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Abstract

The impact of emotionality and abstraction on
language processing has been heavily studied
in monolingual and, to an extent, bilingual set-
tings. Most of these studies were experiments
with humans that yielded mixed results regard-
ing the exact effect of emotionality or abstrac-
tion on cross-linguistic tasks. To elucidate this
relationship between translation, emotionality,
and abstraction, we used a neural network to
model a bilingual mapping within an English-
Mandarin semantic space. We sought to un-
derstand what our quantitative results implied
about structural differences between English
and Mandarin lexical semantic spaces. Over-
all, our model translated concrete and emotion-
laden words more accurately than abstract
and emotionally neutral words, suggesting that
strong concreteness and emotionality are more
consistently perceived across languages. On
a more detailed level, our model learned clus-
ters of some related groups of words in both
languages, but failed to create a 1-to-1 seman-
tic mapping, with several types of errors we
hypothesize are due to linguistic and cultural
differences. Our results indicate interesting
possibilities for using quantitative word-level
modeling as a tool to analyze the overlapping
impacts of bilingualism, emotionality, and ab-
straction on each other.

1 Introduction

Emotionality and abstraction have long been impor-
tant topics of analysis in psycholinguistics. Emo-
tionality is typically measured along the dimen-
sions of valence - the positivity/negativity of a word
- and arousal - the level of activation a word inspires,
or "the negative probability of falling asleep" (Al-
tarriba and Sutton, 2004). Abstraction is mea-
sured through concreteness: the extent to which a
word denotes a physical object, action, or property.

*Equal Contribution. Authors listed in alphabetical order.

These measures form a basis for linguistic concep-
tual spaces and are dimensions along which words
are categorized and understood (Altarriba et al.,
1999; Altarriba and Bauer, 2004). A significant
body of work investigating the role of emotionality
and abstraction in the processing and interpretation
of words has been produced (Altarriba and Bauer,
2004; Altmann, 2001; Hinojosa et al., 2020; Majid,
2012). It has been shown, for example, that con-
creteness lends itself to quicker concept acquisition
and word processing, (Guasch and Ferré, 2021),
that highly emotional words are processed faster
than non-emotional ones (Kousta et al., 2011), and
that there is a "negative bias" wherein emotionally
negative stimuli take longer to process than emo-
tionally positive ones (Bromberek-Dyzman et al.,
2021; Mergen and Kuruoglu, 2017). While most of
these conclusions were drawn from monolingual
studies, it is worthwhile to study how emotionality
and abstraction impact word mapping in a bilin-
gual semantic space. How do these dimensions
characterize words in each language, and can these
characterizations be mapped accurately across lan-
guages?

Existing research in this area has shown that in-
creased levels of concreteness confer advantages in
monolingual word processing and bilingual word
translation (Binder et al., 2005; Guasch and Ferré,
2021; Ferré et al., 2017). These benefits may re-
sult from the referents of abstract words having
greater ambiguity and variety, and less tactile rep-
resentations, than concrete words (Pauligk et al.,
2019). Emotional valence confers similar process-
ing advantages in monolingual and multilingual
contexts (Kousta et al., 2011; Ferré et al., 2017).
This is likewise attributed to the constriction of the
available referent space, as strong values of emo-
tional valence highlight recognizability of certain
concepts (Kousta et al., 2011), which facilitates
processing of those concepts’ lexical representa-
tions. This effect is known to interact with concrete-
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ness levels, with enhanced effects for more abstract
stimuli (Kousta et al., 2011; Altarriba and Bauer,
2004). In summary, words with high valence or
concreteness represent concepts with increased rec-
ognizability, and confer processing advantages due
to their emotional specificity or tactile imageabil-
ity, respectively. We hypothesize the contexts in
which such words are used reflect this. Specif-
ically, there should be more similarity across the
contexts in which a concrete word is used, narrower
in variation than the contexts of abstract word us-
age. While some recent research in cross-linguistic
semantic alignment has suggested that concreteness
is uncorrelated with alignment, it was also found
that semantic domains with “high internal coher-
ence” have a “low dimensionality” that “seems to
enable high alignment” (Thompson et al., 2020).
This finding suggests that the narrower the variation
of a given concept’s associations, the greater ease
of cross linguistic alignment. If this is the case,
then our model should perform better on words
with narrower contextual variation.

