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Abstract

Understanding the inherent properties that ren-
der a language learnable remains a fundamen-
tal question in cognitive science and linguistics.
I propose to analyze language learning as a
codebreaking task, wherein the learner recov-
ers the underlying grammar (the cryptographic
key) from observed linguistic input (intercepted
ciphertext). I develop a standard information-
theoretic analysis of this codebreaking problem,
but with a twist: in cryptography, one wants to
make a code unbreakable, but in language, one
wants the language to be learnable. The anal-
ysis yields three main findings: (1) Semantic
redundancy—predictability of meanings given
context—is necessary for language learning;
(2) When learners have limited memory for
sequential information, this redundancy must
be local within linguistic strings; and (3) cer-
tain simple kinds of compositional languages
naturally embody this kind of local semantic
redundancy, enhancing their learnability. The
framework shows how distributional statistics
enable the learning of form—meaning mappings
even when learners only observe forms.

1 Introduction

Theoretical models of language learning often fo-
cus on the knowledge that a human brings to the
task, in the form of formal restrictions on possible
grammars (Chomsky, 1965), simplicity biases (Hsu
and Chater, 2010; Hsu et al., 2013), or Bayesian pri-
ors (Griffiths and Kalish, 2007; Pearl, 2023). Here
I instead ask what properties of language make
it learnable regardless of prior knowledge, based
on a cryptanalytic approach: I consider the lan-
guage learner to be a codebreaker attempting to
infer a cryptographic key (the grammar of a lan-
guage, which I take to include the lexicon) based on
intercepted encrypted ciphertexts (linguistic input).
I adapt the classic information-theoretic treatment
of this codebreaking problem (Shannon, 1949) with
a twist: whereas in cryptography one is interested
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Figure 1: Parallel between language and cryptography.
In cryptography (top row), a plaintext (a string) is en-
crypted using a secret key to form a ciphertext (another
string). An attacker may determine the secret key by
observing many ciphertexts; the system is designed to
make this codebreaking task difficult. In language (bot-
tom row), a meaning (in an arbitrary representational
format) is expressed as a form (a string) using an un-
known grammar. A learner may determine the grammar
by observing forms; if the language is to be learnable,
it should be structured so that this codebreaking task is
easy.

in designing codes where the key is hard to break,
here I treat language as a code that wants to be
broken. The parallel language learning and code-
breaking is illustrated in Figure 1.

I present three main results:

» Language learning crucially depends on se-
mantic redundancy of the input.

* Given that learners have limited memory for
sequences, this redundancy must be local
within strings.

 Certain simple kinds of compositional lan-
guages exhibit exactly this kind of local re-
dundancy and are more learnable as a result.

Furthermore, the cryptanalytic approach clarifies
when and how semantics can be learned from dis-
tributional statistics (Harris, 1954; Mikolov et al.,
2013; Merrill et al., 2021).
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Figure 2: Probabilistic graphical model representation
of the learning problem. Forms are a function of a
key/grammar K and a meaning M. The learner ob-
serves context C' and form S and tries to infer the
key/grammar K. The learner never observes under-
lying meanings M. For extralinguistic context, there is
no dependency of C' on K. For intralinguistic context,
there is such a dependency.

2 Language learning as codebreaking

Idealizing, let a language L; be an injective
mapping from plaintexts/meanings M to cipher-
texts/forms which are strings drawn from a finite
alphabet, parameterized by a key/grammar k, with
each key corresponding to a unique possible map-
ping.' Let M be a random variable over meanings,
K be arandom variable over keys, and S = Ly (M)
be a random variable over forms derived by apply-
ing some language to meanings M. The context
C may be extralinguistic (for example, the sen-
sory context of a caretaker pointing to a ball before
saying “ball”) or intralinguistic (for example, the
words “that red” appearing before “ball”’). The
structure of the problem is schematized in a proba-
bilistic graphical model in Figure 2.

