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Abstract
Recent work (Ross et al., 2025, 2024) has ar-
gued that the ability of humans and LLMs re-
spectively to generalize to novel adjective-noun
combinations shows that they each have access
to a compositional mechanism to determine the
phrase’s meaning and derive inferences. We
study whether these inferences can instead be
derived by analogy to known inferences, with-
out need for composition. We investigate this
by (1) building a model of analogical reason-
ing using similarity over lexical items, and (2)
asking human participants to reason by anal-
ogy. While we find that this strategy works
well for a large proportion of the dataset of
Ross et al. (2025), there are novel combina-
tions for which both humans and LLMs derive
convergent inferences but which are not well
handled by analogy. We thus conclude that the
mechanism humans and LLMs use to general-
ize in these cases cannot be fully reduced to
analogy, and likely involves composition.

1 Introduction

How are humans able to generalize to complex
linguistic expressions they have not encountered
before? One view on how this can be achieved is
through a mechanism of composition, determining
the meaning of the phrase and any resulting infer-
ences from the meanings of its parts (Partee, 2009;
Szabó, 2012, i.a.). Others, however, believe that
composition is not required: mechanisms such as
analogy are sufficient to explain humans’ ability
to generalize to novel phrases (Bybee, 2010; Am-
bridge, 2020 i.a.). The same question arises when
we study LLMs’ ability to generalize. If they can
generalize to novel phrases, is this evidence that
they must be composing these phrases from their
subparts, or is there another way to achieve the
same results?

Ross et al. (2025) argue that humans must be
using composition, since they converge on the in-
ferences of at least some combinations that they

Figure 1: Possible analogical reasoning to infer that
counterfeit scarf is a scarf, since a counterfeit purse is
a purse and a fake (or counterfeit) watch is a watch.

are assumed never to have seen before (e.g., for
fake reef or counterfeit scarf, which never appear
in a large corpus). Ross et al. (2024) suggest a
similar conclusion for LLMs based on the same
dataset, since LLMs show reasonably human-like
behavior on at least some bigrams that are assumed
not to be in the LLMs’ training datasets. These
combinations are interesting because the member-
ship inferences targeted (e.g., “Is a counterfeit scarf
still a scarf?”) depend not just on the adjective but
also on the noun, involving significant detail about
how exactly the adjective affects the noun and what
properties are important for membership in that
noun category in typical situations.

This paper questions these conclusions, and in-
vestigates whether this task can in fact be solved
by analogical reasoning, without composition. For
example, for counterfeit scarf, one might reason (as
in Figure 1): “Is a counterfeit scarf still a scarf? A
scarf is an accessory like a watch or a purse, and a
counterfeit watch is still a watch, and a counterfeit
purse is still a purse, so a counterfeit scarf is most
likely still a scarf”. This skips the compositional
step of combining the meanings of the words to
derive the meaning of the bigram and further vi-
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olates the principle of compositionality as stated
by Szabó (2012) by referring to information be-
yond the meaning of the bigram’s parts, namely
the inferences associated with other adjective-noun
bigrams.

We investigate analogical reasoning through two
complementary approaches. First, we build a com-
putational model of analogical reasoning which
attempts to derive ratings for the low-frequency
and zero-frequency (assumed novel) bigrams in the
dataset of Ross et al. (2025), by analogy to the high-
frequency ones. A computational model allows us
to precisely define what we mean by analogy, and
explore the consequences of different implementa-
tion decisions. Second, we ask human participants
to reason analogically, guided by examples and
their own intuition of what analogy means. We
then evaluate how often they can produce an anal-
ogy, and whether the resulting rating distributions
derived analogically are the same as the distribu-
tions from Ross et al. (2025), where no instructions
on how to reason were given. We find that the
ratings derived by analogy significantly differ for
several bigrams, suggesting that the original partic-
ipants did not derive (all) their ratings by analogy.

Between the two methods, we find convincing
evidence that while analogical reasoning produces
similar results in many cases, it is not sufficient
to derive the full set of inference data. Thus, we
find support for the view that humans must have
access to a compositional mechanism. Further, our
analogy model performs worse on novel bigrams
than the best LLM in Ross et al. (2024), and our
analogy model’s successes and failures correlate
poorly with those of the best LLM. This suggests
that the LLM is not (just) using analogy in the cases
where it can generalize, and supports the claim in
Ross et al. (2024) that such LLMs are performing
some kind of composition (productively combining
the meaning of adjective and noun) in these cases.
We share our code and data on GitHub.1

2 Related Work

So-called “privative” adjectives such as fake pose a
challenge for compositional accounts of semantics,
since they cannot be simply intersected with the
noun (Kamp and Partee, 1995). Multiple accounts
have been proposed for how composition with pri-
vative adjectives should work (Partee, 2010; del

1https://github.com/rossh2/
artificial-intelligence/

Pinal, 2015; Martin, 2022; Guerrini, 2024 i.a.).
Most previous computational work on adjective-

noun composition using distributional semantics
does not discuss privative adjectives (Baroni and
Zamparelli, 2010; Vecchi et al., 2017; Hartung
et al., 2017). Boleda et al. (2013) cover 16 “non-
intensional” adjectives, including two which are
commonly taken to be privative (former, mock; see
Nayak et al. (2014) for a classification). Boleda
et al. build distributional semantic models of
adjective-noun composition that use vector addi-
tion and matrix multiplication to model adjective-
noun composition, but they do not cover analogy.
Cappelle et al. (2018) study the distributional se-
mantics of fake and bigrams in which it occurs, but
do not implement any method of composition or
generalization.

Ross et al. (2025) gather a large quantity of of-
fline human judgments on (privative) adjectives
and their membership inferences, discussed further
in Section 3, and Ross et al. (2024) extend this
dataset to assess LLMs. While Ross et al. (2024)
do propose a simple analogy baseline to compare
to their LLMs, we propose an improved, more pow-
erful and configurable analogy model and present
a detailed analysis of its performance.