The majority of bilingual studies on this topic
have focused on sequential bilinguals and the dif-
ference between L1 and L2 processing (Sharif and
Mahmood, 2023). The literature on the impact
of emotionality and abstraction for bilingual pro-
cessing has come to widely varied conclusions that
disagree based on the study structure and language,
the words used to test processing, and even the pop-
ulation discrepancies among studied bilingual com-
munities (Ferré et al., 2017). Given these results, it
is reasonable to turn our attention to simultaneous
bilinguals. They have learned both languages as
L1s, and the L1/L2 discrepancies (e.g. age and con-
text of L2 acquisition, and frequency of L2 usage)
that affect processing tasks would likely have less
of an impact (Liao and Ni, 2022; Pavlenko, 2012;
Ponari et al., 2015). This would create a more
even space in which to study cross-language dif-
ferences in emotionality and abstraction. However,
despite acknowledgment that this is a promising di-
rection of study, there are only a handful of papers
investigating how simultaneous bilinguals process
emotionality and abstraction (Sharif and Mahmood,
2023). Due to the lack of research into simultane-
ous bilingualism and given the extractable nature of
representations in computational modeling, using
computational methods to simulate simultaneous
bilingual spaces could yield fruitful results.

Computational modeling of language has a long,
interdisciplinary history of usage in linguistics and

psychology (Grishman, 1989; Krahmer, 2010; Ju-
rafsky and Martin, 2008). It benefits from using
a diverse range of language corpora instead of be-
ing restricted to participants with highly specific
language experience. We postulate that if a model
learns the contexts in which words with varying
concreteness and emotionality are used across lan-
guages, it could mirror the patterns of simultaneous
bilingual human participants in cross-linguistic pro-
cessing tasks, such as interlingual lexical decision
tasks or translation pair production tasks. Such a
model would yield large amounts of information on
how the two dimensions impact word translation
and semantic space mapping in a bilingual environ-
ment, as the model’s outputs would provide explicit
access to cross-linguistic representations of words
that can be visualized to understand their structure.

Thus, in this paper, we develop a word-level
neural network translation model for English and
Mandarin Chinese. Given pretrained monolingual
embeddings from two languages, our model’s goal
is to learn a simultaneous semantic mapping be-
tween the two languages. While simpler alignment
methods, such as Orthogonal Procrustes (Schöne-
mann, 1966), offer a useful baseline for aligning
embedding spaces, they assume a strict one-to-one
correspondence between words across languages.
This assumption does not hold in our setting, where
an English word can have multiple valid transla-
tions in Chinese depending on context. In contrast,
our encoder-decoder model can implicitly learn
one-to-many mappings and better capture the com-
plexity of cross-linguistic semantics.

We also considered using more modern architec-
tures, such as Transformer-based models (Vaswani
et al., 2017), which are widely used in contempo-
rary neural machine translation. However, Trans-
former models operate on subword token sequences
rather than whole-word embeddings, making their
learned representations harder to interpret in terms
of cross-lingual semantic structure. Since our goal
is to analyze how emotionality and abstraction
affect translation at the word level, the encoder-
decoder framework offers a more interpretable and
semantically meaningful approach.

By testing the model’s translation abilities on
words with different levels of emotionality and
abstraction, we can investigate the impacts of
differing emotionality and abstraction on cross-
linguistic processing, and analyze the between-
language structure of the two dimensions. As we
hypothesize the contexts of word use reflect the
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traits of the concepts they represent, we theorize
that our model, through learning such contexts,
will have greater translation performance on words
with greater emotionality and concreteness levels,
reflecting results from prior human studies (Ferré
et al., 2017). Our model’s results are interpreted
in the context of using computational modeling to
improve accessibility of further research into two
related areas: How emotion and abstraction varies
structure between languages, and the bilingual pro-
cessing of these categories. 1

