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Abstract

Other people’s code, data, and definition of a
language task often provide the groundwork
for new research efforts. The work we present
here began as a straightforward investigation
of conversational implicature, a central aspect
of natural dialogue, starting with updating a
prior method to employ more recent LLMs.
But differences in results with the work we
were replicating led to a deep dive into why
those differences were occurring, and this led
us to consider more carefully what it means to
begin working on a topic with prior work “as a
starting point”. We describe our process, what
we found, and lessons suggested about data
quality, task definition, and the current pace of
change in NLP.

1 Introduction

Conversational implicature (Grice, 1975) is a ubiq-
uitous phenomenon in conversation, and as such
it is highly relevant for conversational Al using
large language models. Just as for other language-
related capabilities, today’s standard paradigm for
progress is to use a well defined computational task,
together with a benchmark dataset and evaluation
metrics, to establish the current state of the art and
then adapt or introduce new methods to improve it.

The standard approach is not without its prob-
lems, however. Tasks or metrics sometimes turn
out to have problems with measurement validity, i.e.
whether a measurement is actually measuring what
we want measured—this has arisen, for example,
in natural language inference (Poliak et al., 2018)
and topic modeling (Hoyle et al., 2021). Datasets
can produce results that don’t generalize well. Data
contamination may inflate estimates of system per-
formance.

This paper began as an investigation of conver-
sational implicature, aimed at building on prior
methods and benchmarking introduced by Ruis
et al. (2024). In the end, however, what emerged
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is a case study contributing to the literature on the
pitfalls of uncritically accepting the prompts and
data from prior work as a starting point. In the sec-
tions that follow, we begin by providing relevant
background on the topic of conversational implica-
ture and discuss our attempt to replicate Ruis et al.
(2024). We then shift, based on what we found, to
a meta-level discussion that leads us to highlight
the more general lessons we think this effort turned
out to offer about data quality, task definition, and
ultimately, we would argue, the pace of change in
NLP.

2 Background

The idea of conversational implicature was intro-
duced by Grice (1975). He presents the idea of the
Cooperative Principle: that utterances in a conver-
sation are driven by the shared goal of moving the
conversation forward. He also states a number of
maxims by which the Cooperative Principle is real-
ized. Deliberately violating these maxims, he then
argues, is how conversational implicature arises.
For instance, in the following exchange, the first
speaker’s question is not directly answered by the
other speaker.

“Do you want to have dinner tonight?”
“I have an exam tomorrow.”

The plain content of the reply would appear to
violate the maxim of Relation (“Be relevant,” Grice,
1975). And so the first speaker, upon hearing the
reply, is left to infer the meaning that the replier
intended to convey by assuming that there is some
level at which the maxim is not being violated, even
if it appears so at the surface (Levinson, 1983).!

'A distinction worth noting is that between conversational
implicature and conventional implicature. A conversational
implicature arises from the context within the conversation in
which the utterance is made; in contrast, conventional implica-
ture relies solely on the content of an utterance. A prototypical
example of a conventional implicature is the sentence “The
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There have been criticisms of Grice’s (1975) ar-
gument (e.g., Sperber and Wilson (1986) argue that
the maxims are so vague as to be unhelpful), but
the fundamental point that utterances carry non-
conventional meaning is generally accepted. Impli-
catures and indirect answers of this sort are very
common in conversations—occurring in 27% of
question/answer scenarios by one account (Rossen-
Knill et al., 1997). It follows, then, that large lan-
guage models trained and productized as chat sys-
tems would be more effective if able to use impli-
cature. In addition, users used to human conver-
sation are likely to interact with systems in a way
that relies on the system correctly interpreting im-
plicatures in their utterances, even if they do not
deliberately set out to do so.

2.1 Prior Work on Implicature

In Louis et al. (2020), a model derived from BERT
is trained to predict yes/no answers from a large
corpus of indirect question/answer pairs. The au-
thors found that this approach is largely successful,
with an accuracy of 80%.

One of the first pieces of research looking
at large language models’—rather than models
trained specifically for this—ability in this regard
is Zheng et al. (2021). The authors introduce a
generated dataset of conversations containing im-
plicatures, and then use it to evaluate a number of
models’ abilities. They note that the use of syn-
thetic datasets if often criticized, and argue that
any unnaturalness in their dataset is unrelated to
implicatures, since they take care to use “pragmatic
phenomena existing in daily conversations” (Zheng
etal., 2021).

