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Abstract

Much evaluation work in the literature shows
that neural language models seem capable of
capturing syntactic dependencies in natural
languages, but they usually look at relatively
simple syntactic phenomena. We show that
a two-layer LSTM language model trained on
250M morphemes of Hindi data can capture
the relatively complex interaction between case
and agreement in Hindi-Urdu, at an accuracy
of 81.17%. Furthermore, we show that this
model encodes case-marking linearly, imple-
menting a geometrically intuitive and inter-
pretable syntactic processing mechanism. We
also show that this model doesn’t calculate
agreement extremely eagerly, as case infor-
mation seems to be persistent over time as
a sentence unfolds. This is surprising given
LSTMs autoregressive and recurrent nature,
which should exert an incremental processing
pressure onto our model.

1 Introduction

Neural language models trained for engineering
purposes tend to show human-like behavior when
evaluated on certain benchmarks constructed to
test their understanding of syntactic properties of
certain natural languages. These results are quite
significant, because they show that neural net-
works capture syntactic dependencies that target
latent hierarchical structures even when they are
trained on an objective as simple as next-word
prediction, which doesn’t provide any explicit sig-
nal about hierarchical structure. However, these
benchmarks often only target relatively simple
grammatical phenomena, such as English subject-
verb number agreement. Thus, we don’t know if
language models really learn the full range of com-
plex phenomena featured in various natural lan-
guages. Another problem concerns interpretabil-
ity: when these language models display human-
like behavior, what kind of computation underlies

their such performances? Understanding the ex-
pressibility and the computation implemented by
language models is empirically important for as-
sessing whether they are viable models of grammar
and sentence processing. In this paper, we show
a LSTM language model (Gulordava et al., 2018)
trained on Hindi data predicts the correct agree-
ment form of a participial verb correctly 81.17%
of the time, and encodes ergative and accusative
case in a subspace of its hidden layer vectors in a
way that makes representations for sentences con-
taining each of these case-markers linearly separa-
ble from those that don’t contain each case-marker.
Our results suggest that a LSTM language model is
not only capable of learning the relatively complex
interaction between case and agreement in Hindu-
Urdu, but also encodes case-marking information
in a geometrically intuitive and interpretable fash-
ion. We think this work points to a direction for fu-
ture work in which we can compare language mod-
els with different architectures in how they repre-
sent and compute with case.

This paper is organized as follows. In Section 2,
we describe relevant work. We discuss two groups
of methods: those for evaluating language models’
ability to learn syntactic properties of natural lan-
guages, and those for understanding the represen-
tations and computations tacitly implemented by
language models.

In Hindu-Urdu, verb agreement targets different
arguments depending on their case-marking pat-
terns, making it a relatively complex agreement
pattern and a good testing ground for evaluating
language models’ ability to capture syntactic de-
pendencies. We describe the Hindi-Urdu facts in
more detail in Section 3, and the training and eval-
uation procedures as well as evaluation results in
Section 5. Despite the modest model size and train-
ing setup, the language model performs reason-
ably well, predicting the correct gender agreement
81.17% of the time.
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In the rest of the paper, we investigate the na-
ture of the computation that underlies our language
model’s decent performance. This investigation is
carried out from two perspectives, which we de-
scribe in Section 6. The first one concerns how
the language model represents case. We set forth
a very specific hypothesis, which is that the model
provides a linear encoding of case. If this were true,
the model implements a highly interpretable syn-
tactic processing mechanism. The second perspec-
tive concerns the memory usage. The computation
underlying our language model could be eager and
Markovian, making use of the subject’s case infor-
mation as soon as it is processed, after which this
piece of information no longer has any bearing on
the predicted gender agreement. Alternatively, it
could be lazy and memory-intensive, storing the
subject’s case information in its intermediate rep-
resentations, using it just-in-time as the model pre-
dicts a gender agreement marker. In the latter case,
subject case information is used long after it has
processed the subject.