2 Methods

2.1 Data
We chose English and Mandarin Chinese as our lan-
guages of investigation due to the relatively high
accessibility of emotionality/concreteness ratings
and corpora for them, as well as the accessibility
of simultaneous bilingual participants in the event
of a human-participant extension for this study.
Our training and testing data consisted of 38,000
pairs of English words and their Chinese transla-
tion equivalents. These pairs were sourced from
6 different online English-to-Chinese dictionaries
- Cambridge, Yabla, MDBG, Facebook MUSE
dataset, ECDICT, and CEDICT (Cambridge, 2024;
Yabla; MDBG; Conneau et al., 2017; Lin, 2024;
CC-CEDICT). We obtained these pairs by query-
ing each dictionary from a list of 119,354 English
words taken from the UNISYN English lexicon,
altogether covering a great variety of emotional,
abstract, and concrete words. All models in this pa-
per used the pretrained, 200-dimensional English
and Chinese embeddings, created by the Tencent
AI lab via a bidirectional skip-gram model. To en-
sure total overlap between the training data and the
pretrained embeddings, preprocessing was done on
the training data to filter out any pairs that included
words not in either set of embeddings.

After obtaining our dataset, it was separated into
the three aforementioned classes of words: con-
crete, abstract, and emotional. This was done by
using an online database of 40,000 English words
rated on mean concreteness/abstraction in a 5 point
scale from 1 (abstract) to 5 (concrete) (Brysbaert
et al., 2014). This database was then split into two
categories. Words with a lower concreteness rating

1There are many types of bilinguals; we assume both of
the model’s lexicons are stable and well defined, similar to
simultaneous bilinguals’. That is, we aimed not to model the
acquisition of a lexicon but rather to model the processing
behind mapping two fully formed lexicons.

than the median rating were categorized as abstract,
and words with a higher concreteness rating than
the median rating were categorized as concrete.
Words within 1 point of rating from the median
were then categorized as “weak” abstract and con-
crete words. Words that had exactly 2,3, or 4 as
a rating were excluded, as these were the exact
points on which we divided our dataset. Emotion
words are split into two categories: emotion label
words, or words that serve as representations for
emotions, and emotion-laden words, words with
high emotional values/associations. Using separate
databases of 497 emotion label words and 6453
emotion-laden words (Zupan et al., 2023; Moham-
mad and Turney, 2013), we identified the words
in our set that fit into either of these categories to
generate our emotion word set. Emotion words are
contextualized by their arousal and valence ratings,
or how pleasant/unpleasant and how intense a word
is. We utilized a dataset of these ratings for 14,000
English lemmas (Warriner et al., 2013) to tag and
measure the emotional properties of our emotion
words. As many emotion label words, such as
"grave", are polysemous with emotion-laden words,
we collapse the two categories into a singular emo-
tion word category for the purpose of testing.

We partitioned a lemmatized version of our
dataset (lemmatized using NLTK WordNet lem-
matizer (Bird et al., 2009)) by comparing every
word in these datasets against our list of concrete,
absolute, and emotion words. With this, we were
able to create a dataset split across the three cate-
gories. Each category’s data was then split into 10
equal batches, then each batch was linked across
categories. This way, we had proportional chunks
of the dataset to train or test on that each contained
10 percent of all the concrete, abstract, and emo-
tion words. This was done to ensure each batch
more consistently reflected realistic proportions of
all categories.

2.2 Latent Space Transformation
A common challenge in training Neural Networks
(NNs) is the variability of the learned latent rep-
resentations, even when the task and data distri-
bution remain fixed. Stochastic factors such as
weight initialization, data shuffling, and hyperpa-
rameter settings can lead to different latent spaces
across training runs (Wang et al., 2018). While
these embeddings may vary in their absolute coor-
dinates, they often preserve relative distances and
differ only by an isometric transformation. This
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Figure 1: Architecture design of the models in this paper. Note that the trained weights from the Zh-Zh Autoencoder
are directly transferred to the decoder in En-Zh Encoder Decoder model, as pointed by the dotted line.

variability complicates tasks like comparing rep-
resentations across models or reusing pretrained
components. To address this, Moschella et al.
(Moschella et al., 2022) proposed using relative rep-
resentations—computed as cosine similarities be-
tween selected anchor words and the rest of the vo-
cabulary—to provide a stable, geometry-invariant
alternative. By transforming the original latent
space to the one represented by relative embed-
dings, Moschella et al. demonstrated the desired
invariance to isometric and scaling transformations,
which makes zero-shot stitching of models possible.
Adopting the relative embeddings in our models
should presumably improve the translation accu-
racy as the latent spaces for English and Chinese
are invariant to the stochastic factors mentioned
above and are optimal in encoding the translation
information after transformation.

