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1 Introduction

A primary goal of linguistic theory is to explain
why certain kinds of languages are underattested.
One methodology that has had success in explain-
ing phonological typology has been artificial lan-
guage learning, in which participants are trained
for a short period of time on a synthetic language
that was designed to test the learnability of a partic-
ular kind of pattern (for a review of this literature,
see Moreton and Pater, 2012a,b). Often, the goal of
these experiments is to see if participants’ learning
biases in the lab might explain typology by show-
ing that underattested languages are more difficult
to acquire (see, e.g., Wilson, 2006; Finley, 2008;
Glewwe, 2019).

However, learning biases seen in an experimen-
tal setting do not always match typological trends.
Moreton and Pertsova (2014) implemented a set of
patterns introduced by Shepard et al. (1961, hence-
forth, Shepard Types) as phonotactic restrictions
and taught them to participants in an artificial lan-
guage learning experiment. They found that partic-
ipants’ preferred patterns failed to mirror typolog-
ical trends in a database of attested phonological
generalizations (Mielke, 2008).

Here, I model the acquisition of phonotactic pat-
terns that align with the six Shepard Types tested
by Moreton and Pertsova (2014) using a maxi-
mum entropy phonotactic grammar (Hayes and
Wilson, 2008; Moreton et al., 2017) equipped with
Probabilistic Feature Attention (Prickett, 2023).
This model predicts the biases seen in Moreton
and Pertsova (2014)’s experimental results early
in learning, but by the end of learning reflects the
trends present in phonological typology. These re-
sults could help explain the differences observed by
Moreton and Pertsova (2014) between artificial lan-
guage learning and typology, since the latter could
be shaped by more long-term learning biases.

Figure 1: Shepard Type examples using the features
[±black], [±circle], and [±large]. Boxes around shapes
show how stimuli could be divided up in each type.
Taken from Moreton et al. (2017).

2 Background

2.1 Shepard Types

Shepard et al. (1961) found that humans were bi-
ased toward certain kinds of patterns when learning
in an experimental setting. They used patterns in-
volving 8 stimuli, where each stimulus could be
uniquely identified with three features. The shapes
in Figure 1 show an example of such a stimulus
space. They found that out of the six possible
ways of dividing up the space into two equally
sized groups, their participants learned some divi-
sions more quickly than others. The roman numer-
als in Figure 1 show the relative ease with which
each type was learned in their original experiments
(with lower numbers applied to easier Types and
dotted lines between Types representing inconsis-
tent/marginal differences in learnability). For a
review of the literature on Shepard Types for non-
linguistic patterns, see Kurtz et al. (2013).

Moreton and Pertsova (2014) implemented the
Shepard Types as phonotactic patterns (where the
three features were phonological and the stimuli
were words). Their results showed that in this con-
text, the Shepard Types were learned in the order
(from easiest to most difficult): I, IV, III, V, II, and
VI. However, when Moreton and Pertsova (2014)
analyzed a database of phonological patterns, as-
signing as many patterns as they could to each of
the Shepard Types, they found that the typological
frequency of the Types roughly mirrored the origi-
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Segment [labial] [continuant] [voice]
p + - -
b + - +
f + + -
v + + +
t - - -
d - - +
s - + -
z - + +

Table 1: Features and segments used for all simulations
presented here.

nal ordering found by Shepard et al. (1961): I, II,
III, IV/V, and VI.

2.2 Probabilistic Feature Attention

Prickett (2023) proposed Probabilistic Feature At-
tention (henceforth, PFA) as a way to model certain
kinds of uncertainty that likely exist in the process
of phonological acquisition. PFA introduces noise
into a learning model’s training data by making
certain segments temporarily ambiguous with one
another and is based on a regularization technique
from the machine learning literature called dropout
(Srivastava et al., 2014). This ambiguity is based on
the features used to represent the segments, with the
model distributing its attention (Nosofsky, 1986)
to these features probabilistically and resampling
which features are attended to on each learning
update.1

For example, imagine a phonotactic pattern us-
ing the segments and features in Table 1. If the
model attended to the feature [continuant], but not
[voice], the difference between [t] and [s] would
be preserved, but the model would treat [t] and
[d] identically. If the model was learning a pat-
tern in which voiceless sounds were grammatical
and voiced sounds were not, any learning update
in which [voice] was not attended to would fail to
push the learner in the correct direction.

Prickett (2023) paired PFA with a maximum
entropy phonotactic learner (Hayes and Wilson,
2008) with a conjunctive constraint schema (More-
ton et al., 2017) and successfully modeled a number
of artificial language learning experiments. Those
results demonstrated that some relevant features
being attended to while others are not can push the

1Note that this ambiguity could arise from a number of
factors in real phonological acquisition, such as misperception
(Bailey and Hahn, 2005) or constraints on memory (Gather-
cole and Adams, 1993).

model to generalize and learn in unexpected ways.
This altered learning and generalization mirrored
the human behavior in the relevant experiments.