We carry out the investigation using linear clas-
sifier probes and causal intervention techniques.
These methods, as well as our results, are described
in Section 7. We find positive evidence that the
language model provides such a linear encoding
for the presence/absence of ergative and accusative
case. Our results also align with a lazy characteri-
zation of the language model’s underlying compu-
tation. We conclude in Section 8.

2 Background and related work

There has been much interest in evaluating lan-
guage models’ understanding of grammatical phe-
nomena, a practice sometimes known as targeted
syntactic evaluation (Marvin and Linzen, 2018).
LSTM language models have been evaluated on
various syntactic phenomena, including subject-
verb agreement (Linzen et al., 2016; Bernardy
and Lappin, 2017; Kuncoro et al., 2018; Gulor-
dava et al., 2018), negative polarity item licensing
(Jumelet and Hupkes, 2018; Marvin and Linzen,
2018) and filler-gap dependencies (Chowdhury
and Zamparelli, 2018; Chaves, 2020; Da Costa and
Chaves, 2020; Wilcox et al., 2024). They show var-
ious levels of success on each phenomenon.

Much research also seeks to interpret language
models, i.e., understand their internal mechanisms
that grant them their performances. One popular
approach in this area is to probe language models

for representations of certain kinds of grammati-
cal information. Typically, this involves extracting
the intermediate representations from a language
model produced for certain linguistic expressions,
and using them to train and evaluate a shallow clas-
sifier that predicts some relevant grammatical in-
formation associated with these expressions. For
example, Tenney et al. (2019) show that BERT rep-
resentations can be used to predict syntactic cate-
gories of and dependency relations between con-
stituents in English.

A common criticism of probing is that it in-
volves training; thus a positive result can’t neces-
sarily be attributed to the language model. There
are ways to overcome this problem. For exam-
ple, probing with weak linear classifiers allows one
to conclude that the relevant grammatical informa-
tion is encoded by the language model as a sub-
space, allowing a geometrically intuitive interpre-
tation of the language model’s inner workings. Fur-
ther, by counterfactually intervening the language
model’s representations using the classifier probe’s
weights and checking if the intervention affects the
language model’s inference process, one can check
if the language model is actually using the gram-
matical information the way it is encoded as sug-
gested by the classifier probe. A recent line of
work incorporates both of these aspects; for exam-
ple, Hao and Linzen (2023) find a linear encoding
of number in a subspace of BERT’s contextualized
representations for English, and show that causal
intervention in this subspace affects BERT’s per-
formance on subject-verb number agreement tasks.

Agreement is a classic example of a syntactic
dependency that targets hierarchical structure; a
lot of interpretability work has focused on LSTM
language models’ learning of agreement. Linzen
et al.’s (2016) pioneering work shows that LSTMs
are capable of predicting English number agree-
ment as a classification task, on which they are
trained with explicit supervision. Gulordava et al.
(2018) show that LSTM language models naturally
learn to predict number agreement correctly in Ital-
ian, English, Hebrew and Russian. Lakretz et al.
(2019) argue that two units in Gulordava et al.’s
(2018) language model track number, which means
LSTM language models implement genuine syn-
tactic processing mechanisms.
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3 Case and agreement in Hindi-Urdu

In Hindi-Urdu, the participial main verb and any
auxiliary agree with the structurally most promi-
nent argument of the verb that is not case-marked
overtly (Bhatt, 2005). The subject is more struc-
turally prominent than the object. The overt case
marker for subjects is -ne, which we will call erga-
tive case. The overt case marker for objects is -
ko, which we will call accusative case. For exam-
ple, when the subject is not marked ergative, the
verb and auxiliary agree with the subject no mat-
ter whether the object is marked accusative or not
(1). This agreement is coded on an aspectual mor-
pheme that immediately follows the verb stem.
(1) Rahul

Rahul[M]
kitaab(-ko)
book[F](-ACC)

paṛh-taa
read-HAB;MSG

thaa
be[PST;MSG]
‘Rahul used to read a/the book.’