Analogy has been much studied as a core compo-
nent of human reasoning (see Hofstadter, 2001 for
an overview), and approaches such as construction
grammar propose that analogy to known exemplars
can be used to understand any novel phrase (Bybee,
2010; Ambridge, 2020). Rambelli et al. (2024) pro-
pose a computational model of this process based
on distributional semantics. While we also build
our computational model around analogy between
phrases, we only attempt to derive membership in-
ferences from the analogy, and avoid commitment
to whether the full meaning of the phrase can be
accessed by analogy.

3 Human Judgment Dataset

Ross et al. (2025) present a dataset of human judg-
ments on adjective-noun inferences of the form “Is
an {adjective} {noun} still a {noun}?” on a 5-point
Likert scale. The dataset covers 798 bigrams (102
nouns crossed with 6 typically privative and 6 typi-
cally subsective adjectives, filtered to only include
combinations that make sense).2 In this dataset, the

2In this paper, we follow Ross et al. (2025) in using
“(typically-) privative / subsective adjective” to refer to ad-
jectives historically classified as such, which often but not
always result in the respective inference.
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question is presented out of the blue as a generic,
rather than in a discourse context. The additional
information in a discourse can sometimes deter-
mine the inference on its own (without needing
to interpret the bigram at all), whereas the out of
the blue setting requires some kind of reasoning
strategy (composition, analogy or otherwise) to de-
termine the inference. 180 of the 798 bigrams are
zero frequency in the C4 pretraining corpus (Raffel
et al., 2020), which Ross et al. (2024) take as a
proxy for the undisclosed pretraining corpora of
the models they study. These bigrams are assumed
to be novel to both humans and LLMs. A bigram
is referred to as high frequency if it is in the top
quartile of bigrams they study.

Ross et al. (2025) show that the membership in-
ference in question depends on both the adjective
and the noun, with bigrams with “subsective” ad-
jectives usually yielding subsective inferences (e.g.,
“a homemade N is an N”, but not always: consider
homemade cat), while bigrams with “privative” ad-
jectives such as fake crowd elicit a wide distribution
of ratings from subsective (“is”) to privative (“is
not”), with high variance for many (but not all)
bigrams. Varying ratings between participants are
expected in this setting, since we are dealing not
only with the lexicon but also with a broad question
(a linguistic generic) which may depend on partici-
pants’ world knowledge. Participants nonetheless
show convergent ratings for many zero-frequency
bigrams, demonstrating their ability to generalize
and implying a shared underlying mechanism.

4 Analogy Model

4.1 Algorithm

We implement a computational model of analogy
which is “trained” on the human ratings from Ross
et al. (2025) for a set of common (high-frequency)
bigrams, which are stored in the model’s mem-
ory. This is intended to imitate human prior expe-
rience with certain bigrams, where they may have
learned that, for instance, a counterfeit watch is
still a watch. Humans are known to store frequent
multi-word expressions even when those expres-
sions are compositional, not just when they are
idiomatic (Arnon and Snider, 2010; Tremblay and
Baayen, 2010; Caldwell-Harris et al., 2012, i.a.),
so it is plausible to assume that they can also store
the associated inferences. Specifically, we consider
the top quartile of bigrams in Ross et al. (2025) as
“known”, i.e., in the training set. (Appendix C also

explores an alternative approach where the training
set is balanced evenly across adjectives.)

Given these known bigrams, the model predicts
the ratings for the remainder of the bigrams by
analogy to similar bigrams in its training set, via the
algorithm in Figure 2. The setting mem configures
whether this algorithm is also applied to bigrams
in the training set, as if they were not known; we
discuss in Section 4.4 what is more human-like.

The model stores and predicts the entire rating
distribution for each bigram, rather than a single rat-
ing. As Ross et al. (2024) discuss in the context of
LLMs, it is not clear how to evaluate the alignment
of a single rating against high variance distributions
like the human data we are taking as the evaluation
target. As discussed in Section 3, such high varia-
tion is a natural consequence of working with the
lexicon, but does necessitate a more complex met-
ric than just accuracy to assess model fit. We use
same metric that Ross et al. (2024) use for LLMs:
the Jensen-Shannon divergence between the model-
predicted rating distribution and the human rating
distribution for each bigram. We compute an ag-
gregate score by averaging across all bigrams. We
report this aggregate score as well as the average
score over zero-frequency bigrams (presumed to
be novel to both humans and LLMs) to measure
its ability to generalize. These zero-frequency bi-
grams are always held out from the model.

Implementing analogical reasoning in a compu-
tational model allows us to define precisely what
we mean by analogy and test the effects of these
implementation choices. We explore two types of
analogy: either just over nouns (counterfeit scarf
→ counterfeit watch),3 or allowing analogy over
both noun and up to one additional adjective (coun-
terfeit scarf → fake watch; N+A setting). We allow
the model to retain k ≤ 5 nearby bigrams (after fil-
tering to bigrams in the training set) to impose con-
straints akin to human working memory (Cowan,
2001; Adam et al., 2017). The exact value of k
is a hyperparameter optimized on the training set
(with memorization disabled). Appendix C also dis-
cusses the case where k = 1, i.e. where the model
only considers the most similar bigram, which is a
plausible route for humans.

We calculate word similarity in three ways: (1)
cosine similarity over GloVe embeddings (Pen-
nington et al., 2014); (2) cosine similarity over

3We see in Section 5 that this is a popular human strategy:
humans choose an analogy over just nouns 58% of the time.
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Figure 2: Algorithm for the analogy model. Yellow
paths are dependent on the configuration options mem
and N+A (Noun + Adjective). k is a hyperparameter.

embeddings from Llama 3 70B Instruct (Dubey
et al., 2024) and (3) Wu-Palmer similarity over the
WordNet taxonomy (Wu and Palmer, 1994; Miller,
1995). Llama 3 70B Instruct was selected as the
source for LLM embeddings because this was the
model with the highest performance in Ross et al.
(2024). To derive word embeddings from Llama,
we pass each word individually to the LLM and
average the hidden states of the subword tokens
in the final layer.4 Wu-Palmer similarity groups
nouns5 that share common hypernyms in WordNet,
penalized by how broad that hypernym is. Using
WordNet allows us to measure similarity based
solely on a human-created dataset, as opposed to
distributionally derived embeddings. Since Word-
Net does not provide a taxonomy of adjectives, this
approach is limited to noun-only analogies.