3 Methods

The results presented here were found using the
software published in the supplementary materials
included with Prickett (2023), which implements a
maximum entropy phonotactic grammar and trains
it with batch gradient descent paired with PFA. The
hyperparameter values that were used for these
results were a learning rate of .05 and an attention
probability of .25. These were chosen after a short
amount of piloting, with a full grid search of these
values being left to future work.

Constraints representing every possible combina-
tion of the features in Table 1 were used (following
Moreton et al., 2017). This included constraints
with a single valued feature (e.g., *[+voice]), con-
straints with two valued features (e.g., *[+voice,
+continuant]), and constraints with three valued fea-
tures (e.g., *[+voice, +continuant, -labial]). Con-
straints with a single feature were always violated
by half of the possible segments (e.g., [b, v, d, z]),
constraints with two features were always violated
by two segments (e.g., [v, z]), and constraints with
three features were always violated by a single seg-
ment (e.g., [z]).

Six ‘languages’ (one for each Shepard Type)
were implemented using ‘words’ that were only a
single segment long. In the training data for each
language, four of the words had a probability of 1
and four had a probability of 0 (representing gram-
matical and ungrammatical words, respectively).
The model was tested in 30 separate runs for each
language, since PFA introduces variability into the
learning process. This ensured that results were
representative of the model’s average behavior, and
not the random choice of feature attention in a sin-
gle run.

4 Results

Figure 2 shows the average accuracy for the model
with PFA on each pattern. The model’s initial or-
dering of Shepard Types matches the performance
observed by Moreton and Pertsova (2014) in their
experiment: I, IV, III, V, II, and VI. However, later
in learning, the ordering of the patterns mirrors
the typological trends observed by Moreton and
Pertsova (2014), instead, with Type II crucially
having a higher accuracy than III, IV, or V. Note
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Figure 2: Probability of grammatical words in each
pattern, according to the model at each epoch. Results
are averaged over 30 separate runs per pattern.

that the ordering of Types IV and V does change
toward the end of acquisition, but the relative or-
dering of these Types in the typological study was
also inconsistent.

5 Discussion

5.1 Why does the model capture these biases?

The relative ordering of types that is present early
on in the model’s learning matches the expected
behavir of this kind of maximum entropy learner.
The reason that these biases exist in the model is
because of the structure of its constraint set and
the nature of gradient-based learning algorithms.
For an in-depth explanation for how a conjunctive
constraint schema combined with gradient descent
predicts this ordering of Shepard Types, see More-
ton et al. (2017).

But why does PFA cause the model to change its
relative ordering of Shepard Types later in learning?
The more features that are relevant to a pattern,
the more opportunities PFA has to obscure that
pattern over the course of learning (for more on this
effect, see Prickett, 2023, §4.3). Type II patterns
only involve two features, while Types IV and V
both involve three. For Types IV and V, all three
features must be attended to for a learning update
to push the model in the correct direction. But in
Type II, only the two relevant features have to be
attended to for the model to move its weights in the
correct direction. This effect of PFA compounds
as learning continues, making IV and V ultimately
more difficult to learn.

5.2 Future Work

The relationship between phonological learning in
the lab and phonological typology in the real world
is still largely an open question. Many factors could
drive differences between biases seen in artificial
language learning and real-world typology, such as
the effect of sleep on acquisition (see e.g., St Clair
and Monaghan, 2008), the pressures caused by the
iterative and interactive nature of language learning
(see e.g., Hughto, 2020), and phonetically driven
channel bias (see e.g., Ohala, 2014). The results
presented here offer an explanation for one particu-
lar mismatch between observed learning biases and
the frequency of attested patterns, but future work
should explore how PFA might interact with these
other phenomena.

Future work should also explore whether other
models of phonological learning can explain the re-
sults in Moreton and Pertsova (2014). A maximum
entropy model that uses a conjunctive constraint
schema will always predict the ordering of Shepard
Types seen in Moreton and Pertsova (2014)’s ex-
periment unless additional mechanisms are added
to it. But other approaches to phonotactic learning,
such as induced constraints (see, e.g. Hayes and
Wilson, 2008), expectation-driven learning algo-
rithms (Jarosz, 2015), or neural networks (see, e.g.
Mayer and Nelson, 2020) could all be tested on
these same patterns.

More typological work could also illuminate fu-
ture directions for this kind of research. Moreton
and Pertsova (2014) used patterns across two seg-
ments in their experiment, but only had access
to single-segment patterns in the database they
used to calculate typological frequencies (Mielke,
2008). The simulations presented here used single-
segment patterns as well, but PFA can be used with
multi-segment sequences (Prickett, 2023) and if
future work found a different typological distribu-
tion for patterns involving two segments, testing
the model on that kind of pattern could be useful.

5.3 Conclusions

While the goal of artificial language learning is
usually to explain some kind of typological trend,
Moreton and Pertsova (2014) found distinct dif-
ferences between learning observed in the lab and
the frequency of certain patterns in phonological
typology. A model with PFA, an independently mo-
tivated mechanism (Prickett, 2023), matches More-
ton and Pertsova (2014)’s experimental results early
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in learning, but mirrors typological trends later in
acquisition, providing a potential explanation for
the mismatch observed by Moreton and Pertsova
(2014).
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