Mathematically, the transformation is achieved
as follows. Given a training set X, an embedding
function Eθ : X → Rd parameterized by θ is
learned to map each sample x(i) ∈ X to its absolute
representation ex(i) = Eθ(x

(i)). To transform ex(i)

to relative representation, a subset A ⊂ X is chosen
as the anchor set. For every training data x(i), a
cosine similarity score

SC(ex(i) , ea(j)) =
ex(i)ea(j)

||ex(i) ||||ea(j) ||

is calculated with respect to a(j) ∈ A. Then, the
relative representation is calculated as

rx(i) = (SC(ex(i) , ea(1)), . . . , SC(ex(i) , ea(|A|)))

To generate the anchor word set, we did a single ran-
dom sample of 200 English words from a uniform

distribution over all possible words in our dictio-
nary, following the procedure detailed in Moschella
et al. We used the Mandarin translation equivalents
of the English words to form the Mandarin anchor
word set.

2.3 Model Design

To translate from English to Mandarin, we devel-
oped an En-Zh encoder-decoder model, trained
on our custom dictionary. The model uses 200-
dimensional relative embeddings for English input.
During training, the encoder compresses the infor-
mation from these embeddings into a latent space.
This encoded information is then mapped to its cor-
responding Mandarin translations by a pre-trained
decoder. The decoder utilizes weights from a Zh-
Zh autoencoder trained specifically for this map-
ping process, enabling effective translation from
English to Mandarin. The code can be found here2.

2.3.1 Zh-Zh Autoencoder
The Zh-Zh autoencoder was trained to learn the
weights connecting the Chinese relative embed-
ding layer to its one-hot vector representation (a
binary vector where only one element is 1, indicat-
ing the presence of the Chinese word, and all other
elements are 0). As shown in the left of Figure
1, the relative embedding for a specific Chinese
word is selected by the one-hot vector. The autoen-
coder then learns the weights that transform the
embedding back to the corresponding one-hot vec-
tor. To expedite training, we initialized the weights
for this mapping as the transpose of the pretrained
weights from the one-hot vector to the embedding

2https://github.com/Jenniebn/wordLevelTrans
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layer rather than random initialization. The learned
weights were then used in the decoder of the En-
Zh model to map the Chinese embeddings back
to one-hot vectors. The autoencoder was trained
using the Adam optimizer with cross-entropy loss,
with a starting learning rate of 0.01.

2.3.2 En-Zh Encoder Decoder
Given the possibility of multiple correct Mandarin
translations for each English word, the En-Zh
model’s training objective is framed as a multi-
label classification task. The model aims to pre-
dict a set of Mandarin translations by learning the
mapping between the English and Mandarin latent
spaces. As shown on the right of Figure 1, a random
set of one-hot encoded English words are input to
the model, and processed through a 75-dimensional
hidden layer with leaky ReLU activation. With
frozen weights from the Zh-Zh autoencoder, the
decoder converts the vector into corresponding vec-
tors representing the translated Mandarin words. A
trainable bias term is added before the output to ad-
just the decision threshold from 0.5. A binary cross-
entropy (BCE) loss weighted by positive classes
is employed to address the class imbalance. The
model is trained using the Adam optimizer with an
initial learning rate of 0.01.

The positive class weight for the BCE loss was
determined empirically. Initially, without a positive
class weight, the model failed to predict any trans-
lations, as the penalty for incorrect predictions was
too small. Given that only a few out of 95,685 pos-
sible Mandarin words corresponded to the correct
translations, the model defaulted to predicting zero
for every Chinese word, effectively avoiding any
meaningful output. Conversely, when following the
recommended positive class weight from the doc-
umentation (PyTorch, 2025)—where the weight
is set based on the ratio of negative to positive
examples—the model produced excessively high
recall, generating a wide range of Mandarin words
with little precision. After empirical tuning, it was
found that using just 2% of the recommended posi-
tive weight provided the best balance, significantly
improving precision while controlling recall.