When the subject is marked ergative, agreement
targets the object if the object is not marked ac-
cusative (2).
(2) Rahul-ne

Rahul[M]-ERG
kitaab
book[F]

paṛh-ii
read-PFV;F

thii
be[PST;FSG]

‘Rahul had read a book.’
When both arguments are overtly case-marked,
agreement targets neither argument. The result is
default masculine agreement, shown in (3), where
there are no masculine arguments.
(3) Sita-ne

Sita[F]-ERG
kitaab-ko
book[F]-ACC

paṛh-aa
read-PFV;MSG

thaa
be[PST;MSG]
‘Sita had read the book.’

While case controls agreement in Hindi-Urdu, case
itself is controlled by independent factors. The sub-
ject receives ergative case iff its verb is transitive
and in the perfective aspect. The object receives
accusative case iff it is specific or definite.

4 Current study

As described in the previous section, Hindi-Urdu
features a more complex verbal agreement system
than subject-verb agreement systems found in lan-
guages like English, making it an interesting chal-
lenge for language models to learn. In the rest of
this paper, we train a LSTM language model on
Hindi data, and address the following two research
questions concerning this model. First, how well
does the model learn the case-agreement interac-
tion in Hindi-Urdu (Section 5)? Second, if learn-

ing is successful, how does the model compute
agreement using case information (Sections 6–7)?
In particular, we employ causal intervention tech-
niques to answer the second question.

5 Training and evaluation

5.1 Training
The training data for our language model comes
from the Hindi Wikipedia (Foundation) and the
Hindi data from the CC-100 corpus (Conneau et al.,
2020; Wenzek et al., 2020), both taken from the
Hugging Face website. The data mostly consists
of unromanized Devanagari. We perform unsuper-
vised morphological segmentation with Morfessor
2.0 (Smit et al., 2014), which reduced our vocab-
ulary size from 2.4M to 146K. We then discarded
all sentences longer than 80 morphemes and con-
verted all morphemes except the most frequent
30000 to a designated UNK(nown) token, giving
us about 246M non-UNK tokens. We follow a
train:dev:test split of 7:1:2.

We train Gulordava et al.’s (2018) LSTM lan-
guage model. Due to the limited size of our train-
ing data, we decided to train a LSTM language
model rather than a Transformer. Gulordava et al.
show that their LSTM language models predict Ital-
ian number agreement across long-distance depen-
dencies at near-human performance. The architec-
ture of the model is a two-layer LSTM with an em-
bedding size and hidden layer size of 650. We fol-
low the set of hyperparameters that gave Gulordava
et al. their best validation set perplexity, which
we detail in Appendix A. Our test set perplexity
is 47.17, comparable to Gulordava et al.’s results.

5.2 Evaluation
We artificially generate an evaluation dataset in-
tended to test our language model’s ability to pre-
dict gender agreement correctly. Each data point
is a pair ⟨𝑠, 𝛾⟩ where 𝑠 is a sentence prefix and
𝛾 is a gender label. The sentence prefix 𝑠 con-
sists of a subject, an object and a verb stem, and
should be continued with an aspectual morpheme
that shows gender agreement. The correct gender
is encoded by the label 𝛾. The data points are ma-
nipulated by three conditions: whether or not the
subject is marked ergative, whether or not the ob-
ject is marked accusative, and the genders of the
subject and object, which are always different. Ta-
ble 1 illustrates the kinds of data points generated
for each combination of conditions. We combina-
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torially generate 320K data points. Most sentence
prefixes in the data set are semantically nonsensi-
cal, an intended effect; we want the model to rely
only on structural properties of the data, not seman-
tic ones.

Evaluation proceeds as follows. For each data
point with sentence prefix 𝑠 and correct gender 𝛾,
we compare the conditional probability of the mas-
culine and feminine singular forms of the following
four aspectual morphemes given the context 𝑠:
(4) a. HAB: habitual (M: ता, F: ती)

b. INF: infinitival (M: ना, F: नी)
c. PFVC: perfective morpheme that begins with

the consonant य (M: या, F: यी)
d. PFVV: perfective morpheme that doesn’t be-

gin with a consonant (M: ◌ा, F: ◌ी)
Within each aspect, the form corresponding to gen-
der 𝛾 should be higher than the form for the in-
correct gender. Accuracy is aggregated over the
dataset for each aspect. Incorporating results from
multiple aspectual forms gives us a more com-
prehensive evaluation with more generalizable re-
sults, unlike previous evaluation work on English
subject-verb number agreement that only focuses
on one auxiliary pair, e.g. is/are.