4We could alternatively pool the embeddings from the
initial embedding layer, but the absence of contextualization
in this approach may degrade results for multi-token words
(~40% of our dataset). Nevertheless, we show in Appendix C
that results are similar in this setting.

5Strictly, the metric groups noun synsets (“senses”); we
use the 2 most common synsets per noun.

4.2 Results

Figure 3 shows the performance of the different
analogy model configurations on the whole dataset
(allowing memorization of the training set) and
on held-out, zero-frequency bigrams (assumed to
be novel to humans and LLMs). More details, in-
cluding results for privative adjectives only and
for single-bigram analogies (k = 1), are given in
Appendix C (Table 1).

GloVe embeddings. Both the noun-only and
N+A setting perform well overall, with the N+A
setting appearing to be on par with LLM perfor-
mance. However, we find that this is reliant on
memorizing the training set; neither setting gener-
alizes well to zero-frequency bigrams. In particular,
noun-only analogies perform below a uniform dis-
tribution baseline on zero-frequency bigrams.

WordNet. Perhaps surprisingly, we find that this
qualitatively different similarity metric yields very
similar results to using GloVe embeddings, at least
in the noun-only case where this metric is defined.
We discuss the implication further in Section 4.3.

Llama Embeddings. Using the embeddings de-
rived from Llama 3 70B Instruct also does not im-
prove performance significantly compared to using
GloVe, though we see a small increase for the noun-
only setting—see also the discussion in Section 4.3.

Error Analysis. To investigate where the anal-
ogy model fails, we fit a linear regression in R (R
Core Team, 2023) that predicts the JS divergence
of the best-performing model from the adjective
class (subsective vs. privative), human rating mean
and human rating SD, with an interaction between
adjective class and mean. Including the human SD
allows us to target bigrams with divergent ratings;
including an interaction of adjective class and mean
allows us to pick out e.g. bigrams with subsective
adjectives but privative ratings.

All main effects and the interaction are signifi-
cant: JS divergence is lower for privative-class ad-
jectives, higher for bigrams with subsective-class
adjectives with privative ratings (i.e., low mean rat-
ings, such as homemade money or tiny abundance),
higher for privative-class bigrams with subsective
ratings (i.e., high mean ratings, such as false ru-
mor or counterfeit watch), and lower for bigrams
with a high human standard deviation. The fact
that it struggles on bigrams like homemade money
(JS = 0.81) and tiny abundance (JS = 0.58) in
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Figure 3: Average JS divergence between distributions produced by the analogy model and human distributions
from Ross et al. (2025) on zero-frequency bigrams and on the whole dataset (with memorization of the training set).
Additional results are given in Table 1 in the Appendix.

particular is not surprising, given that these adjec-
tives are subsective for all except two bigrams in
the model’s pool of analogy candidates.

4.3 Discussion: Effect of Similarity Metric

The similarity metric used is not a main modulator
of model performance. One possible explanation
is that the analogies found by our model may often
be suboptimal or inadequate, regardless of the sim-
ilarity metric used. There are two potential sources
of this inadequacy: first, analogical reasoning may
inherently be a flawed approach for some bigrams.
Second, the training set may be so sparse that the
model cannot retrieve sufficiently similar nouns or
bigrams to adequately support analogical reason-
ing. After all, our training set contains ratings for
only 279 bigrams using 89 nouns (of 102 nouns in
the original dataset).6 While we cannot fully tease
these two possibilities apart with our current exper-
iments, Appendix E explores adding data from the
human rating experiment in Section 5.

4.4 Discussion: Humans

Working with lexical semantics requires us to deal
with per-bigram distributions and a distribution
comparison metric, rather than proportions of cor-
rect answers or significant effects in a regression.
This makes interpretation of the results more com-
plicated. It is not clear at what threshold to con-
clude that the model captures human performance,
versus what amount of JS divergence represents
noise/artifacts generated by the relatively small
distribution sample size in the human experiment

6The 102 nouns were selected by Ross et al. such that each
noun has at least one closely related other noun.

(n = 12 per bigram). Short of replicating the
human experiment in Ross et al. (2025) and cal-
culating the JS divergence between the two, we
have three points of reference: (1) We can approxi-
mate a human JS divergence by resampling from
the human distribution. This yields an average JS
divergence of just 0.05; (2) The best LLM perfor-
mance that achieves JS divergence of 0.17 both
overall and on zero-frequency bigrams (Ross et al.,
2024); (3) The ratings collected from the exper-
iment in Section 5, where humans are asked to
perform the same task as the analogy model, yield
an overall JS divergence of 0.16 compared to the
original distributions.

Our analogy model achieves a JS divergence of
0.17 at best, when allowed to memorize its training
data; 0.25 when it does not memorize it. On zero-
frequency bigrams, the best score is 0.25. While
the results are impressive with memorization, its
ability to generalize to zero-frequency bigrams is
8 points worse than LLMs and 11 points worse
than humans. This suggests that our analogy model
does not fully capture human behavior. While a key
part of the modeling assumption is that the training
data represents humans’ known and memorized
bigrams, it is still unclear whether it is human-
like to return the exact perfect distribution—all the
more so considering that we typically ask humans
to give single ratings, not entire distributions.

As an alternative metric, we conduct per-bigram
Kolmogorov-Smirnoff tests (Holm-Bonferroni ad-
justed) comparing the distributions predicted by
the analogy model to the human distributions. We
find that with memorization of the training set, 10
of the predicted distributions are significantly dif-
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ferent (p < 0.05), of which 3 are zero-frequency
bigrams; without memorization, this rises to 20.
Since we only have a sample size of n = 12, this is
a conservative estimate. Figure 8 in Appendix C.3
shows a selection of such distributions. The fact
that the analogy model significantly deviates from
the correct distribution for these cases supports our
conclusion that while analogy is successful in most
cases, it does not offer a full explanation.