The main quantity of interest for the codebreak-
ing problem is the leakage rate, the amount of
information that each ciphertext sample .S provides
about the key K. In cryptography one wants to
minimize the leakage rate, but when thinking about
language learnability we will be thinking about
how to maximize it. Leakage rate is formally the
mutual information between ciphertexts and keys
given context:’

L=IS:K|C) (1)

Each intercepted ciphertext S leaks some informa-

'In cryptography the plaintext is usually also a string, but
this is not necessary for the information-theoretic analysis
of codebreaking. In fact, the theory does not depend on any
assumptions about the nature of the set of meanings M.

?I assume familiarity with the information theory concepts
of entropy and mutual information. See Cover and Thomas
(2006, Ch. 2) for an introduction and reference.
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tion about the key. The number of bits of leaked
information needed to break the code is (on aver-
age) the entropy over keys H[K]. Leakage rate
tells us how quickly the code can be broken, that
is, how much ciphertext the learner must intercept
before they can learn the language / determine the
key, a quantity called unicity distance (Shannon,
1949, p. 693).

Given this analysis, there are two ways to make
a language learnable.? The first is to set up learners
to have a restricted distribution over possible gram-
mars, thus lowering H[K], the amount of leaked
bits that must be gathered to break the key. The
second is to increase the leakage rate, that is, to
speak a language where the average form is highly
informative about the key, regardless of what the
prior distribution on keys looks like. I will focus
on this latter aspect of language learnability.

3 Semantic redundancy

The first result is that languages are learnable to
the extent that meanings are more predictable than
forms. I formalize this using the notion of semantic
redundancy, the predictability of meanings given
context. I operationalize semantic redundancy us-
ing the conditional entropy of meaning given con-
text H[M | C], which represents the uncertainty
about meaning given context: lower conditional
entropy means more semantic redundancy. We
will see that a language is more learnable when
this quantity is small, corresponding to high se-
mantic redundancy. Semantic redundancy may be
contrasted with formal redundancy, the extent to
which a form is predictable given context, that is
the extent to which the entropy on forms H[S | C]
is not maximal.

3.1 Derivation: The importance of semantic
redundancy

The first result is that there is leakage when there is
more uncertainty about form than about meaning:

Proposition 1. For extralinguistic context C, the
leakage rate L is equal to formal minus semantic
entropy:

L=H[S|C|—H[M|C]. )

3 A reviewer suggests that iconicity also makes a language
more learnable, for example if every word is represented by
an onomatopoeic form. I believe this kind of iconicity is best
thought of as a (soft) restriction on the prior over keys, such
that languages containing certain iconic mappings have high
prior probability.



Proof. Starting with the definition of leakage and
applying standard information-theoretic identities
(Cover and Thomas, 2006, Ch. 2), we get

L=1IS:K|C] 3)

=H[S|C]-H[S|C, K] 4)

= H[S|C]-I[S: M| C, K] - H[S | C, K, M].
%)

The last term is zero because S = Ly (M) is a deter-
ministic function given knowledge of the key &, and
also we have I[S : M | C,K] = HM | C,K]
because languages are injective. Finally, since
keys K are independent of meanings M, we have

H[M | C,K] = H[M | C] and we arrive
at (2). O
Remark 1. The argument depends on the fact

that although the learner never has access to the
true underlying meanings, they do have access to a
distribution on meanings that they think are likely
to be expressed.

Remark 2. This argument corresponds to the
classic result that leakage rate is a function of redun-
dancy per character of plaintext (Shannon, 1949,
p- 689), but generalized. In the current setting, the
analog to plaintexts is meanings M, but these are
not necessarily expressible as strings. Shannon’s
result still holds, except instead of being phrased
in terms of characters of plaintext, the analogous
quantity is characters of ciphertext given the key
(appearing in Eq. 4).

Remark 3. For intralinguistic context C', we can
derive a similar form for leakage,

which differs only in that the semantic entropy is
conditional on the key. This is because one can only
‘unlock’ the semantic redundancy in the intralin-
guistic context to the extent that one already knows
the language. The interpretation of this quantity is
largely the same as for extralinguistic context.

3.2 Why does redundancy enable learning?

There are two intuitions that elucidate why it is
possible to learn a form—meaning mapping when
there is a low entropy on meanings given contexts.