However, it can be misleading to compare accu-
racy across items or conditions within each aspect,
because certain aspectual morphemes are incom-
patible with certain items and conditions. For ex-
ample, whether a verb takes the PFVC or the PFVV
morpheme in the perfective is lexically specified; a
verb takes PFVC iff its stem ends in a vowel (e.g.
सजा sajā, but not भेज bhej). Ergative marking
results only in the perfective. A language model
with adequate knowledge of Hindi-Urdu may rea-
sonably assign equally low probabilities to the mas-
culine and feminine PFVC forms of the verb भेज
bhej, and to the masculine and feminine PFVC forms
of the verb सजा sajā when the subject is not erga-
tive, because all of these forms are ungrammatical.
This would result in a low accuracy for PFVC forms.

To address this, we also calculate a form of ac-
curacy that incorporates all aspects. Specifically,
for each data point, we compare the probability
summed over the masculine forms of all four as-
pects with the probability summed over the femi-
nine forms of all four aspects. Intuitively, the sum-
mation represents marginalization over aspect, al-
lowing us to compare the probability of the two
genders directly. We call the accuracy aggregated
over the dataset this way general accuracy. Table 2

reports the by-aspect and general accuracy for our
language model, broken down by subject and ob-
ject case-marking as well as the correct gender to
show agreement for, i.e., the gender label 𝛾.

Additionally, in Table 2, we report the sensitiv-
ity index 𝑑′ for all three case patterns that doesn’t
result in default masculine agreement. We calcu-
late 𝑑′ as 𝑧(hits) − 𝑧(FA), where 𝑧 is R’s qnorm
function, hits is the proportion of true masculine
examples correctly predicted masculine, and FA
(false alarm) is the proportion of true feminine ex-
amples incorrectly predicted masculine. Thus, 𝑑′

quantifies the language model’s sensitivity to the
agreement contrast after factoring out any general
biases towards masculine or feminine morphemes
the model may have.

Among the four aspects, the habitual aspect
(HAB) gives the best results, with a high accuracy of
82.69 and a sensitivity index 𝑑′ of 1.84. In compar-
ison, the other aspects have a slightly above-chance
performance. Recall that general accuracy and 𝑑′

are calculated by comparing the marginal probabil-
ities of the masculine vs. feminine forms, where
marginalization is summation over aspects. Gen-
eral accuracy is 81.18 and 𝑑′ is 1.73, a decent per-
formance. For comparison, Gulordava et al. (2018)
train models with the same architecture on Ital-
ian, English, Hebrew and Russian data, and evalu-
ate their models using two subject-verb agreement
tasks. They report accuracies in the range 67.5–
95.2. The results suggest that our language model
has reasonably understood the case-agreement in-
teraction in Hindi-Urdu.

6 Characterizing the language model’s
underlying computation

We see that our language model has learned the
case-agreement interaction in Hindi-Urdu to some
extent. What kind of computation could our lan-
guage model be performing in order to determine
agreement?

To frame this question more specifically, let’s
consider what forms this computation can take. A
correct Hindi-Urdu agreement computation can be
thought of generally as a process that takes case
information as input and returns the agreement tar-
get as output. For example, it can be modelled as
the simulation of a finite-state machine illustrated
in Figure 1, where case determines the transitions
and the accepting states determine which argument
the agreement should target. The simulation keeps
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Genders Cases Data point ⟨𝑠, 𝛾⟩ Glossed example for 𝑠

