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Abstract

Computational models of pragmatic language
use have traditionally relied on hand-specified
sets of utterances and meanings, limiting their
applicability to real-world language use. We
propose a neuro-symbolic framework that en-
hances probabilistic cognitive models by inte-
grating LLM-based modules to propose and
evaluate key components in natural language,
eliminating the need for manual specification.
Through a classic case study of pragmatic
question-answering, we systematically exam-
ine various approaches to incorporating neural
modules into the cognitive model—from eval-
uating utilities and literal semantics to gener-
ating alternative utterances and goals. We find
that hybrid models can match or exceed the
performance of traditional probabilistic models
in predicting human answer patterns. However,
the success of the neuro-symbolic model de-
pends critically on how LLMs are integrated:
while they are particularly effective for propos-
ing alternatives and transforming abstract goals
into utilities, they face challenges with truth-
conditional semantic evaluation. This work
charts a path toward more flexible and scal-
able models of pragmatic language use while
illuminating crucial design considerations for
balancing neural and symbolic components.

1 Introduction

Imagine you are a barista in a café with only three
items in stock: iced coffee, soda, and Chardonnay.
If a customer asks: “Do you have iced tea?”, you
might naturally respond “I’m sorry, we don’t have
iced tea, but I can make you an iced coffee!”. This
situation exemplifies pragmatic question answer-
ing, where answerers commonly go beyond the
literal question being asked (Clark, 1979). Classi-
cal accounts of the semantic meaning of questions
and answers (e.g., Hamblin, 1973; Groenendijk and
Stokhof, 1984; Hakulinen, 2001), maintain that po-
lar questions like “Do you have iced tea?” are fully

resolved by a polar answer {yes, no}. Yet humans
routinely provide a relevant selection of additional
information (e.g., mentioning the iced coffee, but
not the Chardonnay).

Understanding what, exactly, makes an answer
relevant has been a central question in the field
of pragmatics, with extensive work investigating
the contextual factors that shape answer selection
(e.g. van Rooy, 2003; Stevens et al., 2016; Rothe
et al., 2017). One recent framework for model-
ing these pragmatic choices is the Rational Speech
Act framework (Frank and Goodman, 2012; De-
gen, 2023), which has been successfully applied to
both question and answer selection (Hawkins et al.,
2015; Hawkins and Goodman, 2017; Hawkins
et al., to appear). The probabilistic cognitive mod-
els (PCMs) developed within this framework offer
significant advantages through their transparent,
explicit task decomposition and systematic error
analysis (Farrell and Lewandowsky, 2018).

However, these models are typically limited to a
small set of predefined examples, restricting their
applicability to real-world scenarios. In contrast,
Large Language Models (LLMs) offer a comple-
mentary set of capabilities. They can process open-
ended natural language input and generate flexible
responses, but often struggle with subtle pragmatic
patterns (Hu et al., 2023; Ruis et al., 2023; Tsvilo-
dub et al., 2024b) and lack the degree of explain-
ability that makes PCMs so valuable for cognitive
modeling (Zhao et al., 2023).

To address these complementary strengths and
limitations, we explore a family of neuro-symbolic
models, with different combinations of both ap-
proaches to leverage their respective strengths
and to overcome known shortcomings.1 Our ap-

1We use the term neuro-symbolic in the sense of a model
that has neural network components (here, LLMs), that are
scaffolded by a symbolic task analysis, i.e., integrated in a
particular computational procedure. Other senses of the term
also exist (Bhuyan et al., 2024).
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Figure 1: Probabilistic cognitive model (PCM) of prag-
matic question answering. The PCM, built in the Ratio-
nal Speech Act framework, implements recursive back-
and-forth reasoning of rational agents. The questioner
chooses a question based on their decision problem and
an expectation of responses that any question might pro-
voke. The respondent chooses a relevant response based
on the decision problem inferred from the question.

proach builds on the task analysis developed in
previous work on pragmatic question-answering
(Hawkins et al., 2015; Hawkins and Goodman,
2017; Hawkins et al., to appear) in two ways. First,
we use it as a scaffolding structure that determines
the computational steps, with LLMs executing spe-
cific subtasks that would traditionally require man-
ual specification in a PCM (Sections 3.2–3.3). Sec-
ond, we verbalize (parts of) the scaffolding struc-
ture in a single prompt, relying on a single LLM
call to solve the respective computational task (Sec-
tion 3.4). This dual approach enables us to sys-
tematically investigate the tradeoffs between fine-
grained task decomposition and end-to-end neural
processing.

Our key contributions are as follows:

• A novel neuro-symbolic framework that ex-
tends probabilistic models of pragmatic ques-
tion answering to more open-ended natural
language.

• A systematic investigation of how different in-
tegrations of neural and symbolic components
affect model behavior.

• Empirical validation against human data,
demonstrating that neuro-symbolic models
can match or exceed traditional probabilistic
approaches in predicting human behavior.

2 A Probabilistic Cognitive Model of
Relevant Question-Answering

The probabilistic cognitive model we use for task
analysis and scaffolding, which we refer to as the

QA model (Hawkins et al., to appear), captures
a rational pragmatic respondent that chooses an
answer by reasoning about how a pragmatic ques-
tioner chooses a question (see Figure 1 for overview
and Appendix A for technical detail). The ques-
tioner is grounded in a context-independent base-
level respondent. The pragmatic questioner selects
a question based on the response they expect to
get from the base-level respondent, who answers
austerely without considering the wider context.
The pragmatic respondent, in turn, reasons about
the motivation of the speaker for asking the ques-
tion (i.e., infers their goal from the question) and
chooses responses that are expected to be relevant
to the questioner’s goal.