The BIG-bench benchmarking suite for language
models also includes an implicature task (Maru and
Bevilacqua, 2022). The authors use a dataset of nat-
ural implicatures produced by George and Mamidi
(2020), avoiding one of the pitfalls of Zheng et al.
(2021). However, Maru and Bevilacqua cut down
the dataset by more than half, significantly limiting
the size of their analysis.

Hu et al. (2023) look at language models’ prag-
matic abilities across a number of phenomena, in-
cluding violations of the Gricean maxims. Per-
queen is English and therefore brave”: the word therefore
gives rise to the implication that being brave follows from
being English (Davis, 2024). This example also highlights
the pragmatic phenomenon of presupposition (it presupposes
that there is currently an English queen), another pragmatic

phenomenon that can have important implications (no pun
intended!) in LLM-based work (Srikanth et al., 2024).
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formance at answering multiple-choice questions
that rely on non-literal understanding is compared
across a number of models and with human per-
formance at the same task. They find that the best
performing model tested (text-davinci-002) per-
forms well above random chance, and often ap-
proaches human performance in those tasks. The
authors use an expert-curated dataset consisting
of 20-40 items per phenomenon. They note that,
while this has the significant advantage of being a
reliable dataset, its size is a limiting factor.

2.2 Ruis et al. Experiment

In Ruis et al. (2024), the authors look to evaluate
the performance of a number of language models
at recovering implicatures. They use a dataset of
question/response pairs where the responses do not
directly answer the question, but carry an implica-
ture. Their experiment takes two forms: looking
at the likelihood that the model predicts a ‘yes’
answer or a ‘no’ answer in response to an implica-
ture, and a completion-based task where the models
are instructed to generate text indicate whether the
value of the implicature is yes or no.

For the likelihood task, they give the model a
prompt that contains the question, the response,
and then establishes a context in which it would
be appropriate to output a yes/no answer. Deter-
mining whether the model has successfully recov-
ered the correct value of the implicature is done
by comparing the likelihoods assigned to the ‘yes’
and ‘no’ answers and checking whether the higher
likelihood answer matches the implicature value
from the dataset. This approach has the advantage
of avoiding situations where, if used to generate
text, the model would produce output that is nei-
ther ‘yes’ nor ‘no,” which would prevent them from
easily assessing the model’s performance. This has
the significant shortcoming, however, that not all
models tested provide a way to access the likeli-
hoods of the output. In particular, because some
models—such as GPT-3.5-Turbo and GPT-4—are
not publicly available (as is the case for a number
of the additional models we test in Section 3), the
experiments that can be conducted are limited to
those that can make use of the online APIs that the
developers elect to provide.

For the completion task, Ruis et al. use the same
prompts but instead use the model to generate text.
If the response ends with the words ‘yes’ or ‘no,’
then the responses is considered valid. It’s con-
sidered correct if the yes/no response matches the



dataset’s value for the implicature of that data point.

They also look at human performance at recov-
ering implicatures in this data set. The same data is
given to a group of human annotators who, through
an online crowdsourcing platform, are instructed
to finish each with ‘yes’ or ‘no’ based on what is
contextually appropriate. The human annotators
achieved an average accuracy of 86%.

Ruis et al. conducted this evaluation comprehen-
sively with 17 different language models, divided
into four categories (base models, dialogue fine-
tuned, benchmark instruction-tuned, and example
instruction-tuned), across 0-shot, 1-shot, and 5-shot
scenarios. They find that the models in the Exam-
ple IT category (“LLMs fine-tuned on tasks with
natural instructions for each example,” Ruis et al.,
2024) consistently perform the best. They also find
that, in certain circumstances, the best perform-
ing language model (GPT-4) achieves comparable
accuracy to the human annotators.

3 Replication

Since Ruis et al. (2024) is one of the more com-
prehensive pieces of research on language models’
performance with implicatures, we began looking
into conversational implicature via a very standard
approach: replicating the previous findings then
seeing whether the results they obtained extend to
newer models. We characterize this approach as
“naive” in the sense that it did not involve any par-
ticularly careful thought about the actual quality
of the previous benchmark in terms of its data or
task definition, nor were we particularly concerned
with the specifics of the prompts used in the prior
work. We simply took the previous benchmark
on board uncritically and we assumed that, most
likely, advances in language model size and general
performance would give us updated baselines to
beat.