Intuition 1: Revealed meaning. Imagine a sce-
nario where you know exactly the single meaning
m € M that will be conveyed, and receive a form
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s € ¥*. Then you can filter your distribution over
languages to include the mapping m — s, in addi-
tion to any other updates. This scenario is the ex-
treme case where semantic entropy H[M | C| = 0.
As H[M | C] gets smaller, learning is more and
more like this scenario: low entropy over meanings
means that each utterance provides partial informa-
tion about the full mapping. On the other hand, if
the entropy over meanings is high, then no update
or only a small update is possible.

Intuition 2: Dancing men. In The Adventure of
the Dancing Men (Doyle, 1903), Sherlock Holmes
encounters messages represented as strings of danc-
ing men of different shapes. He deduces that this
is a substitution cipher, where each English letter
corresponds to a certain dancing man, and breaks
the code by matching the dancing men to letters
based on their statistical frequency of occurrence,
the letter E being the most frequent letter. In gen-
eral, a substitution cipher for English plaintexts
can be broken by plotting a histogram of ciphertext
letter frequencies against a histogram of English
letter frequencies, and finding the mapping that
makes the histograms match, an approach known
as frequency analysis. This is possible because
English letters are redundant, that is, the frequency
distribution over English letters is relatively low
entropy.

Similarly, given some string observations and
some low-entropy distribution on meanings H[M |
(Y, corresponding to a highly skewed histogram,
one can recover the key by matching the frequen-
cies of strings in context with the probability dis-
tribution on meanings in those contexts. On the
other hand, if the entropy of meanings H[M | C]
is high, then both the form frequencies and the
meaning distribution will be close to flat, and so
the histogram-matching approach will either not
yield a unique solution, or will only work after
intercepting a very large number of forms.

Distributional learning In distributional learn-
ing, one learns language entirely on the basis of
frequency of occurrence and co-occurrence with
context in the input. Distributional learning is a
successful approach to modeling aspects of child
language acquisition (Saffran et al., 1996) as well
as developing computational representations of
word meanings (Mikolov et al., 2013; Penning-
ton et al., 2014). The result above clarifies why
distributional learning works even when a learner
never observes meanings directly (compare Ben-



der and Koller, 2020): because intra- and extra-
linguistic contexts are informative about meaning,
and thus can stand in as a proxy for meaning in an
information-theoretic sense.

If language lacked semantic redundancy of this
kind—that is, if H[M | C| were maximal—then
distributional learning would be impossible, as we
would have H[S | C] = H[M | C] and leak-
age L = 0. In fact, this corresponds to the no-
tion of perfect secrecy in the cryptography set-
ting (Shannon, 1949, §10), and optimal codes such
as Huffman codes (Huffman, 1952), which min-
imize redundancy by design, also have minimal
leakage. On the other hand, as long as the entropy
of meanings H[M | C] is not maximal (either due
to context, or simply because the distribution on
meanings is non-uniform), then we have nonzero
leakage L > 0 and the learner will be able to get
some information about the key.

3.3 Cognitive and linguistic significance

There are two linguistically significant interpre-
tations of this result, depending on whether one
thinks of the context C' as extralinguistic or in-
tralinguistic.

If C is extralinguistic, then the result shows the
importance of the speaker’s choice of which mean-
ings to express in which contexts. Examples would
include a child’s caretaker pointing to a ball before
saying “ball”—thus creating a context C' which is
highly predictive about the intended meaning M —
or the caretaker choosing to name objects already
present in the immediate environment, thus peda-
gogically choosing meanings M to fit the context
C. Cognitively, the result requires that the child is
able to infer communicative intent from context, at
least to some extent, and more generally has some
sense of what meanings are more or less likely.
Learning is possible when meaning is low-entropy
for the learner.

If C is intralinguistic, then the result shows the
importance of the language itself being semanti-
cally redundant, as a function of both its gram-
matical structure and usage choices of the speaker.
An utterance such as “My favorite vegetable is ...”
provides semantic redundancy by predicting certain
semantic features of the following word (provided
one has already worked out the meaning of “ve-
gatable”). Languages with grammatical cues to
semantic features, such as Bantu languages with
rich noun class systems, provide similar informa-
tion through grammatical means. Intralinguistic
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semantic redundancy corresponds to the familiar
experience of being able to guess the meaning of
an unknown word in context, for example when
reading.

