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Abstract

Our research provides empirical support that
LLM’s contextualized word embeddings have
captured deep and hierarchical syntactic struc-
ture. In 2019, Hewitt and Manning found ev-
idence that LLMs have captured features of
structural dependency parses within their word
representations; we extend this work by deploy-
ing their methodology on sentence structures
that are differentiated only in a constituency-
based account like Minimalism rather than a
dependency-based account. Our novel work
creates a dataset containing several carefully
selected sentence structures whose dependency
parses are identical, but whose constituency
trees differ due to to the size of the complement
(vP versus TP versus CP). We find differences
in the probe’s predicted distances that can only
be explained if the embeddings have indeed
captured some Minimalist structural difference
between these sentence types. The impact of
our work helps to realize Linzen (2019)’s ar-
gument that linguists can further the study and
understanding of LLMs and that the field of
NLP provides novel tools for further linguistic
research.

1 Introduction

Since the release of BERT (Devlin et al., 2019),
much research has been done to test and expand
the impressive performance of large language mod-
els. A subset of research interest lays in under-
standing what linguistic structures and knowledge
these models have acquired (Jawahar et al., 2019;
Belinkov and Glass, 2019; He et al., 2024; Waldis
et al., 2024; Kallini et al., 2024), including syntac-
tic (Clark et al., 2019; Chi et al., 2020; Kulmizev
et al., 2020; Maudslay and Cotterell, 2021; Arps
et al., 2022), morphological (Coleman, 2020; Anh
et al., 2024), and semantic knowledge (Nikolaev
and Padó, 2023; Kamath et al., 2024).

Our work extends this body of research by utiliz-
ing a probe method developed by (Hewitt and Man-

ning, 2019), which finds that a dependency parse
can be recovered solely from the contextualized
vector embeddings of a pretrained language model
like BERT (Devlin et al., 2019). We further these
findings by deploying the probe on sentence struc-
tures whose dependency parse is invariant (i.e., the
distance between a head and its dependent is always
1, see Section 2.1 for explanation), but whose hier-
archical distances vary depending upon the size of
a phrasal complement in a Minimalist constituency
framework (see Section 3.2 for details). In doing so,
we seek to discover whether large language models
like BERT have captured the complex hierarchies
and subsurface structures postulated by syntacti-
cians in the Minimalist Program. This work thus
follows in the research vein of Linzen (2019), who
argues that linguists and NLP researchers stand in
a unique position for collaboration to leverage the
skills and tools of their respective fields to better
understand, test, and develop the two bodies of
research.

2 Background

2.1 Syntactic Theories

In the field of NLP, there are two main approaches
to syntax that a researcher can utilize: a Depen-
dency Grammar (DG) approach or a constituency
grammar (CG), also known as a phrase-structure
grammar. In brief, Dependency Grammar focuses
more on the relationship between constituents with-
out needing to represent a sentence’s linearized
word-order, making it popular for work on lan-
guages with freer word order (Müller, 2019).1

The core of the theory centers around the concept
of valence, which indicates which words govern

1Various schools of thought in the theory have proposed
different mechanisms to derive linear order from a dependency
structure, including the idea that linear order is dictated by
surface syntactic rules (Müller, 2019). The author of this
approach, Ulrich Engel, published in 2014 in (Öhl, 2015),
though the original source is in German.
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(1) Dependency Tree

What did he eat yesterday

dobj
aux

nsubj tmod

root

Figure 1: An example of the dependency tree for the
sentence "What did he eat?" Note the flatter structure,
the one-to-one mapping of words to nodes in the tree,
and how each word has one and only incoming arc,
excepting the root.

which words in a sentence. The governing word in
a phrasal pair is considered the "head" and the gov-
erned word is its "dependent," sometimes called
its "valence" (Müller, 2019). Each sentence will
have one and only one "root," which is typically
the matrix verb of the sentence, that will have no
head itself. Thus, in a dependency tree, all words—
except the root—will have one and only one in-
coming arc from its head. Though a word itself
can head several other words, it itself can only be
headed by one other word (see Example (1)).

On the other hand, constituency grammars are
popular amongst many syntacticians and linguists
who have built theories off of the work of Chom-
sky and others who have refined various aspects
of phrase-structure/constituency-based grammars
(Chomsky, 1957, 1981, 1986, 1995). Phrase-
structure grammars are based around X-bar the-
ory and operations of Merge and Move (Chomsky,
1995) and their consequent traces (Chomsky, 1973;
Fiengo, 1977) (such as question formations where
"He ate chicken" transforms into "What did he
eat?"). After all syntactic operations are applied
and all relevant nodes have been moved and/or
merged, the end result is the sentence’s lineariza-
tion, meaning the final locations of the words in the
hierarchy should match what is actually uttered if
the tree is read from left to right (see Example (2)).
Constituency-based grammars (CGs) thus result in
trees with deep and complex hierarchies wherein
empty nodes must be inferred as the traces and
remnants of previous operations.