Our attempt to replicate the results of Ruis et al.
(2024) used the same data and a subset of the lan-
guage models tested there. We also tested several
newer models (GPT-40, Google’s Gemini 1.5 Pro,
Anthropic’s Claude 3, and Meta’s Llama versions
3.2 and 3.3) and compared those results. We used
the original Ruis et al. (2024) code, adapted for
changes in some of the model vendors’ APIs.” Be-
cause, as noted in Section 2.2, the APIs for GPT-
3.5-Turbo and GPT-4 (among others) do not pro-

>The code can be found on GitHub at https://github.
com/a-korde/1lm-implicature-experiment.
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vide likelihood information, we only attempted to
replicate the completion-based task.

3.1 Modifications

Closely related to prompt engineering, “answer en-
gineering” refers to design choices that facilitate
extraction of useful responses from LLM output
(Schulhoff et al., 2024). We observed that some
original prompts provided LLMs with too much
latitude, e.g. “Finish the following text:” when the
goal was a yes or no. In order to induce some of the
language models (in particular, GPT-3.5-Turbo) to
more reliably output yes/no responses as expected
by the code, when asked in the 0-shot context for
the value of an implicature, we minimally altered
some of the prompt templates (see Appendix A):
the three original templates which included “Finish
the following text:” were modified to read “Finish
the following text with yes or no:”. This improves
the yes/no format consistency of the output; we fur-
ther modified the Ruis et al. (2024) code to identify
the model’s answer, not based on the last word of
the output, but instead by checking if the response
contains, as a whole word, ‘yes’ or ‘no.’

The choice of models was based on those in Ruis
et al.’s (2024) Example IT (instruction-tuning) cat-
egory that were still available. The text-davinci
models were deprecated by OpenAl in 2024 and
are excluded here (OpenAl, 2023a). The Cohere-
command-52B (cohere-command-xlarge) model
is also no longer available; we used Cohere’s Com-
mand R+ model. The code was extended to allow
testing Google and Anthropic models using their
APIs, as well as locally-run, open-source models
via Ollama.

3.2 Results, Expected...

Table 1 shows the mean and standard deviation in
accuracy across the different prompt templates for
each of the models tested. For both of the original
OpenAl models tested and for all k, accuracy has
improved over Ruis et al.’s (2024) results. GPT-4
remains more accurate than GPT-3.5-Turbo though
(and is comparable to GPT-40). Our results also
agree with Ruis et al. (2024) that moving from
0-shot to 1-shot to 5-shot does not consistently
improve the models’ performance.

It is difficult to identify the source of the im-
provements due to the generally closed nature of
the model vendors. But, we expect that the change
is likely due to ongoing refinement of the models.
For instance, OpenAl notes that they regularly up-



Model 0-Shot 1-shot 5-shot
GPT-3.5-Turbo? 77.4% £ 5.9 77.2% £ 4.5 77.6% £ 4.9
GPT-4 86.1% + 0.7 83.3% £ 0.5 83.9% £+ 0.3
GPT-40 83.1% + 4.8 84.2% + 2.9 83.3% £ 2.5
Cohere Command R+ 79.8% +3.9 80.3% +2.6 80.9% +1.6
Claude-3.5-Sonnet 85.6% +1.6 88.1% +1.0 89.0% + 0.6
Gemini-1.5-Pro 83.5% £ 1.9 84.4% £ 4.2 83.8% 1+ 4.6
Llama-3.2-3B 60.9% + 6.5 73.1% +£13.0 69.9% +5.8
Llama-3.3-70B 84.2% + 1.9 84.9% + 1.8 84.9% + 1.2

Table 1: The k-shot accuracy of a subset of the models tested in Ruis et al. (2024), as well as additional models,
using our modified prompt templates (see Appendix A). Accuracy is averaged across the different prompt templates.

date models. When these tests were undertaken,
the current versions of the OpenAl models used
were gpt-3.5-turbo-0125, gpt-4-0613, and
gpt-40-2024-08-06. The Cohere model used was
command-r-plus-08-2024. The Claude version
used was claude-3-5-sonnet-20241022. The
Gemini version used was gemini-1.5-pro-002.

3.3 ...And Unexpected

“The most exciting phrase to hear in science, the one that her-

alds new discoveries, is not ‘Eureka!’ but ‘That’s funny...’ ”
—Isaac Asimov

We were surprised to see that the one Cohere
model tested here showed a dramatic improvement
in the 0-shot task over the Cohere-command-52B
model tested by Ruis et al., which achieved an
accuracy of only 60.2% + 5.2. One possible ex-
planation for this change was the simple fact that
we tested a different model. Changes from the
previous Command-52B model’s training data or
process could have had an impact on its capability
in this metric. It would have been fairly natural
at this point simply to leave it at that, and move
forward with Table 1 as our new baselines—and
indeed we considered doing so.