3.4 The role of formal redundancy

An interesting wrinkle is that formal redundancy
is not helpful for learning in this highly idealized
setting: leakage is upper bounded by the formal en-
tropy H[S | C]. This means that, when the form S
of some linguistic input is highly predictable from
context, this reduces the amount of information
that the input provides to a learner.

The role of formal redundancy and its relation-
ship with semantic redundancy must be interpreted
carefully. Formal redundancy does not simply
mean that a form is predictable, it means that a
form is predictable on average across the learner’s
key distribution. Effectively, when the learner has
narrowed down the keys to some subset, and a form
is totally predictable under all those keys, then there
is formal redundancy without semantic redundancy,
because observing the form is totally unsurprising.

Formal redundancy without semantic redun-
dancy can arise from, for example, phonotactic
constraints. For example, suppose that a language
has phonotactics where every front vowel is fol-
lowed by only front vowels, that is, it has vowel
harmony; and suppose that a learner is aware of the
concept of vowel harmony and has narrowed their
space of possible languages/keys only to those that
respect vowel harmony. Then when a front vowel
occurs in the context of a front vowel, it is formally
redundant: it is uninformative about anything, in-
cluding the meaning.

4 Locality: Learning with noise

The argument above establishes that a learnable
language must have semantic redundancy, but tells
us nothing about the structure of that redundancy.
Next I consider learners whose memory or atten-
tion for sequences is noisy, such that their observa-
tions effectively consist of contiguous substrings
rather than full strings. Such noisy memory is char-
acteristic of human children (Cowan et al., 1999;
Gathercole et al., 2004; Luna et al., 2004). In this
setting, I find that languages are more learnable
when their intralinguistic redundancy is local, that
is, when the meaning of a character or word is
predictable given nearby characters or words.



4.1 Derivation: Effect of noise on learning

I now assume that with probability e, the context
C is unavailable to the learner, with L(e) being the
leakage rate as a function of the context erasure rate
e. The idea is that a learner with limited memory
or attention might find themselves processing part
of a string without knowledge of its context.

In order to understand how the leakage changes
as a function of noise rate e, one can calculate the
derivative of L(e) with respect to e:

Proposition 2. For extralinguistic context C, the
derivative of leakage with respect to context era-
sure rate e is equal to the formal minus semantic
mutual information:

9

Ep (e)=1I[S:C|—I[M:C].

(7

Proof. Let C represent the random variable over
noisy context, equal either to a true context or to
a special erasure symbol E not in the support of
C'. The leakage as a function of erasure rate L(e)
comes out to

L(e)=H[S | C] - HIS | C, K] (8)
=HI[S|C]|-HI[S|C,K] “
+ellS:C]—ellS:C| K]
=H[S|C]-H[M | C] (10)
+el[S:Cl—ellM:C].
The derivative of (10) with respect to e is (7). [J

Remark 4. The analogous result for intralinguis-
tic context is

0

5L =1[5:C1—1IM:C| K],

(11
paralleling the intralinguistic version of Prop. 1.

The result means that as a context becomes more
likely to be unavailable to the learner, the learn-
ability of the language goes up in proportion to
the formal redundancy contributed by that con-
text, and down in proportion to the semantic re-
dundancy contributed by that context. Intuitively,
if the learner has no access to context, then the se-
mantic redundancy contributed by context cannot
help. In terms of language learnability, the up-
shot is that languages should be configured so that
helpful semantically redundant context is likely to
be available in practice: that is, somewhere in the
string where it is not likely to be erased.
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4.2 Locality from noise

Consider now a scenario where a learner takes in a
string incrementally and, at each position, has some
probability of randomly forgetting (or otherwise
ignoring) the string prefix up to that point. This
represents a learner who either has noisy memory
for the sequence context, or who has had a lapse of
attention and is starting to process a string some-
where in the middle. Then the learner effectively
has perceptual intake (in the sense of Pearl, 2023)
consisting of contiguous substrings, rather than full
strings.

