptual
engineers could potentially target. However, the
low MEV of 0.09 demonstrates that no single, static
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representation can capture the term’s full range of
uses. The self-similarity score of 0.29, while rela-
tively high, points to considerable contextual varia-
tion. Together, these metrics suggest that PLANET

exists in a complex semantic space with multiple
distinct but related meanings.

This complexity is further illuminated by our
identification of four distinct clusters of usage
through Gaussian Mixture Model (GMM) analysis
and qualitative interpretation:

1. Astronomical: Used in scientific contexts to
describe celestial bodies in space.

2. Environmental: Used in discussions about
global ecology or climate change, such as ’sav-
ing the planet’.

3. Metaphorical: Used to describe a person
or object as alien or incomprehensible, as in
’from another planet’.

4. Hyperbolic: Used in casual or media contexts
to exaggerate the scope of issues or concepts,
as in ’worst thing on the planet’.

Figure 5: Clusters for PLANET after qualitative analysis.

The PLANETexample illustrates several critical
insights for CE.The IAU’s redefinition assumes a
clear boundary between the astronomical mean-
ing of PLANET and its other uses, such as in envi-
ronmental or metaphorical contexts. As such, the
use of PLANET in environmental contexts (’sav-
ing the planet’, or even the phrase ’the planet’) is
of no consequence, as this definition does not de-
pend on whether dwarf planets are PLANETS or
not. However, our empirical findings suggest that
these meanings are not as easily separated as this
theoretical model suggests.

These clusters are not isolated silos: intra-cluster
similarity is high (0.92), but inter-cluster similarity
remains non-trivial (0.36) indicating gradience and
potential overlap between uses. This matters for
CE, because it undermines the assumption that a re-
vision to one sense (e.g. the astronomical sense tar-
geted by the IAU) can be neatly isolated from oth-
ers (e.g. the environmental or metaphorical ones).
For instance, even if ’the planet’ in ’save the planet’
refers to Earth rather than any celestial body, our
analysis shows that it remains semantically entan-
gled with the broader category of PLANET.The vari-
ability across these different clusters of meaning
(especially the overlap between the environmental
and metaphorical senses) illustrates the importance
of understanding modulation for CE. If concep-
tual engineers attempt to modify a word’s meaning
in one context, the resulting revision can inadver-
tently affect other uses, complicating the task of
meaning modification.The observed gradience in
meaning—where senses overlap and shift between
contexts—illustrates a core challenge for CE. If
one sense is revised without accounting for these
overlapping uses, unintended consequences may
arise in contexts that seem unrelated at first glance,
undermining the intended revision.

This complexity is what conceptual engineers
must reckon with. Rather than assuming that a
term like PLANET can be revised in one domain
(e.g. astronomy) without consequence, our data
suggests that contextual variations make such revi-
sions porous. In short, if CE is to intervene effec-
tively, it must first understand the semantic terrain
it is operating within—and our metrics offer a scal-
able, replicable way to map that terrain.

4.4 Usage in Conceptual Engineering and
Beyond

Conceptual landscapes offer significant theoretical
and practical advantages for conceptual engineers.
By visualising the variations in meaning of a term
like PLANET, conceptual engineers can pinpoint
the kinds of meaning they aim to revise and assess
how it interacts with other meanings, helping to
identify overlaps, dependencies, and links. For in-
stance, revising the astronomical sense of PLANET

might clarify scientific discourse, but without care-
ful consideration, it could unintentionally disrupt
the metaphorical or environmental uses prevalent
in public discussions. These landscapes provide
a framework for addressing meaning with preci-
sion, sensitivity, and empirical grounding, without
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requiring extensive training in computational tech-
niques, embeddings, or computer science.

Our methodology offers concrete benefits for CE
practice specifically through a structured approach
across all stages of the process (see e.g. Koch et al.
2023):

Diagnostic Phase: Identify major meaning
clusters, quantify stability (MEV/self-similarity),
and map relationships between senses/modulations
(inter-cluster similarity).

Planning Phase: Target clusters for revision,
predict interference with others, and identify opti-
mal intervention points in the meaning network.

