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Abstract

Feature Inheritance is a prominent theoretical
innovation in minimalist syntax, which takes
it further from the formal framework of mini-
malist grammars, the best understood formal-
ism for reasoning about minimalism. Feature
inheritance involves movement targeting non-
root positions, as well as simultaneous move-
ment steps. This turns out to require a formally
innocuous extension to minimalist grammars,
leaving strong generative capacity and worst-
case parsing complexity unchanged.

1 Introduction

Viewing context-free base rules as structure build-
ing operations (a rule S → NP V P builds an
S out of a NP and a V P ), the transformational
cycle in syntax was a principle that governed the
interleaving of transformational operations with
context-free structure building operations. In par-
ticular, (cyclic) transformational rules were applied
only once certain categories (always S, often NP,
sometimes PP) of expressions were built. In early
minimalism, the transformational rule of move-
ment was interleaved with the structure building
operation of merge. However, movement could
in principle apply at any time, regardless of the
categorial status of its input. A mechanism of fea-
ture inheritance, introduced by Chomsky (2008),
in effect delays transformations until a particular
category is reached. Thus, minimalism with fea-
ture inheritance seems to be a return to the original
conception of the syntactic cycle.

In this paper we provide a formalization of the
mechanism of feature inheritance in the context of
minimalist grammars (MGs), itself a formalization
of Chomsky’s (1995) Minimalist program. The
weak generative capacity and worst-case parsing
complexity of feature inheritance is then compared
to that of vanilla MGs.

2 Feature Inheritance

Minimalist orthodoxy assumes a universal hierar-
chy of functional projections: Complementizers
select Tense which selects Voice which selects
Verbs. Underlying these lay terms are the abstract
heads (categories) ‘C’, ‘T’, ‘v’ (“little-v”), and
‘V’ (“big-V”). A large body of work assumes a
shared property between little-v and C; these two
heads are said to define locality domains in the
syntax (called phases). A basic goal expressed
by Chomsky (1995) is to reduce the stipulations
needed in the theory. As little-v and C share one
non-trivial property already, determining whether
more of their properties can be identified would
potentially reduce the number of independent stip-
ulations needed to describe the lexicon. Feature
Inheritance (FI) is introduced in (Chomsky, 2008)
as a way of reconciling a number of related observa-
tions with theoretical assumptions, and is made use
of by little-v and C, which increases their formal
similarity a great deal.

A main theoretical motivation for FI is to give a
larger role to phases. Phases are said to coincide
with the portion of the syntactic structure that the
interfaces can refer to. In other words, they are the
units that semantic and phonological interpretation
are defined over. Chomsky suggests that both inter-
faces refer to the same units of syntactic structure.
In addition, he suggests that syntactic operations
(like movement and agreement) are not distributed
throughout the nodes making up a phase, but are
rather deferred until the last head in the phase (little-
v or C). This desideratum is problematic from the
perspective of orthodox analytical assumptions, as
the T head is generally considered to trigger move-
ment of and agreement with the surface subject.

One relevant observation is that only finite T
heads trigger movement and agreement. A second
observation is that the distribution of finite vs nonfi-
nite T is related to the choice of C: for example, the
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declarative complementizer that selects for finite
T, whereas for selects for non-finite T.

1. John believes that Mary smiled.

2. ∗John believes that Mary to smile.

3. ∗John hopes for Mary smiled.

4. John hopes for Mary to smile.

Chomsky’s resolution to the problem is to shift
the finite-nonfinite distinction over to C, making
T into an underspecified tense head. Then it is C
which selects for a generic T head, and it must be
C which is responsible for triggering movement
and agreement on T. FI is the mechanism by which
movement triggered by a higher head targets the
projection of a lower head, which allows for the
idea that movement and agreement is deferred until
phase heads are introduced to be realized.

C (and little-v) also permit generic movement
to their edges, for example, to break long distance
movement into phase-sized chunks. Thus C can
trigger movement multiple times, both to its edge,
as well as to the edge of the T head immediately
below it. However, the movements that C now
triggers are typically thought to be of two funda-
mentally different kinds: the movement to T is A-
movement, and that targeting C is A-bar-movement.
These kinds of movements have importantly differ-
ent properties (pronouns can be bound after moving
over them with A-movement, but not with A-bar-
movement, for example), and Chomsky (1995) has
proposed that movement steps between the high-
est A-bar position and the lowest base-merge po-
sition of expressions be invisible to various well-
formedness conditions. Making the A and A-bar
movements which C triggers happen simultane-
ously (as opposed to serially) structures the move-
ment dependencies entered into by DPs as trees (or-
dered by derivational order), rather than sequences.
This then eliminates the need to postulate an in-
dependent operation which deletes intermediate
elements in a sequence of movement dependencies
— these are no longer on a single branch of the tree.