To implement expected relevance of an answer,
the QA model builds on decision-theoretic ac-
counts of relevance of questions and answers (van
Rooy, 2003; Benz, 2006), which formalizes rele-
vance in terms of a decision problem (DP). The
DP includes a real-valued utility function of how
useful different alternatives (e.g., iced coffee, soda,
Chardonnay) are for a given goal (e.g., getting an
iced tea). The questioner selects questions that have
a high expected relevance (i.e., high expected util-
ity) of information from the base-level respondent.
The pragmatic respondent uses the questioner’s
goal-oriented choice of question to infer from the
question what kind of DP the questioner likely
has. These inferences then guide the respondent’s
choice of information that will likely increase the
expected utility for the questioner, traded off with
response costs. We use a probabilistic implementa-
tion of the QA model in WebPPL (Goodman and
Stuhlmüller, 2014) from Hawkins et al. (to appear)
as a starting point and baseline. As commonly done
for probabilistic modeling, for these simulations
we specified the space of possible answers, pos-
sible questions, the literal semantics and the DP
utility function specifically for the main experimen-
tal materials (see Section 3.1 and Appendix A.1).

Before diving into neuro-symbolic model evalu-
ation, we first validate whether the task decomposi-
tion stipulated in the QA model is actually borne
out in human intuitive reasoning. To this end, we
conducted an exploratory answer explanation ex-
periment. Participants (N=50) were recruited via
Prolific and shown four trials with contexts wherein
a person asked for a target item while several alter-
native options were available, similar to the initial
café example, which constituted the main materi-
als we describe in more detail in Section 3.1. The
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question was followed by a character replying “no”
and providing one, most relevant, competitor al-
ternative. Participants were asked to type an ex-
planation of why that response was reasonable and
what would justify mentioning the particular option
over a different one. We then analyzed the types
of provided explanations, distinguishing between
explanations that appealed to (1) abstract similar-
ity of options, (2) questioner goals, desires, inten-
tions, or preferences, and (3) features that were
functionally relevant for the questioner goal (e.g.,
being and iced non-alcoholic drink). If participants
spontaneously reason about questioner goals and
respective relevant option features as formalized in
the QA model, we hypothesize that the proportion
of (2) and (3) will be higher than (1). We found
that 0.43 of responses appealed to goals (2), 0.20
to goal-relevant features (3), and 0.21 to general
similarity (1). 0.13 of responses were unclassifi-
able (e.g., only appealed to respondent politeness).
We interpret this as mild prima facie support for
the task decomposition implemented in the proba-
bilistic QA model. In the next section, we analyze
how systematically replacing different components
of the QA model with LLM modules affects the fit
to human data.

3 Evaluating Neuro-Symbolic QA models

We investigate the neuro-symbolic framework start-
ing with models where only one component of the
task is supplied by an LLM. We then incrementally
increase the number of LLM-based modules and
change their types, while observing the changes of
the fit to human data and the qualitative changes in
the predictions. The driving motivation is to make
PCMs more generally applicable (open-ended). For
that, two steps are necessary. For one, we would
like to be able to generate an in principle open-
ended set of alternatives over which to reason or
which to choose from. Consequently, we test if
LLMs can provide plausible sets of responses, ques-
tions, and questioner goals for the QA model; we
call LLMs in this role proposers (cf. Sumers et al.,
2023; Tsvilodub et al., 2024a). For another, once
we have open-ended sets of alternatives, we need to
be able to obtain information about them for down-
stream computation, i.e., we also use LLMs in the
role of evaluators for judging literal semantics of
answers and for assessing the utility of options.

3.1 Experimental setup

For all reported simulations below, we use
GPT-4o-mini for the LLM modules, with the sam-
pling temperature τ = 0.1. All simulations are run
for five iterations. We report additional results with
the open-source LLM Qwen-2.5-32B-Instruct
in Appendix D. We use experimental materials,
human data and the one-shot LLM prompt from
Tsvilodub et al. (2023) to investigate what kinds
of alternative options (e.g., iced coffee or Chardon-
nay), if any, different neuro-symbolic QA models
mention in the predicted responses, given a polar
question (e.g., “Do you have iced tea?”) and differ-
ent options in context.

The materials include 30 commonsense vi-
gnettes similar to the initial barista example. The
context always included three possible options, but
not the requested target (i.e., iced tea). The options
always included a best-fitting alternative called the
competitor (e.g., iced coffee), a conceptually sim-
ilar option that was deemed less relevant for the
questioner’s goal (e.g., soda), and an unrelated op-
tion irrelevant for the uttered request (e.g., Chardon-
nay). Experimental subjects provided answers by
freely typing into a text box. Responses were cate-
gorized as “target,” “similar,” and “unrelated.” In
addition to these three categories, corresponding
to mentioning each of the single options, the cate-
gorization also distinguished responses that men-
tioned all options, as well as responses that men-
tioned no options.