In that case, if there is some helpful semantic
redundancy between two nonlocal parts of a string,
then this redundancy is unlikely to help the learner,
since the learner is unlikely to get a large enough
substring to encompass all parts. On the other hand,
semantic redundancy between local parts of the
string is more likely to be available. The upshot
is that for a language to be learnable under these
circumstances, it must have information locality
(Futrell and Hahn, 2022): any helpful semantic re-
dundancy should be expressed in local parts of a
form, so that a learner with noisy memory or atten-
tion who is only receiving contiguous substrings
as input is able to detect that redundancy and learn
from it.

The idea of local semantic redundancy is re-
lated to the concept of diffusion from cryptanalysis
(Shannon, 1949, pp. 708-709). Diffusion is a de-
sirable property for cryptographic ciphers, where
the redundancy in the plaintext is dissipated into
long-range correlations involving many parts of the
ciphertext, so that a codebreaker must intercept and
analyze a very large quantity of contiguous cipher-
text in order to detect the redundancy and exploit
it. For learnability, human languages should do
the opposite of diffusion: they should be set up
so that semantic redundancy is detectable without
considering large amounts of context.

5 Simulations

The considerations above suggest that for lan-
guages to be learnable, (1) languages must have
semantic redundancy, and (2) if there is noisy mem-
ory for sequence context, languages should config-
ure strings so that semantically redundant parts are
local. Here I demonstrate this result by simulat-
ing learning of some very simple languages which
differ in their levels of redundancy, in the locality
of that redundancy, and in the level of noise under



OEE OO HOE HOO OHH CHO OOH

000,

Meaning —

Compositional 1 aaa aab aba
Compositional 2 bbb abb bab
Holistic 1 aab bbb bba
Holistic 2 abb bbb bab

abb baa bab bba bbb
aab bba aba baa aaa
aba baa bab aaa abb
baa aab aba aaa bba

Table 1: Example languages for the coinflip world, used in simulations. Possible meanings (coinflip outcomes) are
on the columns. In the ‘compositional’ languages, each character corresponds to an individual coin, as indicated by
color. In the holistic languages, there is no such correspondence.

which learning takes place. In line with the formal
results, I find that semantic redundancy facilitates
learning, and that in the presence of noise this re-
dundancy must be local. Furthermore, I show how
local redundancy obtains when languages are com-
positional in the sense that individual characters or
local groups of characters (that is, words or mor-
phemes) correspond to independent components of
meaning.

5.1 Setup

I simulate ideal learners who start with an initial
uniform distribution over keys/languages, observe
(noisy) sample forms one at a time, and update
their distribution on keys using Bayes’ rule (Bayes,
1763).

Source As the probability distribution over mean-
ings, I consider a very simple world consisting
of two or three weighted coinflips, for a total of
22 = 4 or 23 = 8 possible outcomes/meanings.
The first coin has weight b for heads, where I
vary the weight b in order to vary the entropy of
meanings H|[M]—more biased coins yield lower-
entropy distributions which should facilitate learn-
ing. The second and third coins have weights
b+ 0.1 and b+ 0.2 respectively. If the coins did not
have different weights, then the language would be
unidentifiable for the learner, because the learner
would never be able to identify which characters in
a form correspond to which coins.

Languages 1 first consider languages where
forms consist of binary strings of length 3, which
are either compositional or not, in the sense that
individual characters in the forms may or may not
correspond to the underlying coinflips. These lan-
guages are categorized with examples in Table 1.
I also consider redundant languages where forms
consist of binary strings of length 4 and meanings
consist of two coinflips. These languages are based
on the Compositional 1 language in Table 1, and are
either locally redundant (for example, a meaning
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@@ is encoded as aabb) or nonlocally redun-
dant (for example, the same meaning is encoded
as abab). In all conditions, the learner’s set of
possible languages/keys is the set of all possible
injective mappings from meanings to binary strings
of the appropriate length.

Learning and noise In each step of learning, a
learner observes a single (noisy) sample of a form,
and updates their probability distribution on mean-
ings exactly following Bayes’ rule. Noisy observa-
tions are generated by sampling a form, splitting it
into contiguous substrings, and uniformly choosing
one of those substrings. The splitting is done by
flipping a coin with probability e at each character
of the string; if the outcome is heads, the string is
split at that point. I vary the parameter e in exper-
iments. The condition e = 0 corresponds to no
noise. The condition e = 1 yields to a learner who
only ever sees a single character of input based on a
sampled string, corresponding to maximally noisy
memory for intralinguistic context.