Like DG, many constituency theories incorpo-
rate the concept of valence, albeit with some modi-
fications. Some of Chomsky’s earlier work in the
theory of Government-Binding (Chomsky, 1981)
stipulates that certain categories (particularly the
lexical categories of Verb, Noun, Adjective/Adverb,
and Preposition in addition to the functional cat-
egory of Tense) head/govern/dominate other con-

(2) Constituency Tree

Figure 2: An example of a constituency tree for the
sentence "What did he eat?" Note the depth of the tree
and the movement of elements.

stituents.2 Later theories (Chomsky, 1995) refined
this by defining specific operations, such as Merge,
where the head element provides the properties
of the combined result (e.g., Verb eat + Noun
chicken = VerbPhrase eat chicken, not NounPhrase
eat chicken), and which enables the recursive fea-
ture of language (e.g., "The old lady swallowed
a fly that was then caught by a spider she later
swallowed that was...."), thus allowing for infinite
embeddings.

In short, both theories postulate a primitive build-
ing operation that allows for the combination of
two elements into a single, new element whose fea-
tures are determined by the head word, enabling
the recursive nature of language to appear. For DG,
this is through the dependency relationship, which
establishes the head; for CG, this is through the
Merge operation, which assigns the features of the
phrase by referring to the phrase’s head. The core
differences, meanwhile, can be summed up as:

1. Dependency Grammars use a one-to-one map-
ping between words and nodes in the tree.
Constituency Grammars more often use a one-
to-many mapping between nodes in the tree,

2A constituent A can govern another constituent C iff C
does not govern A, and there is no intervening element B that
governs A but not C.
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postulating branches and nodes that are not
overtly present in the spell-out.

2. Dependency Grammars root at the verb. In
Constituency Grammars, generally the Com-
plementizer Phrase (CP) or Tense Phrase
(TP)3 exists as the highest level, though it
is true that all sentences must have a verb in
order to valid.

3. Structurally, Dependency Grammars do not
distinguish between a head’s arguments (e.g.,
the subject or object of a verb) and its adjuncts
(e.g., modifiers, such as an adverb or prepo-
sitional phrase modifying the verb). The dif-
ference is left to the dependency label, but the
structure remains changed. In contrast, Con-
stituency Grammars, particularly Minimalism,
structurally distinguish between the two, and
even between argument types.

4. Dependency Grammars opt for reduced, flat-
ter, more horizontal representation of word-
to-word relationships. Constituency Gram-
mars opt for a more hierarchically complex,
vertically-organized representation.

When syntax is leveraged in NLP, the framework
adopted tends to be DG rather than CG (compare
14,900 ACL papers on Dependency Grammar as
opposed to only 3,630 on Constituency Grammar).
There are several reasons for this: DG’s trees are
simpler (nodes are in a one-to-one relationship with
words), DG is more static (dependencies are as-
sessed in-situ, meaning one needs not be concerned
whether or not an element moved to its location or
base-generated there), DG utilizes flatter represen-
tations (because elements are assessed in-situ, there
is no need to postulate more complex and empty hi-
erarchies that might explain how or why the word is
currently where it is), and its simplicity and avoid-
ance of contentious theoretical debates—such as
those in Minimalism—allow for faster and more
consistent inter-annotator agreement.

The DG framework is appealing to many in NLP
as it is relatively easy to learn and its compact and
efficient representation has proven to be salutary
to downstream tasks, such as question-answering,
relation extraction, summary (de Marneffe et al.,
2006), spam detection (Milner, 2024), sentiment

3Some languages do not include tense, like Chinese, and so
the top level is often represented as IP for Inflectional Phrase.

analysis (Liang et al., 2021), sentence classifica-
tion and matching as well as sequence labeling and
machine translation (Zhang et al., 2021), and more.
However, the theory fails to capture linear order,
nor does it explain the patterns and restrictions that
form licit sentences and their interpretations, and
it furthermore entirely skirts the issues of the deep
and complex hierarchies that have been argued for
in Minimalism. In this vein, we seek to investi-
gate to what extent LLMs have captured the deeper
and more complex syntactic structures proposed by
constituency grammar frameworks, such as Mini-
malism.

2.2 Probes
Since LLMs took the world by storm with their
impressive performance in multiple language tasks,
researchers have sought to understand what lin-
guistic properties LLMs have actually acquired. A
popular method is the probe method, first proposed
by Shi et al. (2016), which used the embeddings
from neural machine translation encoders to train
a logistic regression classifier in order to identify
what syntactic features were acquired by the mod-
els. This field of research and these probe models
are not concerned with improving state-of-the-art
performance; rather, they seek to investigate, or
"probe", what latent linguistic features a language
model has acquired.

The tasks specified by probes depend on the lin-
guistic feature under investigation (e.g., semantics,
syntax, etc.), but often utilize a pretrained language
model’s latent features, such as their vector rep-
resentations (Conneau et al., 2018; Jawahar et al.,
2019; Tenney et al., 2019b,a; Starace et al., 2023)
or attention mechanisms (Clark et al., 2019; Man-
ning et al., 2020).