3 Results

3.1 Model Performance

Given the challenge of selecting the correct Man-
darin translations from nearly 100,000 possible
words, our primary focus is not on achieving high

Table 1: Model performance in training, validation and
testing dataset

Macro Metric

Precision Recall F1

Training 0.006 0.035 0.01
Validation 0.003 0.006 0.004
Testing 0.003 0.006 0.004

absolute performance but rather on analyzing the
model’s relative performance across different word
categories. Despite this inherent difficulty, after
training, the model achieved an F1 score of 0.004
on the test set, which is 40% of its training F1
score (0.01), as shown in Table 1. This suggests
that the model generalizes its learned patterns to
new data, even if overall performance remains low.
Notably, the model favors recall over precision,
capturing many possible Mandarin translations for
each English word but often failing to match the
exact dictionary translations.

3.2 Word Class Performance

Our model performs better on concrete words and
emotional words as shown by Table 2, with a sig-
nificant difference in the translation accuracy of
concrete vs. abstract (p < 0.001), concrete vs.
unknown (p < 0.001), and emotional vs. non-
emotional (p < 0.005), indicating that translation
accuracy is driven by both the concreteness and
emotionality of a word. Out of all classes, the best
performance is achieved on the concrete emotional
words with a translation accuracy of 14.36% on the
testing set.

We hypothesized that the model would translate
concrete words with the highest accuracy as they
represent tangible, physical objects. For example,
a table is the same in America and China, but the
feeling of shame in English may have different cul-
tural or linguistic subtleties in Chinese. As shown
by Table 2, out of all word classes, the model trans-
lates the concrete words with higher accuracy than
the other 2 classes. Similarly, we hypothesized that
emotional words would be more accurately trans-
lated than non-emotional words as they represent
concepts that are highlighted and more richly de-
fined by their emotional properties, and thus more
narrow in the contexts in which they can be used.
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Table 2: Model Performance on Word Classes in the Testing Set

Word Class Emotion Class Size Translation Accuracy Example

Concrete Emotional 195 14.36% grave, sweet
Non-Emotional 684 8.48% scallion, raincoat

Abstract Emotional 299 5.69% improve, depressed
Non-Emotional 536 4.66% control, overall

Unknown Abstraction Emotional 42 4.76% committed, bothering
Non-Emotional 914 3.39% biking, roadbed

Figure 2: English Embedding Space from the Testing
Data

3.3 Error Analysis

In order to better investigate how emotionality and
contextual similarity are preserved between lan-
guages, we undertook a qualitative error analysis
comparing the distribution of English input words
to the distribution of model outputs in the Man-
darin embedding and valence/arousal spaces. We
broke down the different types of words that the
model errs on into three dimensions of analysis.
For the purpose of this analysis, we only looked
at words with multiple outputs and valence and
arousal ratings in both languages.

First, we observe whether the model outputs for
each word are spread out or if they cluster in a par-
ticular area. We also check the distance of each
cluster of outputs for a given input word relative
to other input words and their clusters. As part
of this, we examine how similar the distances be-
tween input words in English embedding/valence

Figure 3: English Valence and Arousal Ratings from the
Testing Data

spaces are to distances between output clusters in
the Mandarin embedding/valence spaces. Lastly,
we see whether the valence and arousal of input
words in the English spaces are similar/in the same
areas as their output clusters and target Mandarin
equivalents. By looking at which words our model
exhibits with what combinations of behavior, we
can infer the different types of error and why they
may have occurred.

The first type of error occurs with input words
that have the following two features. One, their
outputs group together in the Chinese embedding
space in similar ways to words near them in the
English embedding space. Two, they have simi-
lar valence/arousal to the various Chinese outputs.
One example is the word "cantaloupe", seen in Fig-
ures 2, 3, 4. When the model errs on a word in
this way, it fails to return one of our expected tar-
get translations, but it often still has outputs that
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group together near where our target term is in
the embedding space. Errors on words like these
show our model is good at finding regions of the se-
mantic space that contain words similar to a target
rather than narrowing in on the specific word itself.
These errors are expected, as in these cases our
model learns an appropriate approximate mapping
between the lexical semantic spaces, but this map-
ping does not contain the best translation(s) given
in dictionaries. As we obtained a set of correct
translations for the model to reference via dictio-
nary validation rather than human rating or parallel
corpora, our “correct” translation set is somewhat
inflexible and potentially not entirely representative
of possible translations defined by real language
use.