However, Ruis et al.’s (2024) hypothesis about
Cohere-command-52B’s markedly worse perfor-
mance on the 0-shot task as compared to the 1- and
5-shot tasks led us to think about an alternative
explanation. They hypothesize that the poor 0-shot
performance is “not due to a lack of implicature
understanding, but due to a failure to calibrate the
yes/no likelihoods without examples” (Ruis et al.,
2024). That is, they argue the 1- and 5-shot exam-
ples serve to clarify the task format and “prime the
model towards producing outputs and following

3The GPT-3.5-Turbo model is referred to as “ChatGPT” in
Ruis et al. (2024).
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the yes/no structure” (Ruis et al., 2024). If that
is the case, then our altered prompts (see above)
specifically asking for yes/no responses may have
contributed to the improved performance.

To test this hypothesis, we re-ran the experiment
on Command R+ using the original, unmodified
prompt templates from Ruis et al. (2024). In this
context, we found that Command R+ performed
vastly worse than with our modified prompts. In
the 0-shot case, Command R+ had a mean accuracy
of just 50.8% =+ 48.7 at correctly identifying the
value of the implicature. This poor performance,
and the very high variability, comes from differ-
ing behavior across prompt templates. In three of
the original prompt templates—those that were un-
modified in our experiment—the model performed
in line with our results: it achieved an accuracy
of 85.5%, 81.7%, and 72.0% for templates 0, 2,
and 3 respectively. With the other three original
prompt templates—the ones that we did modify—
the model performed extraordinarily poorly, with
the implicature accuracy varying from 0.8% to
1.5%. The completion accuracy metric (indicating
what fraction of the model’s generated completions
an identifiable answer could be extracted from)
shows the same pattern: each of the prompt tem-
plates that we did not have to modify all produced
usable responses in greater than 98.5% of cases,
and those templates that originally used “Finish the
following text:” resulted in usable responses in no
more than 2.5% of cases.

When given prompts with one example of the
task, Command R+’s accuracy jumps to a more ex-
pected 73.4%=9.1. The “Finish the following text:”
prompts remain somewhat worse performers than
the others, however, scoring 62.3%, 65.2%, and
66.0% in implicature accuracy and 83.0%, 87.2%,
and 90.8% in completion accuracy. Table 2 gives a



breakdown of the individual prompt results across
k = 0,1 for each of the original and modified
prompt templates.

4 Discussion

We viewed the results of our replication attempt
as equivocal. On the one hand, we we were able
to reproduce the results of Ruis et al. (2024). Fre-
quently, including in our own work, that kind of
replication success is sufficient to move on to the
more interesting business of trying to build better
models and improve the state of the art.

On the other hand, the Asimovian “that’s funny”
that emerged in our experimentation invited deeper
consideration that, we suggest, is more valuable
than the replication itself. This is where our discus-
sion pivots from a conversation just about conver-
sational implicature, per se, to a reconsideration of
the “naive” approach we took—an approach that
is, we would argue, typical of widespread practice
in current NLP research—building on a closer look
at our replication attempt as a case study.

4.1 Datasets

We begin with data. The experiments here and in
Ruis et al. (2024) use a dataset of implicatures in
dialogue that have been manually annotated with
the value of the implicatures (George and Mamidi,
2020). The data were obtained from two categories
of sources: questions from an English language
comprehension test (specifically, from free practice
versions of the TOEFLS test (English Test Store))
and film scripts from the Internet Movie Script
Database (IMSDDb). That both of these sources are
authored and not naturally occurring could present
a difficulty: they may not be representative of
how implicatures are used in natural conversation.
Movie scripts, in particular, may also be a poor
indicator of a model’s performance, because the
entire script may well have been included in the
model’s training data.

The dataset’s authors also do not go into detail on
the labeling process, only noting that “The annota-
tion is done manually by undergraduate students of
linguistics, whose primary language of instruction
is English” (George and Mamidi, 2020). While the
correct answers are provided for the language com-
prehension test, the same is not true of the entries
from movie scripts, and the implicature values pro-
vided in the dataset are presumably the judgments
of the aforementioned students.
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The authors originally intended to crowdsource
the dataset of implicatures—going so far as to
design and conduct an experiment using an on-
line crowdsourcing platform—but ultimately dis-
carded the data noting that they “did not obtain
high-quality dialogue data” (George and Mamidi,
2020). They conclude that the task they designed
is somewhat ill-suited to crowdsourcing because it
requires more imagination and is less mechanical
than is common on crowdsourcing platforms.