One form of structural probe, developed by He-
witt and Manning (2019), found that the pretrained
contextualized embeddings of BERT (Devlin et al.,
2019) and ELMo (Peters et al., 2018) could be used
to recover dependency trees from those vector rep-
resentation of words. To find this, Hewitt and Man-
ning trained a linear transformation matrix to take
the contextualized word embeddings and project
them into a subspace where the squared Euclidean
distance between word nodes ultimately recovers
a dependency parse. That is to say, their probe’s
training objective was to learn to map words’ con-
textualized embeddings to new positions within
a subspace where the probe’s predicted squared
Euclidean distance between each head and its de-
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pendent is approximately 1.4

While Hewitt and Manning (2019) and others
(Chi et al., 2020; Kulmizev et al., 2020; Müller-
Eberstein et al., 2022; Eisape et al., 2022) have
found evidence that dependency structures are en-
coded within the contextualized vector representa-
tions, it remains unclear whether LLMs have ac-
quired the deep, hierarchically-complex structures
of constituency grammars such as those proposed
in the Minimalist framework. To this end, we uti-
lize the structural probe of Hewitt and Manning
and test sentence types whose hierarchical distance
varies in a constituency/Minimalist account, but
whose head-dependency distance does not vary in a
Dependency Grammar account. If the probe is sen-
sitive to the nuances of a constituency account, this
indicates that not only have the language models
captured something of the hierarchically complex
and subsurface structures of Minimalism, but that a
probe trained only to recover a dependency parses
is capturing constituency syntax for free.

3 Methods

Our work is not the first research to probe at con-
stituencies (Tenney et al., 2019b; Arps et al., 2022;
Kallini et al., 2024). However, these previous meth-
ods either focus solely at the phrase-level by seek-
ing to train a probe to recover a phrase’s boundaries
(Tenney et al., 2019b; Kallini et al., 2024) or by
training on the English Penn Treebank for their
probe (Arps et al., 2022). While constituency trees
represented in the English Penn Treebank (Marcus
et al., 1993) are deeper than their equivalent de-
pendency trees, they do not adhere to the binary
branching requirement postulated in Minimalism
and do not capture Merge and Move operations.
As such, the representations are not as rich nor as
complex as those which have been posited in the
Minimalist constituency framework.

For this reason, we opt for the novel approach of
utilizing the original Hewitt and Manning (2019)
structural probe that was trained to recover depen-
dency trees to probe for variations in constituency
hierarchies. To that end, our stimuli involve sen-
tences wherein the distance between a head and
its dependent is invariant in a DG account, but
whose hierarchical distance depends upon the sen-
tence structure as captured in the Minimalist frame-
work. The choice to probe for a dependency parse

4The specific mathematics and model information can be
found in Section 3.1.

as opposed to a constituency in fact allows us to
avoid several potential pitfalls of constituency trees:
namely that constituency trees make assumptions
about the underlying structure and may predispose
the probe to recover the constituency parses uti-
lized in the training data rather than probing for a
latent representation of constituency hierarchies as
captured by the model.

3.1 Computational Model
The structural probe by (Hewitt and Manning,
2019) stipulates a model M that produces a se-
quence of vector representations hl

1:n from an in-
put sequence of n words wl

1:n where l identifies
the sentence. A linear transformation B ∈ Rk×n

parameterizes the parse tree-encoding distances:

dB(hl
i,hl

j)
2 = (B(hl

i − hl
j))

T (B(hl
i − hl

j))

where i and j are the words in the sentence and
where the matrix B is trained to reproduce the gold
parse distances between each pair of words (wl

i,
wl
j) in each sentence for all the sentences within

the parsed training corpus T l.5 This training is ac-
complished through the gradient descent objective:

min
B

∑

l

1

| sl |2
∑

i,j

| dT l(wl
i, w

l
j)− dB(h

l
i, h

l
j)

2 |

In doing so, the objective seeks to approximate
the matrix that most closely reproduces distances
that align with the gold-standard distances. | sl |
is the length of the sentences, and the function
normalizes using the square of the sentence’s length
since each sentence contains | sl |2 pairs of words.

Hewitt and Manning (2019) trained their struc-
tural probe using BERT-large (cased) with 1024
dimensionality for all 24 layers. The probe was
trained with the objective of minimizing the L1
loss of the predicted squared distance with respect
to the true distance (i.e., the distance between a
head and its dependent should be 1; the distance
between the dependent of a dependent of a head
should be 2; and so on). They used Adam opti-
mizer (Kingma and Ba, 2014) with an initialized
learning rate of 0.001 with β = 0.9, β2 = 0.999,
and ϵ = 10−2 and an epoch maximum of 40 or
to convergence with a batch size of 20. Dev loss

5The authors found that training on squared distances and
using the square root to retrieve the final distance performed
better than using the direct distance. Hewitt and Manning
(2019) left the possible reasoning for this for future work.
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was calculated at each epoch; if the dev loss was
not a new low for the model, the optimizer was
reset with an initial learning rate multiplied by 0.1.
The probe was implemented using DyNet (Neubig
et al., 2017) and PyTorch (Paszke et al., 2019).

Probe evaluation was based on how closely the
predicted distances between word pairs align with
the gold parse structures, which were created by
converting the constituency trees from the English
Penn Treebank (Marcus et al., 1993) into depen-
dency parses.6 To measure this, the authors cal-
culated the minimum spanning tree for each sen-
tence’s predicted distances and scored the undi-
rected, unlabeled attachment score (UUAS), which
merely measures whether or not the proper word-
pairs are in a dependency relationship, ignoring
the matter of directionality (which indicates which
word is the head and which is the dependent in a
head-dependent pair) and labels.