4.5 Discussion: LLMs
It may seem striking that the analogy model can
achieve the same overall JS divergence as Llama 3
70B Instruct, the best model studied by Ross et al.
(2024), when we allow training set memorization.
However, comparing results on the zero-frequency
bigrams (and also on performance without mem, see
Table 1) shows that Llama 3 70B Instruct general-
izes much better than our analogy model. Further,
fitting a linear regression to predict the LLM’s JS
divergence per-bigram from the Llama embedding
analogy model’s divergence shows that although
the effect is significant (p < 0.001), this only ex-
plains 12% of the variance in the LLM’s ratings
(R2 = 0.12; R2 = 0.04 with mem enabled). In
other words, the LLM’s behavior is not particularly
well explained by the analogy model, and it does
not succeed and fail in the same places.

5 Human Analogical Reasoning

While the analogy model allows us to precisely
control the mechanism and data used for analogical
reasoning, it also suffers from an artificial restric-
tion on the bigrams to which it can draw an analogy:
its training dataset is strictly limited to the bigrams
that Ross et al. (2025) gathered human ratings for.
Actual human analogical reasoning would not be
limited in the same way, and is likely to involve a
much wider range of analogy targets. In this ex-
periment on human participants, we expand the
definition of analogy to whatever our participants
construe as analogy (given our instructions and
training examples), enabling access to whatever
bigrams they are able to come up with as suitable
analogies. This allows us to measure two things:
(1) how easy it is for people to come up with analo-
gies at all, and (2) what effect analogical reasoning
has on the resulting rating distributions.

5.1 Method
We select 96 bigrams from the 798 bigrams from
Ross et al. (2025) such that they are evenly bal-

anced by adjective and by zero vs. top quartile fre-
quency, and all have convergent human rating dis-
tributions (µ ≤ 2 or µ ≥ 4 on the 5-point scale).7

For each bigram, we show participants the ques-
tion “Is an {adjective} {noun} still a {noun}?” and
first ask them whether they are able to come up
an analogy that helps them answer the question.
We then ask them to answer the question, either
using the analogy or not, depending on their first
answer. Screenshots of each path are shown in
Figure 4. Participants first see an explanation of
what we mean by analogy, including an example
(toy hippo → toy elephant), followed by three train-
ing examples which include another example of an
analogy (melted plastic → melted wax/chocolate).
The full instructions, including our description of
“analogy”, are given in Appendix F. The analogy
text field is limited to 1-3 words to encourage anal-
ogy to adjective-noun phrases (pilot participants
sometimes typed a reasoning process into the field).

We recruited 176 native American English speak-
ers8 on Prolific, of which we excluded 33 for not
meeting our native speaker criteria, failed attention
checks, or failing to adequately follow our instruc-
tions for analogical reasoning (verified based on
manual inspection and regular expression searches
on the free text entry fields).

5.2 Results

Overall, participants self-reported that they could
find an analogy for 56.4% of responses. For every
bigram except fake impression, at least one person
was able to find an analogy, although 13 of 143
participants never produced an analogy. A plot of
analogy availability for each bigram is shown in
Figure 7 in Appendix A.9

Type of analogy. Figure 5 shows statistics for
the types of analogy drawn. We find that 58.4%
of analogies use the same adjective as the original
bigram, such as knockoff watch → knockoff purse,
while only 10% change the adjective and use the
same noun, such as homemade money → coun-
terfeit money. A further 6.2% of analogies use a
single noun. While a number of these single-noun
analogies seem intended as same-adjective analo-

7We also attempt to include a high proportion of bigrams
where analogy might be hard—see Appendix D. For example,
we adversarially pick some nouns for homemade which are
likely to yield privative judgments, such as homemade money.

8See Appendix B for detailed criteria.
9We attempted a regression to predict analogy availability

but found nothing of interest; see Appendix D.
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(a) Path when analogy found. (b) Path when no analogy found.

Figure 4: Screenshots of questions in the analogy prompting experiment.

Figure 5: Types of analogy chosen by participants.

gies (such as tiny bed → (tiny) chair), we do see
some interesting cases such as artificial rumor →
lie, which may not be an analogy in the strict sense
but are still solving the task by mapping to a known
phrase. The remaining 25.4% use a different adjec-
tive/modifier and noun.

Qualitatively, we see that our participants reach
for a much wider set of concepts than our analogy
model when drawing analogies; choices such as
homemade lake → homemade cookies, false im-
pression → wrong interpretation or even multicol-
ored weapon → painted nails are common. Partici-
pants are more likely than our model to reach for
nouns that are not that similar to the original noun
but are highly associated with the adjective, such as
knockoff purse (11 occurrences as analogy), coun-
terfeit money (10 occurrences), homemade cookies
or illegal immigrant (3 occurrences each).

Distribution shift. Does analogical reasoning
shift the distribution compared to the original rat-
ings gathered by Ross et al. (2025), where no in-
structions on how to reason were provided? In the
cases where an analogy was found, we find an aver-

age JS divergence of 0.16 overall between bigram
distributions in this experiment vs. in Ross et al.
(2025), with 0.21 on privative-type adjectives (0.32
for fake), 0.35 on homemade (recall that nouns for
homemade were picked adversarially to be more
likely to be privative) and 0.14 on zero-frequency
(presumed novel) bigrams.

We also conduct Kolmogorov-Smirnoff tests per-
bigram (with Holm-Bonferroni adjustment) to de-
termine which of the distributions are significantly
different. Since our n per bigram is quite small for
statistical purposes (at best n = 12, lower if not
all participants found an analogy for the bigram),
no bigrams are significantly different. We cannot
conclude from this that the distributions are indeed
the same when analogy is used; the sample size
is just too limited. Instead, we plot the distribu-
tions for 6 bigrams with the highest JS divergences
in Figure 6. The divergence for homemade cur-
rency and homemade money (and to a lesser extent
false friend) is particularly striking: analogy leads
people to dramatically different inferences in these
cases, since most homemade and many false items
(such as false rumor) still clearly qualify as an in-
stance of the noun.

Correlation between analogy availability and
distribution shift. We fit a beta regression in R
(Brooks et al., 2017) that predicts JS divergence as
a function of analogy availability. We find a strong
negative correlation: JS divergence decreases as
analogy availability increases (p < 0.001). In other
words, the harder it is to find an analogy, the more
likely any analogies that are found will lead people
astray from the original distribution.
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Figure 6: Distributions for the 6 bigrams with the highest JS divergences when an analogy is used. n = number of
ratings in each distribution; for analogy prompting, this is however many people found an analogy.