Masc.
subject,

Fem.
object

∅,∅ ⟨NPM NP¬𝐴
F 𝑉 , M⟩

कुमार एक माता छोड़
Kumar[M] one mother[F] leave

∅,ACC ⟨NPM NP𝐴
F acc 𝑉 , M⟩

कुमार एक माता को छोड़
Kumar[M] one mother[F] ACC leave

ERG,∅ ⟨NPM erg NP¬𝐴
F 𝑉 , F⟩

कुमार ने एक माता छोड़
Kumar[M] ERG one mother[F] leave

ERG,ACC ⟨NPM erg NP𝐴
F acc 𝑉 , M⟩

कुमार ने एक माता को छोड़
Kumar[M] ERG one mother[F] ACC leave

Fem.
subject,
Masc.
object

∅,∅ ⟨NPF NP¬𝐴
M 𝑉 , F⟩

सीता एक ࣺपता छोड़
Sita[F] one father[M] leave

∅,ACC ⟨NPF NP𝐴
M acc 𝑉 , F⟩

सीता एक ࣺपता को छोड़
Sita[F] one father[M] ACC leave

ERG,∅ ⟨NPF erg NP¬𝐴
M 𝑉 , M⟩

सीता ने एक ࣺपता छोड़
Sita[F] ERG one father[M] leave

ERG,ACC ⟨NPF erg NP𝐴
M acc 𝑉 , M⟩

सीता ने एक ࣺपता को छोड़
Sita[F] ERG one father[M] ACC leave

Table 1: Data point templates for each combination of conditions, with examples. In the Cases column, ∅ means
no overt case-marking; e.g., ∅,ACC means non-overtly marked subject, ACCusative-marked object. In the Data
point column, each sentence prefix 𝑠 is described as the right-hand side of a rewrite rule. Uppercase variables are
non-terminals: NP𝛾 stands for a singular noun phrase with gender 𝛾, NP𝐴

𝛾 specifically stands for one that may be
ACC-marked, i.e., specific or definite, NP¬𝐴

𝛾 specifically stands for one that may not be ACC-marked, i.e., not specific
or definite. 𝑉 stands for a verb stem.

ERG? ACC? Correct HAB INF PFVC PFVV General
Acc 𝑑′ Acc 𝑑′ Acc 𝑑′ Acc 𝑑′ Acc 𝑑′

− − M 74.18 1.18 57.86 0.33 32.11 0.32 93.76 0.28 78.00 1.04− − F 70.35 55.38 78.36 10.52 60.56
− + M 98.96 3.17 88.84 1.12 72.08 0.97 99.97 2.03 99.53 3.16− + F 80.57 46.09 64.97 8.24 71.22
+ − M 95.25 2.55 59.52 1.14 56.10 1.41 97.05 1.62 84.42 1.96+ − F 81.02 81.44 89.63 39.49 82.82
+ + M 83.30 68.38 79.68 99.88 91.60

Average 82.69 1.84 65.27 0.77 68.00 1.08 66.80 1.17 81.18 1.73

Table 2: Accuracy and 𝑑′ for our language model evaluated on the case-agreement dataset.
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𝑞1

Subject

𝑞2

Object

Default
[+ERG]

[−ERG]

[+ACC]

[−ACC]

Figure 1: Agreement computation as a finite-state ma-
chine.

track of the current state, and follows transitions
depending on subject and object case.

In order for the language model to implement
such a simulation, it needs to represent case in-
formation somehow. But exactly how does it rep-
resent case? We take a very specific hypothesis
to this question: our language model linearly en-
codes case in a subspace of its hidden layer vec-
tors. That is, there is a subspace for ergative case,
such that the hidden layer vectors for sentences
with an ergative-marked subject are linearly separa-
ble from those for sentences with an non-ergative-
marked subject when both sets of vectors are pro-
jected onto this subspace. In other words, we can
use an ensemble of linear binary classifiers to pre-
dict the presence of ergative marking in a sentence
from its hidden layer vector representation. The
same applies to accusative case. Under this hypoth-
esis, our language model implements a highly inter-
pretable syntactic processing mechanism.