If a respondent is engaging in pragmatic rea-
soning, we would expect her to prefer competi-
tor responses over other types. Tsvilodub et al.
(2023) found that humans are, in fact, relevantly
overinformative, strongly preferring competitor re-
sponses (0.52 of responses) over exhaustive re-
sponses (0.10), no options responses (0.20), similar
(0.18) or unrelated responses (0.00). We investi-
gate how well neuro-symbolic models match hu-
man behavior, operationalized via Jensen-Shannon
divergence between the observed human data and
the models’ categorical predictions.

3.2 Integrating LLM Evaluators in the PCM

We assess a class of models that, starting from the
QA model, systematically incorporate LLM mod-
ules into the PCM architecture which take over two
functions: (i) the evaluation of utility of an option,
and (ii) the evaluation of the truth of a response.
Figure 2 (lower panel) shows a schematic overview
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Figure 2: Upper panel: Improvement of the model fit to human data in terms of Jensen-Shannon divergence over a
uniform response distribution baseline (higher is better, y-axis) of all analyzed models (x-axis). The horizontal line
indicates performance of the probabilistic model. Dots indicate the means across simulations, error bars indicate
95% bootstrapped CIs. Lower panel: Overview of tested models. Each box shows a schematic of one model,
labeled on the x-axis in the plot above it. The models are ordered from closest to the PCM on the left (only one
component is LLM-based), to a model only using a single LLM with a single prompt on the right.

of the tested models.

First, we implement an LLM utility evaluator for
instantiating the utility function in the questioner’s
decision problem (resulting in the “LLM utilities”
model). The utility function defines real-valued
utilities for the different alternatives (e.g., the iced
coffee, soda), conditioned on a target object (e.g.,
iced tea). In the original QA model, the utilities
were elicited in a human rating experiment wherein
participants were asked to provide slider ratings
for each possible option (e.g., iced tea, iced cof-
fee, soda, Chardonnay), given another option as
the goal (see Appendix A.1). To replace the human
input with an LLM, we prompted the utility eval-
uator in a way identical to the instructions of the
human elicitation experiment, namely to predict
the full space of utilities via ratings on a scale with
range 0–100 instead of slider ratings. Importantly,
the prompt (and the original human experiment)
only asked for abstract ratings, independent of the
functional context in which the options occurred in
the question answering scenario (see Appendix B
for all full prompts). The remaining model com-
ponents (e.g., the set of alternative utterances, the

semantics) remained symbolic in this model.

Beyond replacing the utility component, another
function-based component to replace with LLMs
for open-ending the PCM is semantic evaluation.
Semantic evaluation is necessary for the base-level
and for the pragmatic respondent and assesses
whether a response is true in a particular context.
While base-level and pragmatic respondent have
slightly different responses at their disposition ow-
ing to the fact that the base-level responder is not
reasoning about the context (see Appendix A), the
semantic evaluation is essentially the same. For
an answer like “No, but we have iced coffee.” the
module has to check whether the polar answer part
(e.g., “yes”, “no”) is true for a context (e.g., the
café has soda and iced coffee), given the question
(e.g., “Do you have iced tea?”). It also has to evalu-
ate whether the added information (e.g., “We have
iced coffee.”) is actually correct. We explored mod-
els with different combinations of these evaluators.
The “LLM semantics” model uses an LLM-based
semantic evaluator for both the base-level and the
pragmatic respondent, while using the same utility
component as the original QA model (based on
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the human experimental data). The “LLM seman-
tics & utilities” model employs all described LLM
evaluators. The “LLM base-level semantics &
utilities” only uses an LLM-based base-level re-
spondent, a rule-based pragmatic respondent, and
the LLM utility evaluator. The predictions of all
models are compared in Section 4.

3.3 Integrating LLM Proposers in the PCM
Next, we integrate LLMs as proposers for sets of
alternatives required by the QA model. We start
with sampling the possible questioner goals with a
goal proposer. The LLM was prompted to generate
plausible text-based goals, given the context and
question (see Figure 11). While the set of possible
goals in the PCM only contained four DPs (each
defining a preference for one of the options: target,
competitor, similar, unrelated option), the proposer
may sample any text-based questioner goal descrip-
tion. These sampled text-based goals are connected
to a DP representation via the utility evaluator (Sec-
tion 3.2). The evaluator was prompted to generate
the utilities for the available options, conditioned
on each proposed goal. The “LLM semantics, util-
ities, DPs” model uses the goal proposer together
with the evaluators from Section 3.2, while the sets
of possible utterances and questions are symbolic
(i.e., pre-specified manually).

Further open-ending the QA model, we intro-
duce a response proposer and a question proposer
which provide the set of alternative questions and
pragmatic answers that the respective pragmatic
agents reason over. In both cases, the LLM was
concisely prompted to generate n alternatives to an
observed utterance or question given the context vi-
gnette (see Figure 9, Figure 10). We set n = 10 for
the response proposer, and n = 3 for the question
proposer. Here, we address the empirical ques-
tion whether LLMs, out of the box, can be (easily)
prompted to produce the expected types of alter-
native pragmatic responses in the context of the
QA model (no options, competitor, similar, unre-
lated, all options). Based on exploratory qualitative
analyses described in Section 4 in more detail, we
append “no-options” and “all-options” responses
constructed in a rule-based manner to the set of
sampled alternatives. The observed question was
always added to the set of sampled alternatives
provided by question proposer.