Implementation Phase: Monitor meaning
shifts, assess uptake in target contexts, and identify
unintended consequences in related clusters.

This framework shifts CE from intuition-based
practice to an empirically-grounded methodology,
enabling practitioners to visualise and quantify con-
ceptual landscapes. Our tool makes this approach
accessible to conceptual engineers without compu-
tational expertise, bridging the gap between the-
oretical CE and practical application. By provid-
ing a data-driven understanding of polysemy and
variation, it supports both CE and lexical pragmat-
ics. The methodology combines CE’s focus on
individual words with NLP’s large-scale analysis,
allowing researchers to explore both the nuances
of specific words and broader linguistic landscapes
with greater precision.

5 Conclusion

This study introduces a novel methodology for
analysing context-sensitive word meanings, bridg-
ing the fields of CE, lexical pragmatics, and com-
putational linguistics. First, we have argued for
shifting the focus of CE from static definitions to
dynamic, context-sensitive meanings. Second, we
have provided a methodology for conceptual engi-
neers and lexical pragmaticists to apply computa-
tional tools to map the conceptual landscapes of
words, revealing polysemy and contextual varia-
tions.

As demonstrated through our analysis of
PLANET, our approach can effectively identify dis-
tinct meaning clusters while quantifying their rela-
tionships. The four identified senses (astronomical,
environmental, metaphorical, and hyperbolic) and
their associated metrics (ARI of 0.96, MEV of 0.09,
indicating consistent clustering and strong context-
dependence) demonstrate how words can have

clearly identifiable yet interrelated meanings that
resist simple definition. By leveraging BERT em-
beddings and Gaussian Mixture Models (GMMs),
we generate conceptual landscapes that visualise
meaning variation and provide quantitative metrics
such as MEV and self-similarity.

Finally, we have created an accessible toolkit
that provides a practical and systematic frame-
work for conceptual engineers, linguistic theorists,
and others to analyse meaning variation and guide
meaning revision efforts, empowering researchers
to base their analyses on empirical data rather than
abstract intuition.
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A Limitations

BERT is pretrained on BOOKCORPUS (Zhu et al.,
2015) and English WIKIPEDIA (Devlin et al.,
2019), which may introduce biases reflective of
these contexts into our analysis. By adjusting for
anisotropy, we mitigate some of these biases. How-
ever, this is not a complete solution. Future work
should explore other models and fine-tune on more
diverse datasets. In addition, the Spoken BNC
includes speech from British individuals over a

limited time period, which may not reflect contem-
porary language use and perspectives, and does not
encompass linguistic data from other countries.

While 2D projections are useful for visualising
and comparing word contexts, there are instances
where higher-dimensional embeddings (e.g., for
MARRIAGE) provide a clearer representation of se-
mantic differences. This highlights a limitation of
our current approach, as projecting down to 2D may
obscure important nuances. Future work should
explore higher-dimensional embeddings and non-
linear dimensionality reduction techniques (e.g.,
t-SNE, UMAP) to aid visualisation.

Corpus linguistics has been critiqued for its ’in-
evitable focus on surface forms’ (Ädel, 2010), risk-
ing an impoverished view of language. We ac-
knowledge this limitation, but argue that CE, being
applied and practice-oriented, benefits from obser-
vational data on how words are used in context.

B Ethical Considerations

B.1 Use of Language Models

Cultural and language bias. BERT’s training
data contains cultural biases, including problematic
content and skewed religious representation (Bandy
and Vincent, 2021). These may affect downstream
tasks. Our framework may help identify such bi-
ases in training corpora.

The predominance of English in training data
limits cultural representation. Fine-tuning on more
diverse datasets could mitigate inequities in down-
stream applications.

Environmental impact. We opted to use BERT
for its relative efficiency and smaller environmental
footprint, in contrast to larger language models.

Privacy and copyright. While BERT’s sources
(English Wikipedia, BOOKCORPUS) reduce some
privacy concerns, the latter was scraped without
author consent, raising ethical issues about data
usage.