5.3 Discussion

This experiment shows that analogy is a viable ap-
proach for many bigrams, and in many cases results
in similar judgments as in Ross et al. (2025), where
participants could reason freely. However, for sev-
eral bigrams such as homemade money, using an
analogy yields dramatically different inferences,
suggesting that analogy was not used to derive the
original distribution. We also see bigrams where
people struggle to come up with any analogy at
all, such as fake impression (n = 0). This was
the case for 10 of our 35 zero-frequency bigrams
(n ≤ 50%), putting into question the viability of
analogical reasoning for generalization. Our anal-
ogy model also shows a higher-than-average JS
divergence for all bigrams (except one) where ana-
logical reasoning substantially shifts human ratings.
It also shows a higher-than average JS divergence
for over half the bigrams where humans struggle
to come up with an analogy. Overall, a linear re-
gression predicting human JS divergence from the
analogy model’s JS divergence explains 40% of
variation, suggesting that analogy serves as a viable
explanation for some, but not all of the variation in
human inferences. As for LLM behavior, human
analogy availability and human-human JS diver-
gence when using analogies both correlate poorly
with LLM-human JS divergence per-bigram, with
R2 = 0.05 in both cases (p = 0.03 and p = 0.04
respectively). A similar regression with our anal-
ogy model in Section 4.5 also showed low correla-
tion. This suggests that analogical reasoning poorly
explains LLM behavior, corroborating our previous
conclusion in Section 4.5.

Finally, we observe that our participants use a
much broader definition of “analogy” than our anal-
ogy model (or the examples we gave during train-
ing), suggesting that our model adheres to adjec-

tive and noun similarity overly strictly. Further,
our analogy model is strictly non-compositional at
the meaning level, whereas some human analogies
such as false impression → wrong interpretation
may well be arising from the participants first com-
posing the meaning of false impression and then
looking for phrases with a similar meaning.10

6 Conclusion

Ross et al. (2025) claim that humans must be
handling adjective-noun bigrams compositionally,
since they draw consistent inferences about novel
bigrams, and Ross et al. (2024) take LLMs’ capac-
ity to draw reasonably human-like inferences on the
same novel bigrams as evidence for composition.
We explored the possibility that this generalization
might be explained without composition in either
or both cases, specifically by analogical reasoning
over adjective and nouns using previously encoun-
tered and memorized inferences.

Composition in humans. We find that while
many of the novel bigrams in the dataset can in-
deed be handled successfully by analogy, analogy
is not sufficient to explain human behavior fully.
Our analogy model diverges significantly from hu-
man distributions on 20 bigrams and shows insuf-
ficient generalization to zero-frequency bigrams,
with a JS divergence of 0.25 from humans. Hu-
mans both struggle to come up with analogies for
24% of bigrams tested and are led astray when
they do for several bigrams, such as homemade
currency. We thus conclude that analogical rea-
soning is a successful strategy for generalization
in a remarkable proportion of the dataset of Ross
et al. (2025), but analogy does not suffice to han-
dle the full data. Thus, their conclusion that some

10False may mean not truthful/insincere or just fake (as in
false teeth); the choice of meaning depends on the noun.
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mechanism of composition seems necessary to han-
dle the whole range, homemade currency and all,
is supported—even if humans need not (and judg-
ing by our data, quite possibly do not) invoke it
in every case. This conclusion is similar to the
result of Albright and Hayes (2003), who found
that an analogical model of English past tense mor-
phology did not explain participant behavior well,
and concluded that speakers used abstract rules to
generalize rather than analogy.

Composition in LLMs. We likewise find that
LLM behavior can be partially, but not fully ex-
plained by analogical reasoning. Our analogy
model is unable to reach the performance of the
most successful LLMs in Ross et al. (2024), in
particular when generalizing to zero-frequency bi-
grams. Moreover, a linear model predicting LLM
JS divergence as a function of analogy model JS di-
vergence only explains 16% of the variance. While
this does not prove that Llama 3 70B Instruct is con-
ducting bona fide composition, it provides exciting
indications that it might—at minimum, Llama 3
70B Instruct is better able to incorporate the interac-
tion between the adjective meaning and noun mean-
ing than our purely word analogy-based model.
Investigating how composition, typically concep-
tualized as abstract rules, can be implemented in
LLMs would be an interesting avenue of future
research—the abstraction-via-exemplars account
discussed in Misra and Kim (2023) may provide a
promising starting point.

Standards of evidence for composition This
paper contributes to a broader discussion about
the standards of evidence required for composition
(McCurdy et al., 2024; Pavlick, 2025). If behav-
ioral experiments about generalization can provide
evidence about composition (and not all researchers
believe they can), we must be sure to rule out other
methods of generalization such as analogy. We fur-
ther need to ensure we have a precise enough defi-
nition of compositionality to capture our intuition
that analogy, by virtue of referring to information
not (obviously) included in the meanings of the
parts, is not a kind of composition (Szabó, 2012).
By making an explicit model of analogical reason-
ing, we can both show the way in which it requires
this additional information and show that analog-
ical reasoning fails to generalize in the expected
way, relative to our human data.
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A Analogy Availability for Humans

Figure 7 shows the percentage of times participants
were able to find an analogy for each bigram, col-
ored by the estimation of analogy difficulty dis-
cussed in Appendix D.

B Participant Recruitment Criteria

For our experiment in Section 5, we recruit people
on Prolific who self-report English as their first and
primary language and are located in the US. We fur-
ther ask them at the end of the study whether they
learned English before the age of 5 and whether
they speak American English—if not, they are paid
but excluded from the analysis. This implemen-
tation of “native speaker” is merely intended as
a practical way to expect shared language experi-
ences among our participant sample (Cheng et al.,
2021).

C Detailed Analogy Model Results

C.1 Model Configuration
As discussed in Section 4.1, the model has three
configurable parameters: whether to do analogy
over just nouns or also to include up to one adjec-
tive (“Noun only” vs.“Noun + Adjective”), how
many nearby bigrams to retain (k), and whether to
return the memorized distributions from the train-
ing set when asked about a bigram in the training
set, or to apply the algorithm as if that particular
bigram were not known.