3.2 Linguistic Data

To probe whether vector embeddings encode the
hierarchical distances captured by Minimalist con-
stituency trees, we utilize the filler-gap dependen-
cies that result from wh-question formation of
sentences with embedded sentential complements
(e.g., "What did she see [him eat __]"). By varying
the size of the complement taken by the matrix verb
and extracting out of that embedded complement,
we can vary the constituency tree’s hierarchical
distance while keeping dependency distances con-
stant.7

In traditional Minimalism, there is an accepted
order to the hierarchy of phrases. At the highest
level is the complementizer phrase, which intro-
duces whether the clause is interrogative or declara-

6It is important to note here that the constituency trees of
the Penn Treebank are not the binary branch trees with Merge
and Move operations as postulated in Minimalism.

7While our experiment utilizes filler-gap dependencies,
our probe method can be applied to any sentence structure
types whose constituency tree varies but whose relevant de-
pendency parse does not. Hewitt and Manning (2019) probe’s
training objective allows for flexibility in possible Minimalist
structures. Its training objective is such that a parent-child
relationship between a head and its dependent should return
a distance of approximately 1, while a "grandparent"-child
relationship (the dependent of a dependent of a head) should
return a distance of approximately 2, and so on. Using this fea-
ture, Kennedy (2025) deploys our probing method on declara-
tive Subject-Raising and Subject-Control constructions—the
former of which is argued to take a smaller TP complement
compared the latter’s larger CP complement—and finds that
the predicted Euclidean distance between matrix elements and
embedded elements are larger in the Subject-Control condition
despite the two structures having identical dependency parses.

tive; under the CP is the tense phrase, which hosts
tense information; the TP nests a verb phrase,
which can further be subdivided into a small verb
phrase (vP) also known as a voice phrase that takes
a VP complement itself (Adger, 2003).

Different verbs can vary in the type and size of
the complement they can take. At the largest level,
a verb can take an entire finite clause as its comple-
ment (see Example (3)). Examples of such verbs
include think, believe, suspect, claim, etc., which
can all optionally include an overt complementizer
like that or who.

(3) Full CP Complement
a. I think [CP (that) he ate the chicken]

The next smallest complement size is a non-finite
complement. The easiest one to discuss is the in-
finitive complement in sentences known as excep-
tionally case marked (ECM) (see Example (4)),
which include matrix verbs that take TP comple-
ments (Adger, 2003). ECMs are called exception-
ally marked because the subject of the embedded
clause receives its accusative case (rather than the
typical nominative case) from the matrix verb.

(4) ECM TP Complement
a. I expect [TP him to eat the chicken]

Another small subset of verbs in English allow for
phrasal complementation. This subset of verbs in-
clude causatives (e.g., make, let) and perception
verbs (e.g., see, hear, watch, feel) that take bare in-
finitives (see Example (5)). We follow in the steps
of (Sheehan and Cyrino, 2023) in analyzing these
as vPs, which we dub "bare vPs" to emphasize that
the nonfiniteness is not overtly realized with an
infinitival to as it is in ECMs.

(5) Bare Infinitive Complement
a. I saw [TP/vP him eat the chicken]

For our experimental design, we specifically
needed sentence structures in which the depen-
dency parse remained consistent, but the con-
stituency parse yielded differing distances between
two elements. For this reason, we leveraged the
ability for verbs to take complements of differing
sizes (vP, TP, and CP) and created wh-questions
(e.g., what did you see him eat/what did you expect
him to eat/what did you think he ate). Wh-question
structure was specifically selected as the distance
between the embedded verbal head (e.g., eat) and
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its dependent (e.g., what) is consistently 1 in all
conditions; however, in a Minimalist account, the
hierarchical distance between embedded verb and
its moved object depends on the size of the comple-
ment taken (vP, TP, or CP). For visualization, see
the trees in Appendix B, Examples (6)-(9).

To add further complexity, two more sets of
sentences were constructed that took advantage of
the recursive property by creating sets for double-
nested ECMs (e.g., What did you expect her to
want him to eat) and double-nested full-CP com-
plements (e.g., What did you believe she suspected
he ate).

Using only pronouns for the subjects, the min-
imum linear distance (meaning the number of
intervening words) between the extracted wh-
constituent and the embedded verb ranged from 5
(bare vP and single CP) to 6 (single TP) to 7 (dou-
ble CP) to 9 (double TP). Because the sentences
could not be started at identical linear distances due
to the presence of necessary words (such as to in
ECMs), the linear distance was increased incremen-
tally through the change of a pronoun (e.g., you) to
a nominal phrase (e.g., the professor) to a modified
nominal phrase (e.g., the brilliant professor) to a
possessive nominal (e.g., the brilliant professor’s
friend) to the inclusion of an adverb.8

Using the above schema, we created a total of
18,252 carefully constructed sentences that strictly
conformed to one of the five specific syntactic con-
structions that are well-accepted in traditional syn-
tax as demonstrating different syntactic hierarchies.