This problem is not entirely resolved by using
their chosen data sources, though. For instance,
the dataset includes an entry with the following
context and response utterances, and says that the
implicature—the answer to the context question—
is ‘yes.

“Have you found another school for the
children?”
“We’re still shopping around.”

This does not align with our judgment: “still
shopping around” implies that a suitable option has
yet to be found. What’s more, the dataset also con-
tains entries that (again, in our judgment) simply
do not contain implicatures. In the following exam-
ple, the response appears to be a direct answer to
the question (even though it does not contain the
word ‘yes’ or ‘no’).

“Did he ever fall back on a run?”
“All the time, sir.” (Sorkin, 1991)

These patterns show a potential issue in using the
George and Mamidi (2020) dataset to evaluate mod-
els’ performance at recovering implicatures. The
BIG-bench implicature task uses the same dataset,
but narrows it down to a greater extent—such as by
“[d]iscarding factual errors in the original dataset”
(Maru and Bevilacqua, 2022). This further con-
strained dataset may be useful in accurately identi-
fying models’ performance at implicature recovery,
but of course comes at the expense of being even
smaller. Additionally, there are a number of other
datasets that could be used to similarly evaluate
models’ performance, however they are not with-
out their own pitfalls.

The GRICE dataset is a collection of conversa-
tions involving implicatures and multiple-choice
style questions, the correct answers to which de-
pend on recovering the implicature (Zheng et al.,
2021). Unlike the George and Mamidi (2020)
dataset, Zheng et al. do not explicitly annotate the



Prompt k Implicature Completion
Template 1 (lJ (6)28;)%% 235?%
Template 4 (1) (1352?% ;77?%
Template 5 (1) 61565?% 303?%
Modified Template 1 (i) ;gigﬁ 1888%
Modified Template 4 (1) gg:gé 188:82
Modified Template 5 (1) ?ggg; 1888;?

Table 2: Breakdown of Cohere Command R+ implicature and completion accuracy across the original “Finish the
following text:” prompts from Ruis et al. (2024) and our modified prompts.

value of the implicature in each conversation, but
instead only which of the multiple choice answers
is correct. The GRICE dataset could be used in con-
junction with the likelihood based approach used
in Ruis et al. (2024) (see background in Section
2.2) by evaluating which of the multiple-choice
answers the model predicts is most likely to ap-
pear. Because the data is programatically gener-
ated, however, this may exhibit the same issue of
unnaturalness as in George and Mamidi (2020). In
that regard, the variety of the GRICE data is rather
limited: there are only four subtopics used to gener-
ate the conversations, which all follow a relatively
simple conversational structure.

The dataset used in de Marneffe et al. (2010)
provides a more natural source of implicature data.
The authors sourced data from transcripts of in-
terviews aired on CNN from 2000-2008 and the
Switchboard corpus of telephone conversations
(see Jurafsky et al., 1997). Labels were assigned
based on the distribution of judgments of 30 Me-
chanical Turk workers for each of the dialogues.
This may provide a higher quality source of data
for evaluating implicature recovery performance,
but it comes at the expense of being substantially
smaller (n = 224).

One of the larger extant datasets is the Circa
dataset, comprising 34,000+ pairs of crowdsourced
questions and indirect answers (Louis et al., 2020).
Both the questions and answers are crowdsourced.
Labeling of the answers is also crowdsourced
and divides the answers into yes/no categories
(along with a split between certain/strong and un-
certain/weak) as well as unsure and ‘in the middle’

(neither yes nor no) categories. The Louis et al.
dataset seems promising as it is substantially larger
than any of the others considered.

While the particular examples we discuss are
specific to conversational implicature, they are il-
lustrative of the potential issues that can arise when
relying uncritically on existing datasets or bench-
marks and using them to evaluate different models.
The nature and quality of a particular dataset can
play a significant role in a model’s performance,
and can risk presenting a distorted picture when
attempting to make comparisons across models (let
alone across datasets/benchmarks).