Feature Inheritance thus paves the way for
1. phase heads to be the locus of movement and
agreement triggers, and 2. a novel approach to the
distinction between A and A-bar movements.

3 Formal background

We couch our formalization of feature inheritance
in the formal framework of minimalist grammars

(Stabler, 1997, 2011), an extensible and well-
understood grammar formalism capable of trans-
parently representing minimalist analyses. Min-
imalist grammars are a lexicalized grammar for-
malism, like categorial grammars, with universal
grammatical rules and complex lexical entries. The
categories of lexical entries take the form of lists
of features, written with lower case greek letters,
called feature bundles, where a list is a data struc-
ture where only the first element is directly ac-
cessible. Removing (’checking’) the first element
of a nonempty list α results in the remainder of
the list α′ (so α = a.α′). Features have one of
two polarities (positive and negative), and come
in different kinds, represented as different names
(k, wh, q, d, . . .). Two features +x and -y of op-
posite polarity match iff they are of the same kind
(i.e. x = y).

A syntactic expression is either a pair ⟨w,α⟩
consisting of a string of phonemes w and a feature
bundle α (written w:α), or a term •(t1, t2), where
t1 and t2 are syntactic expressions, and • is either <
or >. The head of a syntactic expression t is t itself,
if a pair, and the head of tH if t = •(t1, t2), where
tH = t1 if • = <, and tH = t2 if • = >.

Given a syntactic expression t, the result of
checking the first feature of its head is written t′.
When t is a term, it represents a tree, and the in-
ternal nodes ‘point’ in the direction of the head. A
trace is a pair of the empty string and the empty
feature bundle, written t.

There are two syntactic operations, Merge and
Move. Merge is binary, and Move unary. They are
both restricted in their application by the feature
bundles present in their arguments. The head of the
first argument of both operations must be a positive
feature. Merge applies to two expressions t and s
just in case the heads of both have matching first
features. Move applies to its single argument just
in case this argument contains a unique leaf whose
first feature matches the first feature of the head.

+x.γ

-x.δ

γ

δ

+ ⇒

<

Figure 1: Merge of a complement
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The output of Merge depends on whether its first
argument is a leaf or a complex term. If a leaf ℓ,
then Merge(ℓ, s) = <(ℓ′, s′), and if a proper term t,
Merge(t, s) = >(t′, s′), as is depicted in figures 1
and 2.

+x.γ -x.δ

δ γ

+ ⇒

>

Figure 2: Merge of a specifier

Move replaces a subterm of the input with a
trace, and so we need a notation which simplifies re-
ferring to subterms. We define maximal projection
contextsC[x] to be either a variable x, or a structure
of one of the two forms: >(C[x], t) or <(t, C[x]).
A maximal projection context C[x] is a term where
x occurs without any arrows pointing to it, and re-
placing the variable x with a term s is written C[s].
Move applies to t iff t = C[s], where s is a term
whose head begins with a negative feature which
matches that of t. Move(C[s]) = >(s′, C[t]′), as
is depicted in figure 3.

+y.γ

-y.δ

γδ t

⇒

>

Figure 3: Movement leaves a trace

Both operations have the effect of removing fea-
tures from feature bundles one at a time, and fea-
tures in feature bundles are checked one at a time
from left to right.

4 Features for Feature Inheritance

Feature inheritance diverges from minimalist gram-
mars as they have been defined above in two ways.
First, movement can target not the top of an ex-
pression, but rather some node embedded inside it.

Second, two features can be checked at the same
time.

To deal with the first difference, we allow posi-
tive features to take a diacritic (written: +x↓) in-
dicating that they should target the sister node
to the head. We can augment the Move opera-
tion so that it can deal with these new feature
types. For example, given a term t the first fea-
ture of the head of which begins with +y↓, whose
complement C[s] contains a unique term s with
matching first feature, write t = D[C[s]]. Then
Move(D[C[s]]) = D[>(s′, C[t])]′. This is shown
in figure 4.

+y↓.γ

-y.δ

γδ t

⇒

>γ

Figure 4: Inherited movement

To allow two features to be checked simultane-
ously, we allow feature bundles to contain not just
individual features, but also pairs of features. Given
a pair of features ⟨+x, +y⟩, it is intended that they
be checked during the same derivational step. This
allows us to write lexical items with the desired
behaviour; Chomsky’s C head would have feature
bundle +T.⟨+k↓, +wh⟩.-C, indicating that it first
merges with a TP, after which it simultaneously
triggers k-movement to TP and wh-movement to
itself, and then is itself a CP. Introducing two new
feature types (+x↓ and ⟨f, g⟩) would allow for lexi-
cal feature bundles of the following forms:

1. +a.+b.+c↓.-d

2. +a.+b↓.+c↓.-d

3. +a.⟨+b, +c⟩.-d

These bundles express sequences of lexically
driven derivational steps which we view as not in
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the spirit of Chomsky (2008), which we summarize
with the following principles:

FIUniq Feature inheritance happens just once

FIEarly Feature inheritance happens immediately
after the complement is merged

FISimul Simultaneous feature checking happens
only in the context of feature inheritance

Feature bundle 1 violates the earliness princi-
ple (FIEarly), which requires feature inheritance
to happen immediately after the complement is
merged. Here, feature inheritance of +c↓ was de-
ferred until after +b was checked. Feature bundle
2 violates both the uniqueness principle (FIUniq),
which requires feature inheritance to occur just
once, and the earliness principle. Here, feature
inheritance occurs both via +b↓ and +c↓, and in ad-
dition +c↓ was deferred until after +b↓ was checked.
Feature bundle 3 violates the simultaneity princi-
ple (FISimul), which requires that simultaneous
feature checking occur in conjunction with feature
inheritance. Here, features +b and +c are checked
simultaneously, neither of which involve feature
inheritance. These principles conspire to enforce
that lexical feature bundles are drawn from the fol-
lowing regular set, where P := {+x | x ∈ F}, D :=
{+x↓ | x ∈ F}, S := {⟨d, p⟩ | d ∈ D ∧ p ∈ P} and
N := {-x | x ∈ F}:

(P(D+ S)?)?P∗N+

That is, an inheritance feature occurs only after
the first positive feature, either on its own or as
part of a simultaneous feature. With respect to the
requirement that exactly one of the pair of simulta-
neous features must be an inheritance feature has
a certain coherence to it. Note that with any other
combination of simultaneous features (i.e. where
both are of the same kind) it would be unclear how
to depict the derived tree which should result af-
ter the simultaneous features are checked: as both
target the same position (either the complement to
the head, or the specifier of the same) one mover
would need to c-command the other, from which
one could reconstruct a checking order, belying the
simultaneity of checking.

5 Implementing Feature Inheritance

A naïve implementation of inherited movement as
in figure 4 is destructive, in the sense that con-
structing the output requires changing immediate

dominance relations which held in the input. (In
particular, the immediate dominance between the
mother ‘<’ of the head of the tree and the root of
its complement.) For reasons discussed in the next
section, this is to be avoided when possible.

Taken together, the constraints on feature bun-
dles presented above allow for an alternative im-
plementation of feature inheritance. As feature
inheritance targets the first merged argument of the
head, and takes place immediately after this argu-
ment is merged, it is simple to deal with feature
inheritance during this very Merge step, where the
top of the second argument is still accessible. This
avoids the problem of destructivity, as the target po-
sition of the inherited movement has not yet been
assigned an immediate dominance relation. Let ℓ
be a lexical item whose feature bundle begins with
the following two features: +x and ⟨+y↓, +z⟩. There
are two cases to consider, depending on whether
one mover matches both features in the pair, or
whether they are matched by different movers. For
the first case, letC[s] be a term with first feature -x,
and where the first two features of s are -y and -z.
Then Merge(ℓ, C[s]) = >(s′′, <(ℓ′′, >(t, C[t]′))),
as is depicted in figure 5. In the other case, let
C[x, y] be a maximal projection context with two
variables, and let C[r, s] be a term whose first fea-
ture is -x, and where the first features of r and s are
-y and -z respectively. Then Merge(ℓ, C[r, s]) =
>(s′, <(ℓ′′, >(r′, C[t, t]′))), as is depicted in fig-
ure 6.

It only really matters that the movement steps
be simultaneous if the same mover is targeted in
both cases. This is because Chomsky analyzes the
twin movements as creating different chains — se-
quential movements of the same item would simply
extend a single chain. If two different movers are
targeted, each is going to extend its own chain, re-
gardless of whether this happens simultaneously or
sequencially.

6 Complexity Analysis

Michaelis (2001) (see also Harkema (2001)) proves
the equivalence between minimalist grammars and
multiple context-free grammars, providing a scaf-
folding for future demonstrations that extensions
do not increase generative capacity. To establish
such an equivalence, we need to present the mod-
ified operations in inference rule format, stated
over finite sequences of strings paired with feature
bundles. As noted by Stanojević (2019), parsers
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+x.⟨+y↓, +z⟩.γ + ⇒

-x.β

-y.-z.δ β t

t

>γ

<

δ

>

Figure 5: Feature inheritance involving a single mover

+x.⟨+y↓, +z⟩.γ + ⇒

-x.δ

-y.α-z.β

δ tt

α

>γ

<

β

>

Figure 6: Feature inheritance involving two different movers

105



derived from this inference rule notation can have
their worst-case time complexity read directly off
of the rules themselves. Representing each string
as a span, a pair of integer variables indicating what
portion of the input string that string should cover,
the number of distinct variables in the antecedents
of a rule polynomially bounds its contribution to
worst case complexity. Our revised implemention
of feature inheritance only modifies the Merge
rule (by adding to it two new cases), and so we
present just these in inference rule format (see Sta-
bler and Keenan (2003) for the others). In inference
rule notation, to each term corresponds a sequence
of string-feature bundle pairs. Each pair beyond
the first corresponds to a maximal proper subterm
whose head begins with negative features. The first
pair corresponds to the term minus these moving
pieces.