The second type of error appears with words that
have model outputs that are spread out in both the
Mandarin embedding and valence/arousal spaces,
such as "hungry". Our model erring on such words
implies an issue with either our data or our model
architecture/parameters, such that our model can-
not make confident guesses on what such words
look like when translated.

The third type of error involves clustering and a
similar structure between spaces as in the first type
of error, but it also shows specific discrepancies
in emotionality such as flipped valence or arousal
in the Mandarin valence/arousal space. Such ex-
amples appear to have model outputs with strong
clustering, and investigation into output meanings
shows the potential for such errors to be due to
cross-cultural differences in the given words. In
"bashful", for example, outputs hone in around
a higher arousal value as opposed to its negative
arousal value in English, and the outputs are words
like "sexy". These discrepancies hint at these spe-
cific words being conceptualized differently in Chi-
nese but still having solid enough associations for
our model to have confident guesses about them,
albeit being incorrect, possibly as a result of these
words being more difficult to translate between
these languages for specific cultural differences.

4 Discussion

4.1 Implications/applications of Results

In this paper we have proposed a computational
method of exploring how transferable the di-
mensions of emotion and abstraction are cross-
linguistically. We hypothesized that a word level
machine translation model could learn how to align

the semantic spaces of two given languages, which
would then provide a direct method of investigat-
ing how words are retrieved across languages along
these dimensions of emotion and abstraction.

As hypothesized, our model had better transla-
tion performance for concrete and emotional words
than for other words, mirroring the patterns of hu-
man participant results. We specifically compared
our results to "simultaneous bilinguals", as finding
participant groups with nearly equal native-level
fluency in two languages theoretically controls for
language proficiency. (Ferré et al., 2017).

Congruent to previous psycho-linguistic liter-
ature, our model has higher accuracy on con-
crete/weak concrete words as opposed to abstract
words (Guasch and Ferré, 2021; Ferré et al., 2017).
Intuitively, this makes sense, as concrete words
have more imageable referents in the world com-
pared to more abstract concepts. While our model
has no built-in cognition of referents in the world,
it can learn patterns of contextual usage that may
differentiate concrete words from abstract ones.
Furthermore, when data was sufficient, our model
showed higher accuracy on translations of emotion-
laden/label words than on unknown/non-emotional
words. This also agrees with prior literature
(Kousta et al., 2011; Ferré et al., 2017).

This human-model congruence provides further
evidence for the presence of certain distinct fea-
tures that make "emotional" and "concrete" words
more recognizable than their neutral and abstract
counterparts, respectively. Previous literature has
investigated the effect of emotionality and abstrac-
tion within languages of simultaneous bilinguals
(Ferré et al., 2017).

Our model uses pre-trained word embeddings,
which are developed from the contexts in which
given words are used. Given this, our model better
recognizing concrete and emotional words could
mean that these word types have greater consis-
tency in their contexts compared to their abstract
and non-emotional counterparts. Similarly, in-
creased concreteness and abstraction of words have
been shown also to facilitate word processing in
human participants. This suggests that context can
be utilized to detect words that represent concepts
that are more recognizable/processable due to such
values. More direct confirmation of the encoding
of concreteness and abstraction in context and em-
beddings could be checked for via performance
analysis of a concreteness/emotionality classifier’s
agreeability with human ratings.
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Figure 4: Mandarin Embedding Space Examples

One avenue of further research would be to vali-
date our findings with English and Mandarin simul-
taneous bilinguals. As previous investigations into
emotion and abstraction have often used within-
language tasks (Ferré et al., 2017), an interlingual
lexical decision task that presents both Mandarin
and English stimuli within one experiment could
provide more insight into how emotion and abstrac-
tion are processed in cross-linguistic contexts.