4.2 Prompt Sensitivity

Next, we turn to the issue of prompt sensitivity
when it comes to cross-model comparisons and
structured generation as a potential solution. Our
experiment contributes further evidence to discus-
sion in the literature regarding the danger of concep-
tualizing prompting as just another way of getting
answers from a machine, comparable to the algo-
rithms of prior generations. For example, Loya
et al., 2023 found that GPT-3.5-Turbo’s perfor-
mance on a task conducted in prior research could
be worsened or significantly improved with rel-
atively minor alterations to the prompt. Our re-
sults in Section 3.3 reinforce the point: a differ-
ence of just four words (“with yes or no”) dramati-
cally changed the model’s score on this benchmark.
These observations suggest that the sensitivity of
performance to prompt specifics is an essential con-
sideration in any experiment using LLMs, and tools
for evaluating prompt sensitivity (e.g., Sclar et al.,
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2024; Zhuo et al., 2024) should be a part of any
future benchmark development process.

In terms of mitigating the risks of prompt sen-
sitivity, Ruis et al. (2024) did so, to some extent,
by using a set of six different prompts, rather than
a single one. They divide the prompts into two
groups: natural (prompts 1, 4, and 5) and struc-
tured (prompts 0, 2, and 3). However, as shown
by the results with Command R+ (see Section 3.3),
this was not entirely successful: Command R+ has
consistent performance across prompts within a
single group, but performs substantially differently
between the natural prompts and the structured
prompts.

In addition, chain-of-thought prompting (Wei
et al., 2022), one of the techniques used by Loya
et al., is also explored in Ruis et al. (2024). They
found that 5-shot evaluation with chain-of-thought
prompting brought GPT-4 to comparable perfor-
mance to their human baseline. This improvement
over the non-chain-of-thought results suggests that
it is difficult—through completion tasks alone—to
determine to what extent a language model has
captured generalizations about implicatures.

Another way of avoiding the inherent prompt
sensitivity of large language models is to avoid us-
ing text-generation tasks to study them. Instead,
Ruis et al.’s (2024) comparing the relative likeli-
hoods of multiple possible options would be more
resilient to minor variations in the prompt. Un-
fortunately, the fact that state-of-the-art language
models are developed by corporations that do not
publish the full models presents a roadblock to
studying them in more detail (e.g., OpenAl, 2023b,
“Given both the competitive landscape and the
safety implications of large-scale models like GPT-
4, this report contains no further details.”). Be-
cause access to the models is gated behind corpo-
rate APIs, which do not provide this information,
research like ours is unable to use this technique.

Before we turn to structured output as a potential
method for addressing the pitfalls we found associ-
ated with prompt sensitivity, we again emphasize
that, although the specific issues discussed here de-
pend on the use case and particular models under
consideration, the broader issue of prompt sensitiv-
ity is fundamental to all large language models, in-
cluding both closed source and open source (Sclar
et al., 2024). As Errica et al. (2025) note, results
from any model trained to maximize a likelihood
objective are going to be sensitive to all features of
the prompt that affect its probability.
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4.3 Structured Output

In the interval between our original experimenta-
tion and writing this paper, structured output be-
came an option for many LLMs: it is possible
to make LLM text-generation requests explicitly
defining the desired output format and limiting the
model’s output to that which conforms to the speci-
fied format. OpenAI’s API now supports structured
output by allowing the user to provide a JSON
schema which the output must match (Pokrass,
2024): they describe a sampling process during
text generation as “‘determin[ing] which tokens are
valid to be produced next based on the previously
generated tokens and the rules within the grammar
that indicate which tokens are valid next.” Ollama
similarly supports providing a JSON schema to
restrict the output (Ollama, 2024). Perhaps this
renders many prompt sensitivity concerns moot?

We tested both GPT-40 and Llama 3.2 using a
version of the Ruis et al. (2024) task adapted to use
structured output. Rather than directly parsing the
text, we used a JSON schema to have the model
generate a JSON object containing a single boolean
property representing the value of the implicature.

It turns out that, although structured output helps,
LLMs persist in being inappropriately sensitive to
details of the way they are called. In particular, note
that in defining the JSON schema for the output,
we were faced with the choice of what name to give
to the boolean property representing the recovered
value of the implicature. Although initially the
grammar constrains the possible tokens to produce
the JSON key, notice that, per the quote above, the
key itself is part of the context and thus the name of
the key will affect how the value for that property
is generated.

To confirm this makes a difference, we tested
both GPT-40 and Llama 3.2 using the original
prompt templates from Ruis et al. (2024) using
several different names for the boolean property,
the results of which are shown in Table 3. We
found that the property name can have a significant
impact, though to what extent is variable.