Aside from representations of the input, we can
also consider other aspects of this computation.
One dimension along which we can characterize
alternative forms of computation is memory us-
age. This places an eager and Markovian compu-
tation on one end of a spectrum, and a lazy and
memory-intensive computation on the other end.
These two computations differ in how soon they
advance the simulation as they process linguistic
input. As soon as an eager and Markovian compu-
tation processes case information, it advances the
simulation by following the corresponding transi-
tion. A lazy and memory-intensive computation
would store the subject and case information, and
performs the entire simulation in one fell swoop
when it reaches the verb stem, just in time be-
fore it needs to compute agreement. Where is our
language model’s underlying computation located
along this eager/lazy spectrum?

In the next section, we use linear classifier

probes and causal intervention techniques to inves-
tigate whether our language model encodes case
linearly, and how eager/lazy it is at advancing the
simulation.

7 Investigating the language model’s
underlying computation

For our first investigation, we first explore the hy-
pothesis that the language model linearly encodes
the presence/absence of each case-marking as a
subspace in its hidden layers. To do this, we first
use a method known as iterative nullspace projec-
tion (INLP) to find three sets of orthonomal basis
vectors that identify a potential case subspace; two
for ergative, and one for accusative. We then re-
run the evaluation described in Section 5.2, but in-
tervening on the subject and object representations,
reflecting them onto the “opposite side” of the case
subspaces, effectively making the representation of
a case-marked argument not case-marked, and that
of a non-case-marked argument case-marked. We
check how effective the intervention is by measur-
ing how intervention affects the language model’s
performance. An effective intervention suggests
the subspace identified by INLP really is how the
language model encoding case.1

7.1 Method: intervention
Intervention is a process that takes three things as
input: a vector 𝑥 ∈ ℝ𝑑, which is a representation
produced by our language model, a set of orthonor-
mal basis vectors 𝔹 = 𝑏1, ⋯ , 𝑏𝑘 ∈ ℝ𝑑, which iden-
tifies a subspace that encodes case, and an intensity
parameter 𝛼 ≥ 1. First, for each 𝑗 = 1, ⋯ , 𝑘, cal-
culate 𝜆𝑗, the scalar projection of 𝑥 onto 𝑏𝑗 with
𝜆𝑗 = 𝑥⊤𝑏𝑗. Then, return the intervened vector
𝑥′ ∈ ℝ𝑑, calculated as 𝑥′ = 𝑥−𝛼 ∑𝑘

𝑗=1 𝜆𝑗𝑏𝑗. The
interpretation of 𝑥′ depends on 𝛼. When 𝛼 = 1,
𝑥′ is the projection of 𝑥 onto the nullspace of the
case subspace; 𝑥′ then represents 𝑥 but with all
case information removed. When 𝛼 = 2, 𝑥′ is the
reflection of 𝑥 onto the opposite side of the case
subspace; 𝑥′ then inverts the case information of
𝑥. For example, if 𝔹 represents the ergative sub-
space, and 𝑥 represents an ergative-marked argu-
ment, then 𝑥′ represents the same argument as 𝑥 ex-
cept it’s non-ergative-marked. Any 𝛼 > 2 pushes
𝑥′ further in the opposite case direction, intensify-
ing the effect of the intervention.

1Our description of intervention and INLP largely follows
Hao and Linzen’s (2023) presentation.
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7.2 Method: iterative nullspace projection
To perform intervention with respect to a case sub-
space, we first need a set of orthonormal basis
for that subspace. Iterative nullspace projection
(INLP) (Dufter and Schütze, 2019; Ravfogel et al.,
2020) is a supervised method to help us find the
bases for a subspace of interest. We describe INLP
for identifying the ergative subspace; the same pro-
cess works for the accusative subspace. First, we
designate a training split of the evaluation dataset,
and run the language model on each sentence pre-
fix 𝑠(𝑖) of the training split to obtain a hidden layer
vector ℎ(𝑖) at some position of interest. Each ℎ(𝑖)