The question and response proposers were tested
as part of the fully neuro-symbolic replication of
the PCM (“full NeSy” model). This model im-

plements the full task decomposition of the QA
model, capturing the pragmatic respondent’s re-
cursive reasoning (Figure 1) fully via the modules
described above. The base-level respondent uses an
LLM-based semantic evaluator to (symbolically)
select an informative, true response to a given ques-
tion (assuming that the decision problem is known).
For the pragmatic interpreter, the different possible
questions are supplied by an LLM-based question
proposer. An LLM-based utility evaluator rates the
usefulness of potential options to (symbolically)
compute the questioner’s expected utility of each
question (based on the expected behavior of the
base-level respondent). Finally, the pragmatic re-
spondent estimates likely DPs among the neurally
sampled alternatives, given the question, symboli-
cally via Bayes rule (where the likelihood term is
approximated via samples of generated questions
given a DP). Given her posterior beliefs about the
DPs, the respondent chooses a response from the
set provided by the response proposer that maxi-
mizes her utility function. The respondent’s util-
ity function combines the expected utility of a re-
sponse with informativeness, formalized as a KL
divergence term (see Appendix A for details). We
assume flat priors and no utterance costs through-
out the model.

3.4 Scaffolding Prompted LLMs with
Cognitive Modules

All previous models have implemented computa-
tional components suggested by the original QA
model with LLM-based proposers and evaluators.
These LLM-based components implemented rather
“local”, smaller computational elements of the task
analysis suggested by the QA model. Alternatively,
we may also use LLMs to replace larger chunks
of computation, such as the full pragmatic ques-
tion answering agent, or even the full task analysis
captured by the QA model. In the following, we
introduce three models that instantiate this general
strategy.

We first consider a model called prompt-based
questioner, of which we consider two versions,
one prompted with questioner goals, and one
prompted without goals. This model decomposes
the pragmatic respondent’s task into its two high-
level components suggested by the PCM: inferring
the questioner’s goal based on the observed ques-
tion, and selecting a response that optimizes the
questioner’s utility given the inferred DP. We imple-
ment a purely prompt-based pragmatic questioner
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module that supplies the first component. This
prompt-based questioner is used by the pragmatic
respondent of the “full NeSy” model for inferring
the distribution over DPs sampled with an LLM-
based goal proposer. The prompt-based questioner
takes a questioner goal, the context, and prompts
the LLM to provide a likelihood of someone ask-
ing the given question (see Fig. 12). The elicited
likelihoods for all questions and DPs are then renor-
malized and used by the pragmatic respondent. We
then compare the role of conditioning this mod-
ule on the goal, and also use a goal-free prompt
where the LLM is asked to assess the question like-
lihood based on the context only (prompt-based
questioner without goal, see Fig. 13).

For comparison, we also consider a purely mono-
lithic prompting of the LLM. In particular, the
one-shot chain-of-thought model has a chain-
of-thought prompt which verbalizes the reasoning
steps suggested by the QA model in the chain-of-
thought for a single example item (see Figure 14).
That is, this model is fully LLM-based, using only
one call to one neural module (i.e., the LLM).

4 Results

Quantitative results We used the human answer
proportions reported in Section 3 as reference and
quantitatively compared models in terms of fit to
the human data by calculating the Jensen-Shannon
divergence (JSD) between the human and the mod-
els’ predictions. Specifically, we calculated the
score ∆i of model Mi in comparison to the perfor-
mance of a baseline B given by a flat distribution
over all answer categories:

∆i = JSD(B, humans)− JSD(Mi, humans)

where JSD(B, humans) = 0.154. We report ∆i-s
in Figure 2 (upper panel; higher JSD differences
are better, indicating closer fit to human data). The
figure additionally shows the reference value pro-
vided by the PCM (solid line).

We found that most tested models with interme-
diate or high degrees of task decomposition came
close to the original PCM (the CIs overlap with
the PCM reference line or lie above it), indicating
that the neuro-symbolic framework provides a po-
tentially viable method for explaining human data.
Visually, the “full NeSy” model and the “prompt-
based questioner with goals” fit human data best
in terms of ∆. The PCM + LLM models tended
to improve with a higher number of LLM mod-
ules, but generally provided a somewhat worse

fit than the PCM (the means are below the line).
Supporting LLMs with a theoretically motivated
task decomposition led to significant improvement
within the LLM + scaffolding models: the “prompt-
based questioner” models showed a better fit than
the “one-shot CoT” model. Therefore, overall we
found that the neuro-symbolic approach to open-
ending pragmatic PCMs showed quantitative fit to
human data on par with established cognitive mod-
eling, while offering a more realistic interface to
natural language inputs and outputs.

Qualitative results Next to the quantitative anal-
yses, we analyzed qualitatively the differences be-
tween model predictions and the performance of
the single modules. Figure 3 shows the proportions
of different response categories (e.g., competitor,
no-options responses etc.) predicted by the differ-
ent models, next to PCM predictions and human
data from Tsvilodub et al. (2023). The figure re-
veals that although many neuro-symbolic models
have similar fit to human data in terms of ∆, there
are qualitative differences in the predicted response
proportions. The two models with “LLM seman-
tics” overpredicted the proportion of unrelated re-
sponses, while the “LLM base-level semantics &
utilities” model overpredicted the all-options re-
sponse rate and slightly underpredicted the com-
petitor rate.