4 Experiment

For our experiment, we used the best-performing
pretrained probe from Hewitt and Manning (2019),
which they found to be the probe for Layer 16
and which they released and made publicly avail-
able on their Github.9 Our methodology sought to
discover whether the probe’s predicted squared Eu-
clidean distances between head-dependent words
were sensitive to hierarchical depth as postulated in
a Minimalist framework. In a DG framework, the
distance between a head and its dependent should
always be 1 across our five conditions. However, in
a Minimalist account, the size of the complements
(vP, TP, CP, TP-TP, and CP-CP) yields longer and
longer hierarchical distances between the moved

8For more detail on our dataset creation, see Appendix A.
9https://github.com/john-hewitt/

structural-probes

wh-object and the embedded verbs.
The contextualized embedding representations

of our 18,252 sentences were fed into the pretrained
probe, and we extracted the squared Euclidean dis-
tances between the new projections of the wh-word
and the embedded verb if and only if the mini-
mum spanning tree correctly established a head-
dependent relationship between moved wh-word
(the first word) and the in-situ embedded verb (the
last word). As our experimental design rests upon
comparing the predicted squared Euclidean dis-
tance of a dependency probe when given sentences
whose structures vary only in a constituency Min-
imalist account, we were only interested in sen-
tences in which the probe correctly identified the
head-dependent relationship because there is lit-
tle point in comparing the predicted dependency
distances of an incorrect dependency parse.10

4.1 Predictions

The structural probe was trained only to recover la-
tent dependency representations captured by the
pretrained BERT model. Thus, the probe has
no specific or overt reason to show sensitivity to
constituency-based distances. If the probe is sensi-
tive only to dependency representations, then the
five conditions should show no difference in dis-
tances predicted by the model. Alternatively, it is
possible that the contextualized vector representa-
tions have captured Minimalist-like syntax, but that
the dependency-trained probe is insensitive to such
features.

The more interesting outcome, however, would
be if the model’s predicted distances are affected by
the constituency distances. If predicted distances
are reflective of an influence of constituency dis-
tances, this would suggest 1. that the model itself
captures some representation of Minimalist-like
constituency in addition to dependency, and 2. that
the dependency representations themselves are sen-
sitive to constituency differences. Such findings
would have implications for modeling this distinc-
tion in the theory of Dependency Grammar.

If it is found that the probe is able to pick up on
constituency hierarchies, then we would anticipate
that embedded verbs with CP complements should
have the highest predicted distance as it has the
highest number of hierarchical nodes between the

10While the fail cases are of interest for further research and
investigation, for our current purposes, robust analysis could
only be conducted when the probe achieved its trained gold
parse.
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extracted wh-object and the embedded verb within
the constituency tree. ECM verbs that take TP
complements and perception verbs that take either
bare vP complements should trail behind this.

4.1.1 Dependency vs Constituency for Probes
As mentioned, our probe is intentionally trained
to recover dependency parses as opposed to con-
stituency trees. While it may seem intuitive to
utilize a probe trained to recover constituency trees
like Arps et al. (2022), we argue that using a depen-
dency probe for Minimalist constituency structures
actually has several advantages.

The logic behind linguistic probes is that in or-
der for them to be successful, the embedding rep-
resentation (or attention scores for some probes)
must encode some feature(s) of that linguistic phe-
nomenon in order for the probe to be able to solve
the task. However, one critique of probing meth-
ods is the concern that the probe may simply be
learning the linguistic task rather than revealing
latent features encoded within the representation
(Hewitt and Liang, 2019). Our stance is that using
a dependency probe to test for constituency-based
hierarchical distances avoids this possible liability.

The Hewitt and Manning (2019) probe is trained
to recover only head-dependency relationships such
that the distance between a head and its depen-
dent is approximately 1. While the constituency
trees for our stimuli will vary in the number of in-
tervening nodes between the extracted wh- word
and its verb (with the hierarchical distance being
largest with a CP complement followed by a TP
complement followed by a vP complement), the
dependency parses have an invariant distance of 1
(see examples (6)–(9) in Appendix B for visualiza-
tion). Because the probe isn’t trained to predict a
syntactic size difference between the complement
types, the predicted squared Euclidean distances
shouldn’t vary unless the probe is picking up on
some additional linguistic feature within the vector
representation. The training objective is naive to a
difference in the complement sizesm, and because
of this, the training objective cannot bias the probe
to output a desired structural difference. Therefore,
if the probe’s distances do vary in theoretically-
predicted ways, we can have a greater confidence
in significant results that constituency hierarchical
distances are captured within vector representations
and that such representations are utilized to some
extent to recover dependency parses. In this regard,
our methodology helps to address issues raised

by Maudslay et al. (2020) that an overly powerful
probe blurs the line between probe and parser.

The second benefit of using a dependency-
trained probe as opposed to a constituency-trained
probe is that we can avoid biasing certain de-
bated syntactic analyses. Kuznetsov and Gurevych
(2020) finds that the linguistic formalism utilized
can impact how a probe performs, both in its ac-
curacy scores and in the means through which
it makes predictions (e.g., which attention lay-
ers are utilized). A probe that seeks to recover
constituency parses will inevitably need to pick a
"gold" standard tree that includes structure whose
syntactic analysis varies even within the Minimalist
framework.

For example, we mentioned how perception
verbs are debated to take either a vP (Sheehan and
Cyrino, 2023) or bare TP (Felser, 1998) comple-
ment. Were we to train a constituency probe, we
would need to overtly pick one side of the argument
and would include training data that reflects one
analyses, thus risking biasing the probe towards
that particular analysis. Dependency parses, mean-
while, are minimalistic (but not Minimalist) in that
they make few theoretical assumptions with the
most important being that there exists a dominance
relationship between a head and its dependent. Us-
ing a probe trained for minimalistic dependency
parses lets us to remain as theoretically-agnostic as
possible within the general Minimalist framework
and allows us to probe for models’ representational
differences as opposed to imposing debated syntac-
tic structures upon the probe.