We consider only up to 1 adjective since a hyper-
parameter search over up to 10 adjectives showed

that 1-2 adjectives were always optimal; moreover,
we only have 12 candidate adjectives to begin with,
and manual inspection suggests that at most 1-2 of
them ought to be relevant.

We consider 100 nearby nouns since we do not
want to artificially constrain our model and pre-
vent it from finding enough bigrams that it actually
knows. Having separate steps for adjective/noun
retrieval, assembling candidate bigrams, and then
checking which bigrams are known is an artificial
implementation choice that we make for our al-
gorithm; humans could well be retrieving similar
nouns and checking whether the resulting bigram
is known in tandem. Thus, we always retrieve 100
nearby nouns “just in case” and instead rely on
the number of bigrams k to constrain the model.
As discussed in Section 4.1, we set k ≤ 5 to im-
pose constraints akin to human working memory
(Cowan, 2001; Adam et al., 2017). We allow the
model to do a grid search over the exact value of
1 ≤ k ≤ 5 by evaluating the model on the training
set with memorization disabled. The optimal k typ-
ically ranges between 3-5 bigrams. In Table 1, we
also report the special configuration k = 1, where
the model only considers the most similar bigram
it can come up with. This mimics humans going
with the “first bigram they can come up with”, as-
suming that their retrieval process chooses a good
candidate as its first choice.

The final configuration choice, which we did not
discuss in Section 4.1, is the training data – what
should be considered as bigrams that humans have
previously encountered. Option 1 is to include
all bigrams classed as “high frequency” by Ross
et al. (2024), i.e. all bigrams in the top quartile of
their dataset. This results in sparse data for some
adjectives. Notably, this only includes a single
bigram involving the adjective knockoff and no
bigrams including unimportant, meaning the model
will be at a disadvantage for bigrams with these
adjectives. In the N+A setting, it will have to rely
primarily on bigrams involving e.g. counterfeit;
in the noun only setting, it will often return no
distribution. It is unclear whether this sparsity is
precisely realistic, because these adjectives and
their bigrams are low-frequency, or not. Options
2a and 2b are to train on the top x most frequent
bigrams for each adjective, where we can consider
(a) x = 5 (akin to the k ≤ 5 setting for nearby
bigrams), or (b) x = 23, which results in a nearly
identical size training set (276 bigrams) to taking
the top quartile (279 bigrams). We report all three
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Figure 7: Analogy availability for all 96 bigrams in the analogy prompting experiment. Color indicates whether it
was predicted in advance that it might be difficult to find an analogy, based on the ratings from Ross et al. (2025) in
conjunction with noun frequencies and WordNet-based distance measures (see Section D).

settings in Table 1.
Finally, in the case where no similar bigrams

have known ratings, we opt to return a null dis-
tribution, which is always incorrect. We could
alternatively return a fallback distribution which
concentrates all its probability mass on “Unsure”,
but this will also be very unlike the human distribu-
tions under the Jensen-Shannon metric (which tend
to have high SD when not concentrated at the ends
of the scale), so this makes little difference. In prac-
tice, this only occurs in the “Noun only” setting
for some bigrams involving knockoff and unimpor-
tant when we use the top quartile of bigrams as
the training set, since these adjectives have few or
no high-frequency bigrams (1 for knockoff, 0 for
unimportant).

C.2 Detailed Results

Table 1 shows the results for the analogy models
built with GloVe embeddings, comparing the noun
only setting with the N+A (noun + adjective) set-
ting, and the single bigram setting (k = 1) with
k ≤ 5. We report the exact value for k chosen by
the hyperparameter search. We also compare train-
ing on the top quartile of bigrams vs. training on
the top 5 or 23 per adjective. Note that for the top
5 case, the set of novel bigrams (column 2, “Novel
bigr.”) is larger than in the other cases. We find
that the simplest setting, analogy to a single noun
(N only, k = 1) does not outperform a uniform

distribution baseline overall. However, if we al-
low multiple adjectives, analogy to a single bigram
(k = 1) is sometimes the best (selected even when
we tune on k ≤ 5). We also achieve similarly good
results if we use nouns only but allow averaging
over k ≤ 5 bigrams. In the noun + adjective case,
results are also similar whether we train on the top
quartile of bigrams or the top 23 bigrams per ad-
jective – training set size appears to be the driving
factor, not how it is balanced. However, in the noun
only case, which includes all the WordNet models,
we unsurprisingly see a performance boost from
including more bigrams for each adjective. (When
training on the top quartile, the noun only setting
necessarily fails for all bigrams involving unimpor-
tant, since there is no bigram with unimportant in
the training data, and does poorly for knockoff as
well, since there is only one bigram with knockoff
in the training set.) Memorization of the training
set boosts overall performance, as expected, though
not so much when the training set is very small (top
5 bigrams per adjective).

Further, we observe that performance is gen-
erally lower on privative adjectives than overall,
which makes sense because many bigrams with
subsective adjectives have distributions almost en-
tirely consolidated around “Definitely yes”, and
can be predicted from other bigrams.
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JS Divergence (lower is better)
Model Novel bigr. Zero-freq. bigr. Privative A Total Total (+mem)

Human (resampled) N/A 0.04 0.05 0.04 N/A
Human (analogy exp.) N/A 0.14 0.21 0.16 N/A
Llama 3 70B Instruct N/A 0.17 0.26 0.17 N/A
Uniform distr. baseline N/A 0.33 0.20 0.34 N/A