Comparisons of the base-level and pragmatic re-
spondent semantic modules revealed that the base-
level semantics module performed reliably, while
the pragmatic respondent semantic module made
mistakes more frequently, including when evalu-
ating unrelated responses. This may have led to
the overprediction of the unrelated responses, as
shown by the comparison of the “LLM semantics
& utilities” and the “LLM base-level semantics &
utilities” models because the former only differs
from the latter by using an LLM-based pragmatic
respondent semantics evaluator. We correlated the
utility evaluator predictions with data elicited from
humans for the PCM (see Figure 5) and found a
very high correlation (R = 0.92), so we can likely
rule out the utility evaluator as the source of over-
prediction of the unrelated category.

The comparison of the PCM + LLM models to
the “full NeSy” model highlights the difference
in response proportions that is driven by adding
LLM proposers for the set of available responses
and questions. The addition of response and ques-
tion proposers decreased the rate of unrelated re-
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Figure 3: Proportions of different response categories produced by humans (left column) and predicted by different
models. The categories are based on which options are mentioned in the response.

sponses and slightly increased the rate of similar
and exhaustive responses. Since the “full NeSy”
model included the pragmatic respondent semantic
evaluator module, we can conclude that seman-
tic evaluations might work more reliably with the
LLM’s own proposals than with the pre-specified
sets of responses and questions. These observations
are in line with one of the well-known challenges
of neuro-symbolic modeling concerning difficulty
of converting between neural and symbolic rep-
resentations that is required in order to reliably
compute truth values for open-ended sentences and
contexts (Bader et al., 2004), as well as with de-
bates around LLMs’ ability to provide reliable eval-
uations (Bavaresco et al., 2024).

We also explored decreasing and increasing the
n of alternative responses proposed by the LLM.
We found that results with n < 10 proposals were
unlikely to contain the “all options” or “no options”
responses. For n = 10 this was more often the
case, but we appended these two response types
to set of alternatives manually nonetheless, to en-
sure availability of all conceptually meaningful re-
sponse types. Sampling n = 50 responses ensured
full coverage of response types but became compu-
tationally expensive. Generally the proposals often
contained multiple instances of one response type
(e.g., multiple competitor responses), an observa-
tion we return to in the discussion. However, this
is unlikely the sole driving force beyond the fit of
the framework, as the “LLM semantics, utilities,
DP” model showed a similar competitor response

proportion, while operating on a fully prespecified
set of responses.

We qualitatively assessed the samples of the goal
proposer module that generates possible text-based
questioner goals, given the vignette. We compared
the samples to human data from a web-based ex-
periment wherein participants were asked to write
three plausible goals of the questioner, given the
vignette context (see Appendix C for details and
human results). We focused on analyzing whether
the LLM-proposed goal focused on getting the tar-
get mentioned in the question, on a more general
information gain, or on specific situation aspects.
We observed that, while LLM proposals were plau-
sible, they focused on the target and specific goals
around the target more, while humans showed more
diversity in their specific goals, e.g., often involv-
ing social aspects of the described situation.

Turning to the LLM + scaffolding model type,
comparing the “prompt-based questioner model
without goals” and the “prompt-based questioner
model with goals” revealed a trend towards predict-
ing unrelated and similar responses more uniformly
in the goal-free model, which is expected given
that the distinction between these types of answers
is based on reasoning about the questioner’s goal.
However, these differences are small and indicate
that, even under certain (ablating, from a theoret-
ical perspective) prompt variation, LLMs may be
able to approximate pragmatic behavior.

Taken together, our key results are:
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• the neuro-symbolic modeling approach fits
human data quite closely, potentially making
it a framework for computational modeling of
pragmatic question answering performing on
par with the PCM;

• at least some level of task decomposition
when using LLM modules is required for a
good fit to human data;

• LLM modules are generally good proposers,
although attention should be paid to types of
proposals that are expected for explanatory
purposes;

• LLMs are good evaluators for functions based
on abstract world knowledge like the utility
evaluator;

• LLMs may struggle with truth-conditional se-
mantics of certain utterances, but perform well
when evaluating yes/no responses to polar
questions.

5 Related work

Our work is situated at the intersection of several
strands of like-minded work in different areas, in
addition to the work we build on directly (Hawkins
et al., 2015; Tsvilodub et al., 2023). The idea and
promise of neuro-symbolic models has been stud-
ied in artificial intelligence for many years (Bhuyan
et al., 2024). Further, our framework is closely re-
lated to recent work outlining various approaches
to combining scaffolding structures, computational
modeling or cognitive architectures with LLMs
(e.g., Nye et al., 2021; Collins et al., 2022; Sumers
et al., 2023; Wong et al., 2023; Kambhampati et al.,
2024). Combining LLMs with PCMs specifically
in the context of computational pragmatics has re-
ceived some attention in recent work (e.g., Lew
et al., 2020; Franke et al., 2024; Tsvilodub et al.,
2024a) but the present work focuses specifically on
systematically comparing and evaluating families
of related models with varying degrees of neural or
symbolic computation.

On an algorithmic level, our models combine
several LLM calls in a particular architecture,
which has been widely used in recent prompt tech-
niques (Nye et al., 2021; Prystawski et al., 2023;
Yao et al., 2023), and systems that use LLM calls
to retrieve information (e.g., Lewis et al., 2020), to
access different tools (e.g., Schick et al., 2023) or

to solve complex reasoning tasks (e.g., Creswell
et al., 2022; He-Yueya et al., 2023).