5 Results

Of the 18,252 sentences fed to the probe, 4,034
properly established a dependency relationship be-
tween the wh-word and the embedded verb.11 A
linear mixed effect model was then fit using the
constituency hierarchical representation (Embed-
Type), the linear distance between the target words
(LinDist), and the interaction of the two as pre-
dictors. EmbedType was a categorical predictor
that included perception verbs (BareVP), singu-
lar ECMs (SingTP), singular CP complements
(SingCP), double ECMs (DoubTP), and double
CP complements (DoubCP), which were all simple
coded with BareVP as the reference level. Linear
distance was a discrete variable. A by-Verb (the

11As mentioned, overall probe performance on these edge-
case sentences is not the focus of this research, but discussion
can be found in Appendix D.

277



Figure 3: Scatterplot of projected distances as a function of linear distance (LinDist) and size of the verbal
complement (EmbedType). There exists a stark difference between the larger CP complements and VP/TP
complements. Statistical analysis reveals a significant difference between all conditions when considering their
interactive effective with linear distance.

most deeply embedded verb; "eat" in our previous
examples) uncorrelated random slope was added to
the model.

In general, we can observe that as linear distance
increases, so does the projected distance (see Fig-
ure 3). This is not surprising as it is well known that
longer linear spans between dependencies tends to
worsen performance as the number of intervening
tokens are more likely to exceed that which is ob-
served in training (Tenney et al., 2019b). More
interesting is the clear divide in projected distances
for the CP-levels versus the TP and vP levels.

The linear mixed effect model revealed signifi-
cant main effects for singular TP and double CP em-
beddings (SingTP and DoubCP) compared to per-
ception verb embeddings (BareVP) (see Table 1).
That both SingTP and DoubCP reported projected
distances that were significantly longer than the
perception verb condition suggests that the probe
is sensitive to constituency size.12

Additionally, increases in linear distance signifi-
cantly corresponded to larger projected distances,
though this was anticipated. Furthermore, signif-
icant interactions were found between linear dis-
tance and SingTP, linear distance and SingCP, and
linear distance and DoubCP. The interaction be-
tween linear distance and DoubTP did not achieve

12That SingTP is significantly longer than BareVP but not
DoubTP likely comes down to DoubTP having a much smaller
sample size as this particular construction is more rare in natu-
ral data and yielded some of the lowest performance results
by the probe.

significance, but that may be due to the notably
fewer examples due to low UUAS performance.

Follow-up models were run on all categori-
cal predictors (BareVP, SingTP, SingCP, DoubTP,
DoubCP) to investigate interactions with linear dis-
tance. For all constructions, linear distance was
a significant factor and the projected distances of
all constructions, except DoubTP, increased with
linear distance. This is expected as the greater lin-
ear distances between the two target words yielded
poorer parse accuracy by the probe. That DoubTP
does not conform to this behavior is likely due to
it being a rare construction with few samples in
our statistical analysis as the probe struggled to cor-
rectly establish the proper dependency relationship
for this sentence structure.

6 Discussion & Conclusion

When linear distance is taken into account, a pic-
ture emerges in which the size of the complement
(vP vs TP vs CP) is distinctly captured by the
probe’s correlatively larger projected distances (for
further discussion, see Appendix C). These find-
ings reveal to us several important conclusions:

1. The significant and correlative differences in
projected distances between the different com-
plement types suggest that pretrained models
like BERT have learned representations that
approximate in some capacity this hierarchi-
cal distinction between different complement
sizes. Or, at the very least, it has picked up on
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Fixed Effects
Coefficient β̂ SE(β̂) t df p
Intercept 1.462e+00 2.915e-02 8.458e+01 50.144 2e-16
SingTP -1.692e-01 3.583e-02 9.217e+01 -4.723 8.30e-06
SingCP -2.437e-02 2.521e-02 9.242e+01 -0.967 0.336258
DoubTP -1.208e-01 9.775e-02 1.166e+03 -1.236 0.216882
DoubCP -1.474e-01 4.091e-02 1.752e+02 -3.602 0.000411
LinDist 3.918e-02 2.399e-03 3.214e+03 16.332 2e-16
SingTP:LinDist 2.387e-02 3.383e-03 3.855e+03 7.055 2.04e-12
SingCP:LinDist 2.804e-02 2.595e-03 3.942e+03 10.805 2e-16
DoubTP:LinDist 1.893e-02 1.083e-02 2.703e+03 1.747 0.080677
DoubCP:LinDist 4.480e-02 4.361e-03 3.657e+03 10.275 2e-16

Random Effects
Group Term Variance Std.Dev Corr.
Verb Intercept 0.009815 0.09907

SingTP 0.030851 0.17564 -0.03
SingCP 0.039091 0.19772 0.10 0.82
DoubTP 0.008259 0.09088 -0.34 -0.30 -0.35
DoubCP 0.036986 0.19232 -0.24 0.72 0.82 -0.12

Residual 0.010048 0.10024

Table 1: Number of observations: 4034. Groups: Verb
(26). P-values/df calculated using the Satterthwaite
approximation. Model formula: ProjDist Embed-
Type*LinDist + (1 + EmbedType | Verb). Marginal
R2 = 0.2735, Conditional R2 = 0.6487.

some quality of these constructions (e.g., fi-
nite vs non-finite) that corresponds to a greater
or lesser extent with a distance in which fi-
nite constructions establish further distances
from their moved object and their embedded
verb when compared to non-finite counter-
parts.13 This benefits the field of NLP by
helping to better understand what qualities
and features of languages these models have
implicitly learned.