Furthermore, we found that performance is still
somewhat sensitive to the prompt, despite the con-
straints on the output. Table 4 shows the accuracy
of Llama 3.2 for each prompt template in the struc-
tured output task. We note that adding “with yes or
no” to prompt templates 1, 4, and 5 still produces
a marked accuracy difference. That said, we also
note that unmodified templates (0, 2, and 3) exhibit



JSON Key GPT-4o0 Llama 3.2

answer_is_yes 80.3% £ 6.0  60.2% 4.7
implicature_is_yes 80.2% £5.5 56.5% 2.5
implicature_value  70.2% +14.4 552% + 3.1

Table 3: Mean accuracy across prompt templates for
GPT-40 and Llama 3.2 depending on the key name in
the JSON schema, when tested with the unmodified
prompt templates and k = 0.

Prompt Original Modified
Template 0 64.0% 63.0%
Template 1  55.7% 60.8%
Template 2 65.0% 61.8%
Template 3 65.5% 65.0%
Template 4  55.0% 58.7%
Template 5 56.0% 61.2%

Table 4: Structured output accuracy for Llama 3.2 across
the original and modified prompt templates (for tem-
plates 1, 4, and 5) when tested with answer_is_yes as
the JSON key for k = 0.

a similar difference in some cases, so this effect
may be within the run-to-run variance of the test.

Overall, we find that, although structured output
may address the challenge of extracting informa-
tion from LLM output, prompt sensitivity remains
a significant concern. Put plainly: structured out-
put affects the output’s structure, not its substantive
content. Instructions given to the model continue
to have an impact on its apparent performance at a
task, even if the model now always produces “gram-
matically correct” output. Additionally, structured
output introduces the additional challenge of the
output grammar itself (such as the names of the
JSON keys) also affecting performance.

4.4 Other Paths Forward

As an alternative to seeking LLM-engineering
solutions to the problems we are describing—
something that in our view requires the efforts of
the entire broader community—we conclude our
discussion by considering underlying properties of
the linguistic phenomenon being studied as a poten-
tially more effective way to analyze the capabilities
of language models. This can be thought of as a
general strategy that we apply here to the specifics
of conversational implicatures as a problem space.

Defeasibility and Reinforceability of Implica-
tures Two of the characteristic features of impli-
catures are that they are both defeasible and rein-
forceable (Levinson, 1983). They are defeasible
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in that the speaker of an implication-carrying ut-
terance can defeat or cancel the implication in a
subsequent utterance (for example, by saying some-
thing along the lines of, “But it’s not actually the
case that <implication>."). Similarly, they are re-
inforceable, and the speaker could emphasize what
was previously implied. It’s important to note that
what makes the case of an implicature different
from another utterance is that defeating or rein-
forcing an implication-carrying utterance neither
produces a contradiction nor sounds redundant. By
contrast, attempting to defeat an ordinary sentence
does result in a contradiction and attempting to
reinforce it often sounds redundant.*

Those differences could be used to test a model’s
sensitivity to implicature in a context where the
likelihood of a string can be obtained from the
model. By starting with a single question and an
answer to it phrased both explicitly and as an im-
plicature, and then comparing the likelihood of
each of those being followed by a sentence that
defeats/contradicts it, it may be possible to iden-
tify whether the model has recovered the implica-
ture and the fact that it is an implicature. Flatly
contradicting a prior sentence should be relatively
unlikely. But, if the model has identified the im-
plicature, then defeating it should be substantially
more likely than the case of contradiction. Simi-
larly, a sentence that repeats the same meaning as
the previous one should be less likely in the case
where the previous sentence is explicitly saying the
same thing as compared to when the meaning of
the previous sentence is provided by implication.

Unfortunately, this hypothesis is not readily
testable at present, owing to the lack of likelihood
information provided by the APIs for state-of-the-
art language models.

Direct Inquiry vs. Conversation Continuations
Our final observation is that evaluating language
models’ competence at recovering implicatures us-
ing a strategy of simply prompting them with in-
structions to evaluate the yes/no value of an im-
plicature may not effectively represent their use
of implicature in conversations. Presumably little
of the models’ training datasets consists of people
directly asking what the meaning of an implication-
carrying sentence is (aside, perhaps, from students
of semantics or pragmatics). It is more likely that

“Levinson (1983) notes that there are circumstances, such
as involving stress, where other types of sentences can be

reinforced without issue. But those are not germane to our
discussion.



the use of implicatures in the wild—and the conver-
sations flowing therefrom—are better represented
in the training data.