B.2 Conceptual Engineering

CE attempts to reshape meanings, which can ap-
pear overly prescriptive. As meanings are bound
to culture and identity, changes not inclusive of di-
verse perspectives risk alienating the communities
they aim to help.

Moreover, CE projects can have social or politi-
cal ripple effects. We therefore emphasise that this
paper offers a descriptive tool: it does not advocate
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for any particular conceptual change. We provide
data about current usage, without prescribing what
words should mean.

C Full List of Tested Words

The tested words are:

• weight

• energy

• planet

• theory

• system

• data

• concept

• information

• truth

• freedom

• responsibility

• knowledge

• duty

• family

• marriage

• education

• student

• friend

• engineer

• wife

• child

• computer

• school

Conceptual landscapes for all words are pro-
vided in Figure 6 and Figure 7.
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Figure 6: Consensus cluster maps (negative log-likelihood of GMM predictions) for DUTY through CHURCH.
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Figure 7: Consensus cluster maps (negative log-likelihood of GMM predictions) for WEIGHT through KNOWLEDGE.
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Figure 8: Hyperparameter optimization results: (a) Silhouette scores, (b) number of principal components, (c)
number of clusters. Silhouette and ARI scores are closely correlated.

Figure 9: Distribution of utterance lengths in the Spoken BNC. These follow a power-law distribution, with an
average of 10 words per utterance.
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Word
Optimal

Components

Optimal

Clusters

Best

Score

Self-

Similarity
MEV

Optimal

ARI

Optimal

ARI std
2D ARI

2D ARI

std

weight 2 2 0.75065166 0.29663867 0.15589406440022405 1.0 0.0 1.0 0.0

energy 2 3 0.68554884 0.2355035 0.0764136765566644 0.9825799112461127 0.01962176431331328 0.9810035825407845 0.019943568812842878

planet 2 4 0.7128142 0.2913559 0.0882366070740109 0.9623680945153172 0.033088163527237174 0.9626463129788648 0.033075721085404144

theory 2 3 0.84671956 0.21386349 0.10176437079286657 0.9954917857014244 0.004464708197051879 0.9955062177600033 0.004464824823707685

system 2 3 0.6512991 0.20273864 0.04158690442568404 1.0 0.0 1.0 0.0

data 2 2 0.66792816 0.3001163 0.0629035355143655 1.0 0.0 1.0 0.0

concept 2 3 0.723671 0.20564383 0.056091484246831205 0.9927769304661705 0.010173316215442398 0.9935736885883468 0.009859014275290734

information 2 3 0.5296078 0.25662804 0.009946750868021742 0.7406537395085958 0.2229459439592183 0.6960789526143788 0.23915597814367864

truth 2 2 0.54026866 0.30280912 0.054876043198309576 0.9280861918891818 0.06604710754854408 0.9294042503312504 0.06944080370936948

freedom 2 4 0.65434194 0.26655453 0.09563030806831296 0.9334675211205564 0.1704048934448 0.9427797663532299 0.15956748076657506

responsibility 2 2 0.56938255 0.2700225 0.11916091303327889 0.9322590837578956 0.12430886548367147 0.904437876644496 0.13800775307016663

knowledge 2 3 0.6726736 0.25102633 0.0645349155540209 0.9843930515547132 0.015854844628385403 0.9841431866165496 0.015856813383450186

duty 4 5 0.7196939 0.17664373 0.06377767425054486 0.9874551707150581 0.06252875440515283 0.7889657682855794 0.22171666221553094

family 2 3 0.64838034 0.26847154 0.022635997134030736 0.9943836321000173 0.005135851540094211 0.994669251883583 0.004894600248935083

marriage 8 9 0.3940875 0.31149036 0.05500554472960928 0.6112942192156345 0.08721537746728976 0.6447443787878189 0.12265073796622647

education 2 2 0.57998776 0.29428303 0.031460283242946446 0.6239074938781386 0.39106286425586695 0.6854307222784576 0.35662533525437484

student 2 2 0.60584253 0.31139386 0.06900681973577344 0.9219265130861394 0.22414619352034612 0.9590315441198952 0.1349587985075622