2. That a probe, specifically one trained only to
recover dependencies, shows a sensitivity cor-
responding to a constituency-based analysis
indicates to us that the theory of Dependency
Grammar may have reason to specifically ac-
count for these relative distances. At the very
least, we must postulate that this dependency
probe is sensitive to finite constructions in that
they show longer dependencies compared to
non-finite constructions. The possibility of
needing to account for some nested hierarchy
in Dependency Grammar has already been
proposed in order to explain certain syntactic
patterns (Müller, 2019).

3. If pretrained models have indeed implicitly
learned constituency representations in some
capacity (or some parallel measure), then it
may be that for the purpose of further NLP
work, we do not need to incorporate the far

13Such coincidences already would be suspicious enough,
and warrant further investigation to draw more conclusive
interpretations.

denser and more complex constituency-based
grammatical representations. While such the-
ory has advantages and we find support for its
analysis as a means to explain our data, the
fact remains that the representations are ex-
tensive, requiring many branches, movement,
empty nodes, and redundancies. The struc-
tures, though detailed, are too cumbersome to
be easily implemented in NLP architectures,
nor is it as accessible of a theory to utilize;
scientists from other disciplines will have an
easier time quickly learning and easily repre-
senting a dependency structure rather than a
phrase structure. And if the dependency repre-
sentations themselves are already affected by
some constituency elements, then there may
be less of an impetus to require computer sci-
entists to learn an interesting and detailed but
laborious representation when the nuances of
the structures are already gotten for free in
the models’ geometries of their dependency
representations.

The findings of this work have implications for
the NLP field and the field of theoretical syntax.
Not only does this work find evidence for the rich,
subsurface syntax postulated by constituency theo-
ries such as Minimalism, but it furthermore finds
evidence that LLMs are not only capable captur-
ing generative Minimalist syntactic structures, but
that they already do so to some extent. Our results
also show support for the continuation of work like
Müller (2019), who proposes utilizing nested hi-
erarchies in Dependency Grammar to account for
the structures captured by Minimalism and now by
LLMs, too. Furthermore, the work teases as the
possibility of utilizing LLMs for linguistic research.
If these models are capturing theories postulated in
syntax, might they not also be suitable as a means
of testing theories when paired with human-based
judgments? Already, our results suggest that BERT
may favor (Sheehan and Cyrino, 2023)’s vP analy-
sis over bare TP accounts as the probe’s distances
are significantly shorter than ECM’s TP distances.

For the field of NLP, this provides evidence that
the linguistic properties captured by LLMs are
richer and more complex than previously realized,
and that utilizing a dependency framework is still
adequate as it appears that methods using dependen-
cies are likely capturing constituency hierarchies
for free. Overall, this work helps to realize Linzen
(2019)’s claim that the skillsets and knowledge of
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the fields of NLP and Linguistics complement each
other, and that the collaboration of two can help to
further the respective fields.
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A Stimuli

Our dataset utilized five structure conditions (Bare
vP, Singular TP, Singular CP, Double TP, and Dou-
ble CP). Our key verbs for the five conditions in-
cluded:

1. Bare vP: see, hear, watch

2. Singular TP: require, allow, want

3. Singular CP: think, suspect, claim

4. Double TP: expect + {require, allow, want}

5. Double CP: believe + {think, suspect, claim}

Additionally, we varied the subjects for our sen-
tences in order to vary the linear distance between
the wh-word and the embedded verb. These sub-
jects included:

1. Pronouns: you/I/she/he/they

2. Nouns: the {teacher/student/woman/man/
people}

3. Modified Nouns: the {brilliant teacher/new
student/clever woman/smart man/rowdy peo-
ple}

4. Possessive Noun: {the modified noun}’s
friend14

B Minimalist Trees

For illustrative purposes, we have utilized verb-
flavors and roots from the school of Distributed
Morphology. However, this is not of importance to
the hierarchical distance as it is calculated from the
merged result of the root and verb flavor. Other the-
oretical representation choices are a consequence
of personal ideology, but does not impact the criti-
cal distinction that CP > TP > vP/VP. Two analyses
for perception verbs are provided: one which uti-
lizes a bare vP à la Sheehan and Cyrino (2023)
(Example (9)) and one which utilizes a bare TP like
Felser (1998) proposes (Example (8)). Our work fa-
vored the bare vP analysis—and furthermore found
support for such an analysis—but a discussion on
the two approaches can be found in Appendix C.

While not included, DoubTP and DoubCP trees
contained hierarchical distance of approximately
18 and 22 and follow the same tree diagramming
as illustrated in Examples (6)-(9).

14When necessary for BareVP and SingCP, an adverb was
inserted before the mostly deeply embedded verb.