Since large language models are fundamentally
constructed as text prediction/generation systems
(e.g., “GPT-4 is a Transformer-style model pre-
trained to predict the next token in a document”
OpenAl, 2023b), a task aimed at probing the same
question but formulated to the context of text pre-
diction/generation may produce more representa-
tive results. For example, given a context question
and a response utterance carrying a conversational
implicature, using a language model to generate
a continuation of that conversation may provide
another avenue for determining whether the model
recovered the value of the implicature. If the model
has recovered the value of the implicature, then
the generated conversation should continue to flow
naturally. If it has not, then there would be a break
in the common ground and the conversation should
be anomalous in some way.

5 Conclusions

With regard to conversational implicature, we have
contributed an updated evaluation showing that
Ruis et al.’s (2024) results hold up, improve with
newer models, and that hoped-for improvements
when moving from 0-shot to 1-shot to 5-shot in-
context learning are not consistent. In addition,
however, our simple attempt at replicating prior
work using more up-to-date LL.Ms foregrounded
deeper issues, ones that connect to broader ques-
tions about how to use and evaluate LLMs.

One key takeaway involves data quality, which
receives little attention in NLP. In contrast to other
fields like survey research and social sciences that
have developed established, systematic frameworks
for data quality assessment (Pipino et al., 2002;
Groves and Lyberg, 2010; Birkenmaier et al., 2024),
NLP research still largely lacks such frameworks
and, despite some recognition of the problems
(Bender and Friedman, 2018; Gebru et al., 2021;
Northcutt et al., 2021) and emerging efforts to sys-
tematize data quality approaches (Dang and Verma,
2024; Mishra et al., 2020), there is scant evidence
to suggest that common best practices are moving
in that direction.

A second takeaway concerns the use of
completion-based tasks. Our results and discus-
sion suggest that completion-based tasks should be
viewed with greater caution than they presently are,
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particularly for reasons associated with prompt sen-
sitivity. Unfortunately, the constraints commercial
LLM providers place on availability for alterna-
tives, e.g. use of likelihoods, stymie otherwise
potentially useful and creative solutions. We have
suggested that in the absence of general solutions,
finding ways to exploit relevant properties of the
problem may be a better, or at least complementary,
path forward.

A third takeaway concerns the pace of change in
NLP. We attempted replication because models are
constantly being updated. Having identified a prob-
lem with insufficiently constrained LLM output,
we introduced solutions (e.g. prompt rephrasing)—
only to find that by the time we were writing about
the effort, still more recent developments in struc-
tured output capabilities required their own experi-
mentation and evaluation, and, naturally, still did
not fully fix the problem. Our takeway here is
that the remarkably rapid change in NLP is both
a blessing and a curse: in general we obtain bet-
ter and better models and approaches, but there is
barely any time to actually think deeply when so
much effort is needed just to keep up. We would
suggest that the field could benefit from a dose of
slow science (Stengers, 2018), a perspective that
de-emphasizes performance targets, deadlines, and
market-based influences in favor of deeper thinking
and curiosity-driven progress.

Finally, it is worth considering here, as with any
attempt at creating an objective benchmark to mea-
sure the quality of a large language model, how
the metric being used relates to the actual goal be-
ing pursued. Achieving a perfect score—or even
a human-level score, like GPT-4—does not mean
that a model has necessarily captured the same gen-
eralizations about implicatures that humans have.
It may be that building or refining a model in or-
der to improve its score on the Ruis et al. (2024)
benchmark is not necessarily a productive way of
improving its actual ability to use implicature. The
broader take-away message is that we would do
well to reminder ourselves regularly that “when a
measure becomes a target, it ceases to be a good
measure” (Goodhart’s Law, Strathern, 1997).
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A Prompt Templates

Table 5 shows the original prompts from Ruis et al.
(2024). Those that were modified in our experiment
were changed to read “Finish the following text
with yes or no:” for the instruction.



Original template

Modified in
our experiment

Does the following response to the question imply yes or no?
question: <context utterance>

response: <response utterance>

implicature:

No

Finish the following text:

Esther asked "<context utterance>" and Juan responded "<response utterance>", which means

Yes

Is the implied meaning of the following response yes or no:
question: <context utterance>

response: <response utterance>

meaning:

What is the intent of the following response, yes or no?
question: <context utterance>

response: <response utterance>

intent:

Finish the following text:

Karen asked "<context utterance>" and William responded "<response utterance>", which means

Yes

Finish the following text:

Bob asked "<context utterance>" and Alice responded "<response utterance>", which means

Yes

Table 5: The prompt templates from Ruis et al. (2024) and whether they were modified in our experiment.
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