is paired with a binary label 𝑐(𝑖) representing the
presence/absence of ergative case in that sentence
prefix. Then, we train a linear classifier to predict
𝑐(𝑖) from ℎ(𝑖). The normalized weights of the clas-
sifier, a vector in ℝ𝑑, is taken to be the first basis 𝑏1.
For each additional 𝑗th basis we’d like to find, we
train another linear classifier the same way, except
we preprocess the input ℎ(𝑖) by intervening it with
the first 𝑗 − 1 bases and intensity 𝛼 = 1, removing
the ergative case information captured by the first
𝑗 −1 bases. We train each classifier using gradient
descent, which guarantees that the new classifier
weight 𝑏𝑗 is a weighted sum of the preprocessed
inputs ℎ(𝑖). Since the preprocessing projects each
ℎ(𝑖) onto the nullspaces of the first 𝑗 − 1 bases, 𝑏𝑗
is guaranteed to be orthogonal to all of 𝑏1, ⋯ 𝑏𝑗−1.

7.3 Evaluation with causal intervention: is
case encoded linearly?

We perform a 50-fold cross validation on the eval-
uation dataset, with a training split of 6.4K data
points in each fold. For the ergative subspace, we
run INLP on hidden layer vectors obtained from
two positions: one set after processing the subject,
and another after processing the object. For the ac-
cusative subspace, we run INLP on hidden layer
vectors obtained after processing the object. This
gives us three sets of bases: one for the post-subject
ergative subspace, one for the post-object ergative
subspace, and one for the post-object accusative
subspace.

The remaining 313.6K data points in each fold
is used for evaluation. We re-run the evaluation de-
scribed in Section 5.2, while performing causal in-
tervention with respect to each one of the three case
subspaces at the appropriate location. For example,
for the post-object ergative subspace, we feed each
sentence prefix into our language model, and pause

once the model processes the object. We intervene
the hidden layer vectors with respect to the post-
object ergative subspace using some intensity 𝛼,
and resume model inference using the intervened
hidden layer vectors, effectively flipping the pres-
ence/absence of ergative marking. We compare the
agreement performance of the language model be-
fore and after the intervention to see how success-
ful the intervention was. We use sensitivity index
(𝑑′) to quantify model performance. The results
are shown in Figure 2 for ergative intervention and
Figure 3 for accusative intervention. We present
the results for 𝛼 = 5 just as Hao and Linzen (2023)
did, noting that lower values for 𝛼 doesn’t change
our results qualitatively.

Let’s first consider ergative intervention. We be-
lieve ergative case information should be the most
recoverable at the post-subject position; hence in
this section, we only look at the results of the post-
subject ergative intervention. In the [-ERG,-ACC]
condition, agreement should target the subject. A
successful ergative intervention should assimilate
this to the [+ERG,-ACC] condition, where agreement
should target the object. Indeed, we see that the
agreement performance flips to the opposite pre-
diction, as 𝑑′ drops below zero. In the [-ERG,+ACC]
condition, agreement should target the subject. A
successful ergative intervention assimilates this to
the [+ERG,+ACC] condition, which requires default
agreement. This should be reflected as chance per-
formance, which is exactly what we see in our re-
sults. Finally, in the [+ERG,-ACC] condition, agree-
ment should target the object. A successful inter-
vention assimilates this to the [-ERG,+ACC] condi-
tion, where agreement should target the subject.
However, our ergative intervention only drives the
agreement performance to near-chance level, not
exactly reversing the agreement predictions.

Let’s turn to accusative intervention. In the two
[-ERG] conditions, a successful accusative interven-
tion shouldn’t affect agreement computations, be-
cause agreement should always target the subject if
it isn’t ergative-marked. Indeed, our intervention
doesn’t change the agreement predictions qualita-
tively, as it remains above chance in both condi-
tions. In the [+ERG,-ACC] condition, agreement tar-
gets the object. A successful accusative interven-
tion should cause agreement to fall back to default
masculine. However, our intervention keeps the
agreement above chance, which means agreement
is still targetting the object.