(6) CP Complement ("what" and "eat" constit
dist ≈ 15; dep dist = 1)

What did she think he ate

dobj

aux
nsubj nsubj

ccomp
root

(7) ECM TP Complement ("what" and "eat"
constit dist ≈ 13; dep dist = 1)

What did she expect him to eat

dobj

aux
nsubj dobj mark

xcomproot
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(8) Bare TP Complement ("what" and "eat"
constit dist ≈ 13; dep dist = 1)

What did she see him eat

dobj

aux
nsubj dobj

xcomp
root

(9) Bare vP Complement ("what" and "eat"
constit dist ≈ 11; dep dist = 1)

What did she see him eat

dobj

aux
nsubj dobj

xcomp
root

C Further Analyses

Examining only TP and BareVP’s difference from
CP complements may not fully suggest that con-
stituency structures are captured by pretrained lan-
guage models. If we look only at vP/TP versus CP,
it is possible that it is simply that BERT and the de-
pendency probe are sensitive to finiteness, with CP
being a finite phrase and vP/TP being non-finite.

Even under this possible interpretation, the im-
plications for Dependency Grammar would be sig-
nificant. Various theories of Dependency Grammar
have postulated different treatments of the matter
of finiteness; Lexicase (Starosta, 1988) and Word
Grammar (Hudson, 1984) incorporate case rela-
tions in order constrain case assignment, which
helps to assist in determining finiteness in English
since finite verbs are generally conceived of as
assigning nominative case in addition to incorporat-
ing features that help to distinguish the two struc-
tures (Starosta, 1997). However, the distinction
between the two is not well discussed, and there
exists no discussion that would explain why a verb
embedded under a finite CP complement would be
represented as being further away from a moved
wh-constituent compared to a nonfinite TP or vP
complement in the Chomskyan syntax. That CP
complements show a further distance from their
non-finite counterparts is already well captured and
explained in constituency-based theories; that the
dependency probe is sensitive to such distinctions
in their representation is worth pursuing in the De-
pendency Grammar framework in order to explain
this new data.

Additionally, the complements of perception
verbs have been debated amongst constituent lin-
guists (see Felser (1998) for bare infinitival TP
argument and see Sheehan and Cyrino (2023) for
bare vP argument analysis). Looking only at Fig-
ure 3, the distances for perception verb condi-
tion and singular ECM appear similar. However,
analyses reveal statistically significant behavior in
which ECMs showed significantly longer distances.
Given that neither are finite, it becomes difficult
to posit that the difference is due to some non-
finite quality. This leads us to suspect that such
differences are perhaps linked to a constituency-
based analysis in which perception verbs take a
complement whose size is smaller than that of the
well-established TP phrase in ECM constructions,
which lends support for the analysis in Sheehan
and Cyrino (2023).
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D Extra Figures and Results

The probe model frequently did not establish a de-
pendency relationship between the direct object
(the wh-question word) and the most deeply em-
bedded verb, achieving undirected unlabeled accu-
racy scores far lower than those reported in Hewitt
and Manning (2019), which ranged from 79.8%-
82.5%, depending on the model probed. This low
accuracy is likely due to various elements, such as
the linear distance being a negative factor (accu-
racy worsens with increased linear distance, which
is a well-known feature, or bug rather, of LLMs
and their bottle-neck struggle to handle long-range
dependencies) as well as questions being poorly
represented in probe’s training data and therefore
more prone to inaccurate parsing. The probe’s per-
formance on the various conditions can be seen in
Table 2.

In general, DoubTP achieves consistently low
performance, even at the first initial and simplest it-
eration (0.218 for a sentence such as "What did you
expect her to require him to eat?"), which is perhaps
unsurprising as this construction is rather rare in
natural data and is unattested in the probe’s training
data from the Penn Treebank (Marcus et al., 1993),
which utilizes newspaper articles, which is inher-
ently less likely to include questions, particularly
those that are extracted out of doubly-embedded
clauses. Similar performance appears—likely for
similar reasons—with the doubly-embedded CP
(DoubCP) which likewise performs poorly even at
the simplest form (0.167 for a sentence like "What
do you believe she thought he ate?"). Improving
performance on these structures is worth further
research.
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LinDist BarevP SingTP SingCP DoubTP DoubCP
4 Total 416 520

Corr. 144 285
Acc. 0.3462 0.5481

5 Total 832 312 520
Corr. 185 150 137
Acc. 0.2224 0.4808 0.2635

6 Total 728 312 624 840
Corr. 148 104 199 140
Acc. 0.2033 0.3333 0.3189 0.1667

7 Total 728 312 624 858
Corr. 128 95 195 114
Acc. 0.1758 0.3045 0.3125 0.1329

8 Total 728 624 624 702 858
Corr. 58 261 88 153 114
Acc. 0.0797 0.4183 0.1410 0.2179 0.1329

9 Total 728 624 624 702 858
Corr. 178 160 180 68 141
Acc. 0.2445 0.2564 0.2885 0.0969 0.1643

10 Total 728 624 624 702 858
Corr. 174 134 172 47 82
Acc. 0.2390 0.2147 0.2756 0.0670 0.0956

Table 2: The total number of sentences generated (Total) per condition per linear distance for the structural probe
experiment. The number of sentences that correctly established a dependency between the wh-question word and
the deepest embedded verb is also listed (Corr). Additional sentences were added as needed in order to achieve at
least approximately 50 sentences. The percentage of sentences that correctly established the proper dependency
relationship is also recorded (Acc.).
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