Systems with multiple LLM calls per input have
also been specifically applied to question answer-
ing (Wang et al., 2023), mainly with a focus on
improving factual accuracy of responses, or on
training systems to improve their question asking
capabilities (Andukuri et al., 2024). Therefore, our
case study addresses a highly relevant task, with
a novel focus on modeling pragmatic, human-like
answering behavior.

6 Discussion

Taken together, in this case study we outlined and
systematically assessed a neuro-symbolic frame-
work for computational pragmatic modeling that
uses probabilistic cognitive models as scaffolding
structure that integrates LLM components for more
flexible interfaces with language and background
knowledge. The experiments on a case study of
pragmatic question answering revealed that such
modeling can be a viable candidate in the toolbox
for more flexible models of human behavior in
question answering. The systematic comparison
of neuro-symbolic models with different degrees
of task decomposition suggests fine-grained differ-
ences in how LLMs perform on different subtasks
common to PCMs.

Our case study has several limitations, but also
opens up paths for future work. For one, the full
neuro-symbolic models implement Bayesian in-
ference via enumeration, which results in compu-
tational bottlenecks when scaling the number of
proposals and options in context. Related work
connecting LLMs and Bayesian inference might
be a promising avenue for improvements (Lew
et al., 2023). Additionally, the current main re-
sults are based only on one closed-source LLM
(but see Appendix D for exploratory results with an
open-source LLM), and only use zero-shot prompt-
ing (except the CoT model). In this initial case
study, we prioritized using relatively simple, non-
engineered prompts, but nonetheless LLM prompt-
ing comes with potential risks of hallucination, er-
rors and biases (e.g., Bender et al., 2021; Ji et al.,
2023; Liu et al., 2023).

Finally, the use of LLMs as proposers and evalu-
ators opens up interesting questions. For instance,
response proposals supplied by the LLM might con-
tain a trend towards certain response types, which
can arguably be seen as a learned prior over human
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preferences reflected in the training data. Addition-
ally, cognitive models usually assume utterance
costs for human language production and compre-
hension, but such online processing costs might not
have a clear counterpart in LLMs. Further, vary-
ing performance of LLM evaluators might suggest
that some aspects of semantics might be amortized
in training data (White et al., 2020). Our results
suggest that LLMs might not approximate differ-
ent aspects of human intuitive knowledge equally
well, touching upon important considerations of
replacing human judgements with LLMs (Shiffrin
and Mitchell, 2023; Löhn et al., 2024). For the
LLMs + PCM models, one other potential source
of improved performance with scaffolding of the
LLM could be due to higher inference time com-
pute budget that comes with decomposing the task
into several LLM calls (Yu et al., 2024).

In sum, we presented a detailed case study as a
starting point for exploring neuro-symbolic mod-
els of human language use, showing that task de-
composition supplied by a cognitive model can
be leveraged in synergy with recent LLMs, work-
ing towards open-ending pragmatic computational
modeling.
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A QA model

Below, we report the QA model by Hawkins et al.
(to appear), described in Section 2, in more formal
detail.

The base-level respondent that provides literal
responses r to a question q given the world w is
defined as follows:

R0(r | w, q) ∝
{
1 if r is true in w & safe for q
0 otherwise.

The notion of safety is couched in prior work on
semantics of questions and answers (Pruitt and
Roelofsen, 2011) and entails that, for the tested
vignettes, only the literal answers r ∈ {‘yes’, ‘no’}
are evaluated here.

The pragmatic questioner selects a question
given their decision problem, based on the re-
sponses they expect from the base-level respondent
R0. Formally, a decision problem (DP) is a tuple
D =

〈
W,A,U , πW

Q

〉
, consisting of a set of world

states W , a set of options A, a utility function
U : W × A → R, and a probability distribution
πW
Q ∈ ∆(W) capturing the questioner’s prior be-

liefs about the world states. Then, the value of a
decision problem D is the expected utility under a
policy ℵD that chooses options according to their
expected utility:

V (D) = E
a∼ℵD

[
E

w∼πW
Q

[
U(w, a)

] ]

The pragmatic questioner then selects a ques-
tion by soft-maximizing the expectation over the
values of the decision problems D|r,q given likely
responses from the base-level respondent, resulting
in Q(q | D) (see Figure 4), where C(r) and C(q) are
the production costs associated with the response
and question, respectively.

The pragmatic respondent then reasons about the
pragmatic questioner’s choice of question in order
to infer their likely decision problem:

π
D|q
R1

(D) ∝ Q(q | D) πD
R1

(D)

Finally, the pragmatic respondent chooses a re-
sponse by soft-maximizing the expected utility of
the response given their posterior beliefs about the
questioner DP. Utility is defined as a (parameter-
ized) combination of informativity (defined via KL
divergence) and action-relevance (defined via the
decision problem value), resulting in R1(r | q) (see
Figure 4).

A.1 Parameterization of the QA model
As commonly done for probabilistic modeling, in
order to run simulations with the QA model param-
eters of the model were specified by the modelers
or with elicited human data (Hawkins et al., to ap-
pear). For each vignette, the set of alternative ques-
tions included polar questions about the availability
of each of the possible options individually, and a
wh-question inquiring about all possible options.
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Figure 4: Formal definitions of the pragmatic questioner Q(q | D) and respondent R1(r | q).

The set of available pragmatic answers included
answers of all categories described in Section 3.1.