The agreement of the model with human trends
of emotion/abstraction processing suggests poten-
tial for further research into the utilization of word-
level models as a point of comparison to human
processing of similar affect categories as explored
here. These models could be used as tools to as-
sist with experiments that would typically require
hard-to-recruit participant groups, specifically si-
multaneous bilinguals. As our model requires
pre-trained monolingual embeddings from two lan-
guages, rather than parallel translation data, it could
be more accessible than recruiting simultaneous
bilinguals for preliminary investigation depending
on the language groups one wishes to study.

To extend more directly on this study, one could
investigate other languages in addition to Mandarin
and English in a similar model architecture as ours
to see if results vary as a function of language re-
latedness. One potential option could be Japanese,
to distinguish the effects of historical influence and

linguistic relatedness. This could be a new way to
investigate how universal the concepts of emotion-
ality/concreteness are in human cognition.

4.2 Error Analysis Implications and
Applications

Looking back at the error analysis in Section 3.3, a
question arises as to what implications/applications
we can discern from the three kinds of errors de-
scribed earlier. Recall that one of the dimensions
of error is whether the model outputs are located
in the same approximate region of the lexical and
emotional space as their input. Depending on how
similar/dissimilar inputs and outputs are on this
metric, different errors can be considered “more
correct” or “less correct” than others.

This has interesting implications in the context
of the third type of error, which involves words
like "bashful", i.e., those that retain strong out-
put clustering and similarity between embedding
spaces, but vary in valence and/or arousal across
the spaces. Many words of the third error type also
have Mandarin outputs that intuitively seem more
semantically dissimilar to the English input than
expected. One such example is our model relat-
ing “bashful” to Chinese outputs that comment on
attractiveness, like “sexy”. This suggests that the
acceptable contexts in which to use a word vary
as a function of society/culture. This also aligns

40



with recent semantic association research which
found that cross-linguistic semantic alignment of
sets of concepts is heavily impacted by the levels
of cultural similarity between the speakers of given
language pairs. (Thompson et al., 2020). Further
investigation is warranted to quantify how cross-
cultural variation may interfere with or facilitate
the mapping of concepts across languages, and how
to better contextualize cross-linguistic research re-
sults by it.

The arousal/valence of both target words and
their associated output clusters differing across lan-
guages in such cases implies that some concepts,
and the contexts their representations are used in,
can vary exceptionally depending on cross-cultural
differences. This suggests promising applications
for using further statistical/machine learning mod-
els to quantify how emotional sentiment can vary
cross-culturally within and across languages as a
factor of various cultural categories, such as reli-
gion or types of personality traits. Furthermore,
a question arises as to whether or not congruence
of cross-linguistic emotional sentiment is a con-
founding variable in machine translation model
performance.

5 Conclusion

This research developed a neural network model
using relative word embeddings to investigate the
impacts of emotionality and abstraction on a bilin-
gual semantic space mapping. Our model’s max-
imum accuracies were 14.36% for concrete emo-
tional words and 8.48% for concrete non-emotional
words. An in-depth error analysis revealed that
although the model didn’t learn word-to-word map-
ping, it generally achieved a mapping of sub-
regions onto each other, with a handful of errors
being due to a lack of data and cultural differences
impacting word representations. The model’s per-
formance agrees with previous results of emotional
and concrete words providing a processing advan-
tage, and furthermore suggests that this processing
advantage is cross-lingual.

Limitations & Future Work

Our most glaring limitation is the issue of polysemy
- a word having multiple meanings. Polysemy can
lead to lower translation accuracy due to differing
levels of emotionality and abstraction in the differ-
ent meanings of polysemous words such as "grave".
Some secondary limitations are that our embedding

visualization compresses a 200 dimensional seman-
tic space into 2 dimensions, leading to information
loss, and that we use full correctness as a criterion
for the model. Utilizing an information theoretic
measure such as cross entropy would allow for
more flexibility and sensitivity, and could reduce
the impact of polysemy as well. Finally, our model
with one hidden layer restricts the amount of com-
plex information it can learn. For further research
we suggest taking polysemy into greater consider-
ation and increasing the complexity of the neural
network model. Another interesting extension of
our work would be validating our results with an
English-Mandarin simultaneous bilingual popula-
tion, which would provide a direct comparison of
human vs. machine performance and serve as a
benchmark for future emotionality or simultaneous
bilingual research.
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