Evaluation I evaluate learning in terms of key
entropy, the posterior entropy over keys given
data observed so far at each timestep. Lower key
entropy indicates the learner has less uncertainty
about the language. The main feature of interest is
the rate at which this entropy decreases.

I would like to emphasize that for all conditions
in these simulations, the key entropy will eventually
approach zero with enough observations: that is,
learning is ultimately possible for all the languages
considered here. They will differ, however, in their
rates of learning.

5.2 Analysis of languages

The compositional languages in Table 1 have se-
mantic redundancy local to each individual charac-
ter. This is because the meaning of each character
corresponds to one coinflip, and thus the semantic
entropy for a single character is bounded: it can-
not exceed the entropy of its corresponding single
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Figure 3: Learning curves (average over 10,000 runs)
for different levels of semantic entropy, with no noise.
Curves show key entropy H[K] as a function of the
number of forms observed (similar to Shannon, 1949,
Fig. 6). Key entropy decreases more rapidly when se-
mantic entropy is low. Curves are the same for all lan-
guages in Table 1.

coinflip. This redundancy is local in the sense that
it does not depend on context and cannot be de-
stroyed by erasure noise. On the other hand, in
the holistic languages, each character corresponds
to a mixture of different coins, which will gen-
erally have a higher entropy (thus less semantic
redundancy) than the distribution of a single coin.
Furthermore, there will be nonlocal correlations
among the characters within the string, represent-
ing nonlocal semantic redundancy which is in dan-
ger of being missed due to noise. This observation
is in line with the idea that noncompositional lan-
guages very generally create undesirable long-term
correlations within forms (Futrell and Hahn, 2024).

The locally redundant variant of the composi-
tional language extends this idea so that redun-
dancy is local to a pair of adjacent characters. The
helpful semantic redundancy in this adjacent pair
is unlikely to be disrupted by noise, and thus learn-
ing curves are favorable. On the other hand, in the
nonlocally redundant language, the redundancy is
nonlocal, highly likely to be disrupted by noise,
and so the learning curves are less favorable.

5.3 Results

Learning curves without noise (e = 0) by semantic
entropy are shown in Figure 3, which demonstrates
that learning is indeed faster when semantic entropy
is lower. The language used for this simulation is
Compositional 1 from Table 1, but this does not
matter: in this setting, all injective languages will

60

produce equivalent curves when there is no noise.

Learning curves under varying levels of noise are
shown in Figure 4. Here we find that the composi-
tional languages yield faster learning, as expected,
because their semantic redundancy is local and not
likely to be disrupted by noise. The difference be-
tween compositional and holistic languages gets
bigger as the noise rate increases. Learning curves
for the explicitly redundant languages are shown
in Figure 5. Languages with local redundancy are
faster to learn, while languages with nonlocal re-
dundancy are slower.

6 Discussion and Related Work

I emphasize that I have considered learners who
never directly observe meaning, and who have no
prior bias towards any language over another; nor
is any language ‘simpler’ than any other for the
learners. The fact that certain languages are learned
more rapidly is rather a function of their seman-
tic redundancy and information locality, which en-
ables learning in the presence of noisy memory
or attention for sequences, in a way that is inde-
pendent of the learner’s prior distribution over lan-
guages.

Distributional learning This work provides a
theoretical understanding of when it is possible to
learn a form—meaning mapping from observations
of form alone, and thus justifies distributional ap-
proaches to semantics and language learning (Har-
ris, 1954; Erk, 2010), both in the context of lan-
guage technologies (Mikolov et al., 2013), and as
a strategy for child learners (Saffran et al., 1996;
Erickson and Thiessen, 2015). The results are con-
sistent with Merrill et al.’s (2024) finding that cor-
pus statistics encode entailment relations under the
assumption that speakers are redundant, and I be-
lieve the notion of local semantic redundancy is
likely related to Merrill et al.’s (2021) notion of
semantic transparency, which is a precondition for
distributional learning of semantics.