In order to specify the utility functions of the
questioner DPs, a web-based experiment was run
with human participants. Participants (N = 453)
were asked to provide slider ratings for each pos-
sible option (e.g., iced tea, iced coffee, soda,
Chardonnay), given another option as the goal. The
full space of possible combinations was elicited.
The slider ratings were on a scale of 0–100. Impor-
tantly, participants were asked to rate how happy
they think a person would be to receive an option,
given the target, resulting in abstract conditional
preferences. The DP utilities for each vignette were
bootstrapped from human preferences in the QA
model simulations. Human results for ratings of
the alternatives, given the option used as the target
in the free production experiments as the goal (e.g.,
the iced tea) are shown in Figure 5 (left) together
with respective LLM module predictions. Human
and GPT-4o-mini ratings correlated highly, and
supported the intuitive ordering of the relevance of
alternatives (e.g., the competitor received higher
ratings than the unrelated option for a given target).

B Prompts

Prompts for all LLM modules are presented below
in Figures 6–14.

B.1 Semantic Evaluators

The base-level semantic evaluator only evalu-
ates the set of literal responses {‘yes’, ‘no’}. The
pragmatic respondent semantic evaluator evaluates
the set of possible overinformative responses. In
models where the set of pragmatic responses is pre-
specified, the possible responses are of the form
“I’m sorry, we don’t have {target}. {continuation}”,
where the continuation was constructed for all re-
sponse types (no-options, competitor, similar, unre-
lated, all-options responses).

C Human Experiment on Goal Inference

In an exploratory goal inference study, participants
(N=35) were shown vignette contexts without the
available options, followed by the question asked
by a speaker. Participants were asked to name
three plausible goals in three separate text fields
that the questioner might have in mind when ask-
ing the question. We focused on distinguishing
whether participants named goals focused on ac-
quiring the target mentioned in the question, on
acquiring more general information, or on goals
related to more specific aspects of the situation.

Participants were most likely to infer specific
goals (0.42 of the responses), followed by target-
related goals (0.35 of the responses). More general
information-seeking goals were less likely (0.17
of the responses), and some responses were non-
classifiable (0.06).

We then manually analyzed the proposals of the
LLM goal proposer module. Qualitatively, the
target-related goals mostly were about acquiring
the target or an item with the same functional fea-
tures (e.g., when the target was veggie pizza, the
functional feature would be being a vegetarian op-
tion), both for humans and LLMs. The specific
goals produced by humans often involved more
details than just acquiring the target, e.g., acquir-
ing the target for a friend, or mentioned different
specific preferences participants came up with. In
contrast, the specific goals produced by LLMs were
less likely to mention social aspects like acquiring
something for a friend, and more likely to pro-
duce possible more specific questioner preferences
(e.g., “asking about certain dietary restrictions”).
The more general goals produced by humans and
LLMs often mentioned learning about the set of
available alternatives.
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Figure 5: Left: GPT-4o-mini utilities plotted against human utilities, R = 0.92. Right: Qwen-2.5-32B-Instruct
utilities plotted against human utilities, R = 0.93.

1-shot CoT 1-shot example 1-shot explanation 0-shot
Qwen-2.5-32B-Instruct 0.21 0.15 0.25 0.28
Qwen-2.5-14B-Instruct 0.16 0.24 0.22 0.39
Qwen-2.5-7B-Instruct 0.33 0.19 0.50 0.17

Table 1: Jensen-Shannon divergence between human response proportions and the proportions of different response
categories predicted by Qwen models of different sizes under various prompting (lower is better).

Utility Evaluator Prompt

1 In this study we are interested in
how you think about other

people.
2 On each trial , you will be given

some information about a person
: 'Suppose someone wants to
have Italian food.'

3

4 Then we 'll ask how happy you think
this person would be about

other things , given this
information. For instance , we
might ask: 'How happy do you
think they would be if they had
French food instead?'

5 You 'll use ratings from 0-100 to
answer the questions. Return
the rating only.

6

7 Suppose someone wants {goal}. How
happy do you think they would
be if they got {option }?

Figure 6: Utility Evaluator Prompt

Base-level Evaluator Prompt

1 Safe answers to questions only
provide information that the
questioner genuinely does not
know , given what they asked.

2 True answers to questions only
provide information that is
true given the context.

3

4 Here is an everyday situation
where someone asks a question:
{context + question}

5 Here is a potential answer to the
question: {utterance}

6

7 Is the answer safe and true in
this context , according to the
definition above?

8 Return 'yes ' or 'no' only.

Figure 7: Base-level Evaluator Prompt
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Pragmatic Respondent Semantic Evaluator
Prompt

1 True answers to questions only
provide information that is
true given the context.

2

3 Here is an everyday situation
where someone asks a question:
{state}

4 Here is a potential answer to the
question: {utterance}

5

6 Is the answer true in this context
, according to the definition
above?

7 Return 'yes ' or 'no ' only.

Figure 8: Pragmatic Respondent Semantic Evaluator
Prompt

Response Proposer Prompt

1 Safe answers to questions only
provide information that the
questioner genuinely does not
know , given what they asked.