Analogy models: GloVe
N only, k = 1, top qt. 0.44 0.57 0.45 0.39 0.29
N only, k = 1, top 5/A 0.32 0.34 0.44 0.32 0.30
N only, k = 5, top qt. 0.41 0.55 0.39 0.36 0.27
N only, k = 3, top 5/A 0.28 0.28 0.36 0.28 0.25
N only, k = 4, top 23/A 0.26 0.25 0.33 0.26 0.17
N+A, k = 1, top qt. 0.29 0.31 0.39 0.29 0.19
N+A, k = 4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 3, top 5/A 0.27 0.27 0.36 0.27 0.25
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
Analogy models: WordNet
N only, k = 1*, top qt. 0.41 0.54 0.36 0.36 0.26
N only, k = 1*, top 23/A 0.25 0.24 0.32 0.25 0.16
Analogy models: Llama 3 70B embeddings (final layer)
N only, k = 1, top qt. 0.44 0.53 0.44 0.40 0.28
N only, k = 4, top qt. 0.40 0.50 0.37 0.35 0.26
N only, k = 5, top 23/A 0.26 0.26 0.34 0.26 0.17
N+A, k = 1, top qt. 0.33 0.33 0.44 0.34 0.22
N+A, k = 4, top qt. 0.28 0.27 0.35 0.28 0.18
N+A, k = 5, top 23/A 0.27 0.26 0.34 0.28 0.18
Analogy models: Llama 3 70B embeddings (initial layer)
N+A, k = 5, top qt. 0.28 0.30 0.35 0.27 0.18

Table 1: Average JS divergence (best / second) between various configurations of analogy models and human rating
distributions, with & without training data memorization, for ‘N only’ vs. ‘N+A’ (1 nearby adjective) and k = 1
vs. k ≤ 5 nearby bigrams (exact value of k tuned on training data). ‘Novel bigrams’ = bigrams held out from each
analogy model – for humans and LLMs, we can only be sure that zero-frequency bigrams are novel. ‘Privative A’ =
bigrams with “privative” adjectives. * = set k ≤ 5 but tuning chose k = 1. Llama 3 results and baseline from Ross
et al. (2024).

C.3 Significantly Different Distributions

Figure 8 shows 6 of the 10 bigrams where the anal-
ogy model (GloVe, k ≤ 5, with mem) predicts a
significantly different distribution according to the
Kolmogorov-Smirnoff test (with Holm-Bonferroni
adjustment) in Section 4.4.

D Estimate of Analogy Difficulty

D.1 Overview

For our analogical reasoning experiment, we at-
tempt to estimate which bigrams might be difficult
to find analogies for and balance evenly for this.
We suppose that analogy could be difficult for bi-
grams with one or more following qualities:

• the noun has no high-frequency neighbors (be-
low median among the nouns in the dataset)

• there are multiple convergent nearby bigrams
with ratings that conflict

• there are non-convergent nearby bigrams (i.e.
bigrams for which the conclusion is uncertain)

We use WordNet (Miller, 1995) rather than word
embeddings to find neighboring nouns, since Word-
Net is manually annotated by human experts, and
the British National Corpus for noun frequencies
(Leech et al., 2014). We manually define adjective
similarity, since WordNet only provides a hierar-
chical taxonomy – and thus, a similarity metric –
over nouns, described in Section D.3.
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Figure 8: Difference between distributions for 6 of the 10 bigrams which are significantly different between
the analogy model (even with mem) and the original human distributions. In each case, the model predicts more
subsective ratings than humans.

D.2 Results
In fact, we find that these criteria do not predict
how often participants were able to come up with
an analogy.

We fit a logistic mixed effects model in R (Bates
et al., 2015) that predicts whether participants could
find an analogy or not. As fixed effects, we include
the three factors described in Section 5.1, as well
as adjective class (typically privative or subjective)
and specificity of the noun (measured by depth in
the Wordnet taxonomy). We include adjective and
participant as random effects. We also fit a second
model where we replace specificity of noun with
bigram frequency (the two are too correlated to
include in the same model). In fact, we find that
none of these factors are significant (p < 0.05) ex-
cept for the presence of nearby divergent bigrams.
This feature, however, only applies to 6 bigrams in
the experiment, so this may just be spurious. This
non-significance may be the result of many false
negatives in our labeling of these factors, since we
can only test for nearby bigrams among the bigrams
that Ross et al. (2025) studied, not among the total-
ity of nearby bigrams. It may also result from our
participants construing analogy much more broadly
than we did, as discussed in Section 5.2.

D.3 Adjective Similarity Details
We use the following (asymmetric) similarities,
which are approximately scaled to match the Wu-
Palmer similarity metric (which is 0.5 for siblings).

1. artificial → fake, false: 0.75
→ counterfeit, knockoff : 0.5

2. counterfeit → knockoff : 0.9
→ fake, false: 0.75
→ artificial: 0.5

3. fake → artificial, counterfeit, false,
knockoff : 0.75

4. false → fake: 0.9
→ counterfeit, knockoff, artificial: 0.75

5. knockoff → counterfeit: 0.9
→ fake: 0.75

6. former → artificial, counterfeit, fake,
false, knockoff : 0.5

7. homemade → artificial, fake, false: 0.8
→ tiny, multicolored: 0.75
→ useful, illegal,

unimportant: 0.5
8. The remaining 5 subsective adjectives, useful,

tiny, illegal, unimportant and multicolored are
all assigned a similarity of 0.5 to each other
and to homemade.

Note that we provide an unusually privative-
looking set of similarities for homemade since the
examples with homemade in the experiment are
disproportionately chosen to be less subsective and
thus challenging for analogy. Moreover, these sim-
ilarities are adjusted for the fact that these are the
only 12 adjectives available – of course they would
be scaled differently if there were more options.
We do not expect small changes to these similari-
ties to have a noticeable difference on the selected
bigrams.

E Using Human Analogy Bigrams in the
Analogy Model

One bottleneck of our analogy model appears to be
its lack of available bigrams with which to draw
an analogy, i.e. which it has ratings for, compared
to humans. We can try to ameliorate this by ad-
ditionally giving it all the analogies found in the
human analogy experiment, by assuming that the
rating that they provide for the target bigram is the
same as the rating they would assign to the analog-
ical bigram. (This should be true if they are using
the analogy as intended.) We filter the provided
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analogy phrases through WordNet to retain only
two-word phrases whose first word is an adjective
and the second a noun. This adds 340 bigrams
involving 91 adjectives and 260 nouns. (The orig-
inal dataset contained only 12 adjectives and 102
nouns.)