friend 2 2 0.6121608 0.30614358 0.03020277056434878 0.9774785414648027 0.021040128884952422 0.9774135569385687 0.02137824727231833

engineer 2 2 0.466553 0.29832488 0.04074953892079064 0.7353913559980679 0.24881847024839246 0.6982006637956051 0.23926154624159524

wife 2 3 0.5990231 0.32535738 0.03624206212147031 0.9089545688639884 0.07546172732778701 0.9178098402172326 0.06638190772251286

child 2 2 0.6781394 0.28536147 0.11498878751245134 0.9901787999403814 0.007877072801540326 0.9904813585767728 0.007709889184639891

computer 2 3 0.5107223 0.32953215 0.026559695009549786 0.7491521491427756 0.18228835360128462 0.7498979023596061 0.18482899770396627

school 2 3 0.52753365 0.28709567 0.060625261536956604 0.9864745788983414 0.011797563212586125 0.9867719126782513 0.011881742870975943

church 2 3 0.5926918 0.31584865 0.03375614676062694 0.7429283349034067 0.2752246758009878 0.7661161198120406 0.25985354840800257

Table 1: Calculated metrics for 24 target words using dimensionality reduction and unsupervised clustering. Metrics include the number of optimal principal components and
clusters, best clustering score, self-similarity, maximum explained variance (MEV), ARI scores and standard deviations for both optimal clustering and 2D projections.
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Word
Optimal
Intra-Sim

Optimal
Inter-Sim

2D
Intra-Sim

2D
Inter-Sim

weight 0.8156033219962284 0.18104519595828528 0.8156033219962284 0.18104515090349865
energy 0.8336862218346286 0.29917733958914533 0.8336863203976584 0.29917730863040515
planet 0.9207608160844708 0.3597553812266942 0.9207608160844708 0.35975542080850764
theory 0.9263468231635071 0.30127710391438284 0.9263466688882307 0.30127714540843425
system 0.8536792740152507 0.27814700771867 0.8536796265171682 0.2781468876547384
data 0.7635351625646621 0.22914614096660874 0.763537767362795 0.2291443617544815
concept 0.8683227585248771 0.30286055940233236 0.8683227585248771 0.30286050245991253
information 0.821972462161749 0.3293009304867715 0.819028850508441 0.3297536590393733
truth 0.7062944748230764 0.28244020454910296 0.7062943393117325 0.28244022355133097
freedom 0.9097507468259896 0.3721182697521081 0.9097507468259896 0.3721182697521081
responsibility 0.7112177734375 0.2816186389568326 0.7112175071022727 0.28161882269883615
knowledge 0.8539526334736376 0.29840904028655746 0.8539525793884304 0.2984091032783977
duty 0.8704321464283045 0.39059547301983527 0.8753667447726858 0.40915019581755635
family 0.8506438458340466 0.32548975138527925 0.850408401614284 0.3256464671847802
marriage 0.7729137680385885 0.4574278943574383 0.9296340574523867 0.443919260225337
education 0.7194930980302446 0.28191425273944803 0.7206263273206777 0.28236683933054896
student 0.7317915722548086 0.2667373108328637 0.7317915722548086 0.26673728025891486
friend 0.7342716988092002 0.2663353340758285 0.7342721319883346 0.2663351627458536
engineer 0.6412440521413054 0.3058740765440698 0.6201696425980734 0.3141900634765625
wife 0.8135365350376823 0.33955498015490126 0.8165262413059602 0.3409786710666057
child 0.7725739291386711 0.2235273103563482 0.7711400170618056 0.22415934626025402
computer 0.7929313357494175 0.3450574308027275 0.7929309680417951 0.34505763451584726
school 0.7931535947179521 0.24504607627722041 0.793153645676212 0.24504624575719003
church 0.818619789088437 0.3265899456336431 0.818619789088437 0.3265899456336431

Table 2: Calculated metrics for 24 target words using dimensionality reduction and unsupervised clustering. Metrics include the Inter-Similarity and Intra-Similarity for both
optimal clustering and 2D projections.
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