The inference rules are given in the figures 7–12.
This summation and the associated computational
complexity is indicated next to the names of each
of the rules above. We see that the rules MrgFI1b
and MrgFI2d contribute the most to the worst case
time complexity of the new rules. To put this in
perspective, the worst case time complexity of mini-
malist grammars without feature inheritance is also
O(n2k+3) (Fowlie and Koller, 2017; Stanojević,
2019). Thus minimalist grammars with feature in-
heritance have the same worst case time complexity
as vanilla MGs.

7 Conclusion

We have presented a formalization of Chomsky’s
((2008)) mechanism of feature inheritance, which
has played an important role in minimalist syntactic
theory over the intervening nearly two decades.
It is formally innocuous: it increases neither the
weak generative capacity nor the worst case time
complexity of the MG formalism.

Another route to this result is to simply note that
lexica containing the new lexical items with feature
bundles of the form +x.+y↓.α and +x.⟨+y↓, +z⟩.α
can be transformed into strongly and weakly equiv-
alent lexica containing only standard feature bun-
dles: given a lexical item u:+x.⟨+y↓, +z⟩.α, re-
place it with a lexical item u:+x′.+z.α, where x′

is a fresh feature name, and for every lexical item
v:β.-x.γ add to the lexicon the new lexical item
v:β.+x.-x′.γ. This transformation simply pushes
down the inherited features onto the lexical items
which will ultimately inherit them, and ensures that

they subsequently combine with their benefactors.
Like many proposals in minimalism, the sub-

stance of this one seems to lie in things not so
easily measured, like: 1. providing a formal foun-
dation for the distinction between movement types:
two independent chains branching off of a single
element, one of which c-commands the other, gives
a scaffolding over which different clusters of prop-
erties can be assigned to each, and 2. giving a for-
mal unification of lexical items of a certain type:
∀X.+x.⟨+ϕ↓, +epp⟩.-x′ is the general format for
phasal heads, where epp is a feature permitting
movement, and ϕ are agreement related features
(and we have used object-level quantification over
feature names to express polymorphism, and x′ is
the next category up in the extended projection of
x).
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⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z⟩, ψ⃗
MrgFI1a O(n2k+2)

⟨omn, α⟩, ϕ⃗, ψ⃗
The inference rule MrgFI1a describes the situation where there is a single mover, for whom this is the
last movement step, and therefore is pronounced in its highest position.

Figure 7: MrgFI1a

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z.β⟩, ψ⃗
MrgFI1b O(n2k+3)

⟨mn,α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗
The inference rule MrgFI1b describes the situation where the single mover has features left over, and
thus continues moving.

Figure 8: MrgFI1b

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z⟩, χ⃗
MrgFI2a O(n2k+1)

⟨pmon, α⟩, ϕ⃗, ψ⃗, χ⃗
The inference rule MrgFI2a describes the situation where there are two movers, for both of which this is
the last movement step, and therefore are pronounced in their highest positions. In the result, we see that
the phonetic part o of the tucking-in mover is sandwiched between the head m selecting the complement,
and the pronunciation n of this complement.

Figure 9: MrgFI2a

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.β⟩, ψ⃗, ⟨p, -z⟩, χ⃗
MrgFI2b O(n2k+2)

⟨pmn, α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗, χ⃗
The inference rule MrgFI2b describes the situation where there are two movers, but the first one continues
moving.

Figure 10: MrgFI2b

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z.γ⟩, χ⃗
MrgFI2c O(n2k+2)

⟨mon, α⟩, ϕ⃗, ψ⃗, ⟨p, γ⟩, χ⃗
The inference rule MrgFI2c describes the situation where there are two movers, but the second one
continues moving.

Figure 11: MrgFI2c

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.β⟩, ψ⃗, ⟨p, -z.γ⟩, χ⃗
MrgFI2d O(n2k+3)

⟨mn,α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗, ⟨p, γ⟩, χ⃗
The inference rule MrgFI2d describes the situation where there are two movers, and both continue
moving.

Figure 12: MrgFI2d
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