Thus, we have found positive evidence that our
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Figure 2: Ergative intervention results. The two inter-
vention locations are post-Subject and post-Object. The
light dashed line is drawn at 𝑑′ = 0, indicating chance
performance. The dark solid line indicates the original
performance of the language model before intervention.
Error bars indicate one standard error average across
cross validation.

language model uses a linear encoding of ergative
and accusative case marking, and uses this encod-
ing to calculate agreement.

7.4 Is agreement computation eager or lazy?
For our second investigation, we check whether our
language model aligns more with an eager or a lazy
characterization of agreement computation. We
suggest that looking at the effectiveness of the post-
object ergative intervention may give us a clue,
because it should only be effective in a lazy, but
not an eager, computation. An eager computation
would use the ergative case information to advance
the simulation as soon as it processes the subject,
discarding that information, while a lazy computa-
tion would store the ergative case information until
it sees the verb. Looking at Figure 2 again, we ob-
serve that post-object ergative intervention is still
effective, although the magnitude of the interven-
tion effect is smaller than post-subject intervention.
This suggests our language model isn’t computing
agreement in a purely eager way.

Although this by itself is a very weak conclu-
sion, we think that the general method of causal
interventions with respect to linear encodings we
pursue here can be extended in interesting ways to
help us better understand the underlying computa-

Figure 3: Accusative intervention results. The interven-
tion location is post-Object.

tion of language models. For example, we plan to
perform the same analysis we describe in this pa-
per to Transformers. We think the autoregressive
and recurrent nature of the LSTM architecture cre-
ate an incremental processing pressure that encour-
ages performing computations on the fly, while
Transformers aren’t subject to this pressure. Thus,
we expect Transformers to show signs of a lazier
computation than our LSTM language model.

8 Conclusion

In this paper, we train a LSTM language model
on Hindi data and show that it has learned case-
agreement interactions in Hindi-Urdu, predicting
correct gender agreement 81.17% of the time. We
further show that our language model has learned
to encode case information in a low-dimensional
subspace of its hidden layer vectors, where case-
marked arguments are linearly separable from non-
case-marked arguments. In addition, our model
uses case information encoded this way as part of
its agreement computation. Preliminary evidence
also suggests that our language model doesn’t cal-
culate agreement extremely eagerly, as our causal
intervention methods reveal that case information
seems to be persistent over time as the language
model processes a sentence. The general method
described in this paper can be adopted to study in-
teresting phenomena concerning case and agree-
ment in other languages.
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Limitations
We see two limitations in our work, which both
concern interpreting our causal intervention results.
The first limitation is that we don’t know how much
of the effectiveness of our case interventions is
meaningful. For example, Figure 2 shows that post-
subject ergative intervention in the [−ERG,−ACC]
condition decreases general 𝑑′ by about 2.5. Can
all of this 2.5 point decrease be attributed to suc-
cessful ergative intervention? For example, if we
had performed multiple post-subject interventions,
each time with respect to a set of randomly gen-
erated orthonormal basis vectors, and observed a
𝑑′ decrease in the range 1.5 to 3, then our ergative
intervention result wouldn’t be meaningful, since
just any intervention would affect 𝑑′ in a similar
way. We plan to add a comparison between our
current results and intervention with respect to ran-
dom bases in a future version of this paper.

The second limitation is that we presently offer
no way of quantifying how lazy or eager our lan-
guage model’s underlying computation is. This
would be possible if we know how effective we
would expect post-object ergative intervention to
be under a fully lazy and a fully eager computation.
While a fully lazy computation should result in
equal effectiveness between post-object and post-
subject ergative intervention, we don’t know how
effective a fully eager computation should be. In
the future, we hope to consider alternative ways of
quantifying the eagerness/laziness of our language
model’s underlying computation.
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A Hyperparameters
Our LSTM had a hidden layer size of 650. We
trained with an initial learning of 20, gradient clip-
ping with a maximum L2 norm of 0.25, truncated
backpropagation through time with window size
35, a dropout rate of 0.2 for 40 epochs. Whenever
the validation set perplexity doesn’t improve in a
new epoch, the learning rate is scaled by a factor
of 0.25.
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