Language acquisition The model shows how
language can be acquired when context provides
partial information about meanings, and thus it pro-
vides a generalized idealized version of the cross-
situational learning model of lexicon acquisition
(Siskind, 1996; Hendrickson and Perfors, 2019), in
which a child encounters a word across multiple
contexts until they can identify the word with a
single meaning by a process of elimination. The re-
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Figure 4: Learning curves for different levels of noise e, for a source with a fixed b = .75 (average over 10,000
runs). Curves show key entropy H[K] as a function of the number of forms observed. Key entropy decreases more
rapidly for the compositional languages, where semantic redundancy is local. It increases more slowly for the
holistic languages where semantic redundancy is spread out among characters of the form. The difference between
compositional and holistic languages is heightened for increased noise rates.
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Figure 5: Learning curves for locally redundant and
nonlocally redundant languages (see text) under noise
at rate e = .9, for coinflip heads probability b = .79
(average over 1000 runs). Key entropy decreases more
rapidly for the locally redundant languages.

sults about the importance of low semantic entropy
are in line with the finding that children learn word
meanings better given low-entropy input (Lavi-
Rotbain and Arnon, 2019). The results on noise
and locality show how cognitive constraints, such
as maturational constraints on working memory,
can imbue learners with a bias toward the kinds of
structures found in language (Newport, 1990; Mita
et al., 2025).

Unsupervised machine translation This work
bears a notable similarity to models of how one can
learn to translate between languages without seeing
parallel texts (Cao et al., 2016), or how one might
decode unknown communication systems such as
those used by whales, where the nature of the mean-
ings being expressed is unknown and possibly un-
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knowable (Goldwasser et al., 2023). The current
approach to language learning can be seen as in-
ducing an unsupervised translation system from
meanings (represented in some unknown mental
form) to forms (represented as observable strings).

Language evolution Approaches to modeling
language evolution by iterated learning have
yielded the result that languages will generally re-
flect learners’ prior distribution on languages (Grif-
fiths and Kalish, 2007; Kirby et al., 2014). In con-
trast, I find a learning bias (toward locally redun-
dant languages) as a function of the noisy nature of
learners’ intake, independent of the prior. This bias
can be seen as arising from the learners’ likelihood
function rather than the prior, and it manifests in
the rate of learning, not in its initial or asymptotic
states. Under noise, locally redundant languages
can be learned to a higher degree of confidence
from fewer samples.

While humans may have innate prior knowledge
of what grammars/keys are possible, the question
remains of why that prior knowledge is what it is.
For example, if humans’ prior knowledge can be
characterized by a constraint that languages must
be compositional in a certain way, the question is
why that constraint rather than another. The con-
siderations above provide a potential explanation,
by showing how learning biases can emerge inde-
pendently of learners’ priors. One could imagine
a population of learners with flat priors, who end
up with local compositional languages due to gen-
eral memory limitations, as discussed in Section 4.
Then over generations of evolutionary time, the
population can evolve to incorporate these biases



as innate prior knowledge.

7 Conclusion

I have presented a model of language learning
based on ideas from cryptanalysis, in which a
learner observes only forms and infers the under-
lying language, the mapping from hidden mean-
ings to forms. Whereas in cryptanalysis one is
concerned with making codes unbreakable, here
I considered what properties of languages make
them breakable. 1 found that languages with lo-
cal semantic redundancy—the opposite of crypto-
graphic diffusion, and corresponding to a kind of
compositionality—are more learnable in this set-
ting, even for learners without prior biases toward
such languages. The model shows how learning
is possible as long as the learner has some prior
knowledge of their interlocutor’s likely commu-
nicative intent.

The analytical and modeling approach taken here
provides a useful new angle on language learn-
ing which can be applied to test hypotheses about
how learning works, how properties of language
affect learnability, and how the learner’s hypothesis
space on languages could be structured to enable
rapid learning. More broadly, I believe that this
cryptography-inspired analysis of language learn-
ing offers a fresh perspective and set of analyt-
ical tools that can be used to approach the lan-
guage learning problem. Cryptanalysis is a well-
developed and rich field of science and engineering.
The analysis here shows that it may contain useful
ideas for linguistics and language acquisition.
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