Unfortunately, we do not have full distributions
for these bigrams; only 68 of the 340 bigrams so
found have more than one rating, and only 11 have
more than three. For target bigrams with privative
adjectives, whose distributions are often spread out,
analogy to these new bigrams will thus yield a high
JS divergence simply because the distribution is
too sparse. In line with this, the results in Table 2
show that adding these additional bigrams wors-
ens or does not improve the two best-performing
GloVe models from Table 1, though it does result
in different hyperparameter choices during the grid
search (k ≤ 5).

To compensate for only having single ratings, we
can instead evaluate the analogy models with the
more lenient “accuracy within 1 SD of the human
mean” metric proposed for single ratings by Ross
et al. (2024), which lets the model predict a mean
rating instead of a full distribution. It is then judged
“accurate” (enough) if this rating falls within 1 SD
of the mean of the human rating distribution that
bigram (rounded to the nearest integer), incorrect
otherwise. The problem with this metric, besides
being ad-hoc, is that the simple “majority” base-
line described in Ross et al. (2024), which simply
guesses “Unsure” for all bigrams with privative
adjectives and “Definitely yes” for all those with
subsective adjectives, achieves an accuracy of 0.89
using this metric. Bigrams with privative adjec-
tives generally have such a high SD that this is a
large and easy target to hit. Nonetheless, a random
guessing baseline scores only 0.46 on this metric,
so the metric is still somewhat informative.

If we add the new bigrams provided by the anal-
ogy prompting experiment to the training set and
evaluate with this Within 1 SD metric, we do see
a significant performance increase compared to
using just the original training set, as shown in Ta-
ble 3. Note that optimizing over this metric yields
new values for the parameter k, within the con-
straint k ≤ 5. k = 1 is uniformly chosen during
tuning even when we set k ≤ 5. In contrast to
the JS divergence, where we generally saw lower
(better) values for subsective adjectives and higher
(worse) values for privative ones, this metric yields
the opposite, since the SDs for subsective-adjective

bigrams are much smaller: we see lower (worse)
accuracies for subsective adjectives.

This suggests that if we had full distributions for
these bigrams, adding more training data might
indeed significantly improve the model. What
amount of training data is appropriate for modeling
humans remains an open question.

F Experiment Training Instructions

The instructions provided to participants are shown
in Table 4.
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JS Divergence (lower is better)
Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)

N+A, k = 4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 4, top qt. + exp. 0.45 0.62 0.41 0.39 0.29
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
N+A, k = 4, top 23/A + exp. 0.26 0.26 0.33 0.26 0.17

Table 2: Average JS divergence (best) between analogy models and human rating distributions for the best GloVe
models in Table 1 and their counterparts trained on the additional bigrams from the human analogy experiment.
This additional training data does not improve model performance as measured by JS divergence, because we do not
have full distributions for many of the additional bigrams.

Accuracy within 1 SD of human mean
Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)

“Majority” baseline N/A 0.91 0.78 0.89 N/A
Random guessing baseline N/A 0.46 0.61 0.46 N/A

N+A, top qt. 0.71 0.77 0.72 0.69 0.78
N+A, top qt. + exp. 0.76 0.76 0.69 0.74 0.81
N+A, top 23/A 0.70 0.76 0.71 0.68 0.76
N+A, top 23/A + exp. 0.75 0.79 0.72 0.74 0.80

Table 3: Results for the best GloVe models in Table 1 and their counterparts trained on the additional bigrams from
the human analogy experiment using the more lenient “accuracy within 1 SD of human mean” metric proposed by
(Ross et al., 2024). All models use k = 1 even when tuned with k ≤ 5; this makes sense as averaging is less likely
to improve this metric. Unlike for the JS divergence shown in Table 2, results do improve. However, results must be
interpreted relative to the “majority” baseline provided by (Ross et al., 2024), which highlight the difficulty with
this metric.
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This survey involves questions of the form “Is a toy hippo still large?” We’re interested in whether it’s
possible to solve these kinds of questions by reasoning using a similar phrase that you already know
the answer for (“by analogy”), such as “toy hippo” → “toy elephant” (toy elephants are usually not
large). For the purposes of this survey, the similar phrase / analogy can be another similar thing, or a
class of things (like animals or gadgets). The important part is that you know the answer for the new
phrase without having to think about it.

Let’s start with three examples that demonstrate how the survey works and what we mean by analogy.

Each question consists of two parts. First you will answer whether you can think of a suitable analogy
(yes/no), and type in the similar phrase if you answered yes. The phrase should consist of 1-3 words
and will typically be of the form "[adjective] [noun]". Then you will attempt to answer the original
question (e.g. "Is a toy hippo still large?") using the phrase you chose, or without it if you couldn’t
think of one.

Please pay close attention to the following examples, as we will ask you to follow this style of reasoning
in the rest of the survey.

Is melted plastic still plastic?

Can you think of an analogy to another similar phrase that would help answer this question?

You can think of an analogy from “melted plastic” → “melted wax” or “melted chocolate.” This is
useful because you immediately know the answer to “Is melted wax still wax?” or “Is melted chocolate
still chocolate?” So, you would answer “yes” to this question and type “melted wax” or “melted
chocolate” in the text box below.

Based on the analogy you chose:
Is melted plastic still plastic?

Because melted wax is still wax (or melted chocolate is still chocolate), you conclude that melted
plastic is still plastic, or probably still plastic. So, you would answer “Definitely yes” or “Probably yes”
depending on your interpretation.

Is a hard-boiled egg still runny?

Can you think of an analogy to another phrase that would help answer this question?

You probably find it hard to quickly think of an analogy that can help answer the question. While you
may be able to come up with similar phrases, they don’t immediately provide an obvious answer. So,
you would answer “No” to this question.
[Instructions for second part irrelevant, omitted]

Is a decorative pumpkin still edible?

Can you think of an analogy to another similar phrase that would help answer this question?

As in the previous example, it is hard to quickly think of an analogy that can help answer the question.
While you may be able to come up with similar phrases, they don’t immediately provide an obvious
answer. So, you would answer “No” to this question.
[Instructions for second part irrelevant, omitted]

Table 4: Training instructions and examples shown to participants to demonstrate what we intend by “analogy”.
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