2 True answers to questions only
provide information that is
true given the context.

3

4 Here is a question someone could
ask in an every day situation:
{question}

5 Here are the available options: {
options}

6

7 Generate {num_samples} literal
answers to the question.

8 Return them as a numbered list.

Figure 9: Response Proposer Prompt

Question Proposer Prompt

1 Suppose a person has the following
goal: {goal}

2 The person is in the following
everyday situation: {context}

3 Generate {num_samples} well formed
short questions(s) the person

might naturally ask in the
context to achieve their goal.

Figure 10: Question Proposer Prompt

Goal Proposer Prompt

1 You will be given a context in
which a person asks a question.

2 What plausible different goals
might the person be interested
in, given what they asked?

3 Your task is to generate {
num_samples} alternatives in a
comma separated list.

Figure 11: Goal Proposer Prompt

Prompt-based questioner with goals

1 We are interested in how likely a
person would be to ask the
following question in a simple
context , given their goal.

2 Please return only the likelihood ,
provided on a scale between 0

and 1.
3 Goal: {goal}
4 Context: {state}
5 {utterance}

Figure 12: Prompt-based questioner with goals

Prompt-based questioner without goals

1 We are interested in how likely a
person would be to ask the
following question in a simple
context.

2 Please return only the likelihood ,
provided on a scale between 0

and 1.
3 Context: {state}
4 {utterance}

Figure 13: Prompt-based questioner without goals
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One-shot chain-of-thought prompt

1 You are hosting a barbecue party.
You are standing behind the
barbecue. You have the
following goods to offer: pork
sausages , vegan burgers ,
grilled potatoes and beef
burgers.

2 Someone asks: Do you have grilled
zucchini?

3

4 Let 's think step by step. You
reason about what that person
most likely wanted to have.
That they asked for grilled
zucchini suggests that they
might want vegetarian food.
From the items you have pork
sausages and beef burgers are
least likely to satisfy the
persons desires. Vegan burgers
and grilled potatoes come much
closer. Grilled potatoes are
most similar to grilled
zucchini. You reply:

5

6 I'm sorry , I don 't have any
grilled zucchini. But I do have
some grilled potatoes.

Figure 14: One-shot chain-of-thought prompt

D Simulation Results with an
Open-Source LLM

Additionally to the main experiments performed
with GPT-4o-mini, we ran all experiments with an
open-source LLM — Qwen-2.5-32B-Instruct
(Team, 2024), providing insights about advantages
and open questions for our neuro-symbolic model-
ing framework when it is based on LLMs that can
be run locally.

The experimental settings were the same as re-
ported in 3.1. Quantitative results comparing the
predictions of the different models to human results
in terms of JSD improvement over a random base-
line ∆, introduced in 4, are shown in Figure 15.
The results indicate that some models with LLM
evaluators (i.e., semantics and utility evaluators,
models (1) and (3)) perform on par with the models
based on a powerful closed-source LLM, as well
as close to the original probabilistic model. The
high correlation between DP utilities predicted by
Qwen and human results (Figure 5, right) corrob-
orates that such evaluations can also be reliably
elicited from an open-source model. Similarly to
GPT-based models, the performance of the utility
evaluator was more robust than for the literal se-
mantic evaluators, as indicated by the better fit to
human data for model (1). However, for model
(2) and for models introducing a proposer (models
(4)–(5)) the fit of the models decreased. Manual
evaluations of the single modules in these models
indicated that, qualitatively, the generated evalua-
tions and proposals were adequate for the respec-
tive modules. However, this LLM struggled more
to follow formatting instructions, so that process-
ing the proposals for passing them to the neural
evaluator modules was more brittle. Simulation
runs which resulted in unrecoverable parsing er-
rors were excluded form analysis.2 Models which
use a Qwen-based prompted questioner module
((6)–(7)) improved the fit to human data over the
random baseline, although the role of conditioning
the questioner prompt on the goal was opposite to
the GPT-based models.

Qualitative results comparing the proportions of
different response types under different models are
shown in Figure 16. The qualitative patterns sug-
gest that Qwen-based models preferred responses
mentioning a relevant alternative (i.e., competitor
responses) over no options or exhaustive responses.

2For this reason, no results of the full neuro-symbolic
model are reported.
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Figure 15: Improvement of the fit to human data of a model with an open-source Qwen-2.5-32B-Instruct backbone
over a uniform response distribution baseline (higher is better). The horizontal line indicates the performance of the
symbolic probabilistic model. The points indicate averages over simulations.

Figure 16: Proportions of different response categories predicted by Qwen-2.5-32B-Instruct used in different models
(1–7), and with different prompting strategies (8–9).

LLM-only predictions, both in the one-shot chain-
of-thought and the zero-shot prompting conditions,
on the other hand, showed a larger proportion of
exhaustive responses. We also report the JSD val-
ues for predictions from different sizes of Qwen
under different prompting strategies from Tsvilo-
dub et al. (2023) and human results in Table 1.
These results suggest variation in the effectiveness
of such prompting for different model sizes. For
the two larger models, prompts that verbalize the
PCM improve results over zero-shot prompting, al-
though for the 32B model, ablated prompts further
improve the fit to human data, suggesting substan-
tial variation of human-likeness of the predictions
when using only neural modules.

In sum, most neuro-symbolic Qwen-based mod-
els scaffolded with the PCM showed a better fit to
human data than the random baseline, while the
predictions of the LLM alone, even under one-shot
chain-of-thought prompting, showed worse fit than
the baseline. Additionally, given the open availabil-
ity of the LLM, light-weight fine-tuning for bet-
ter formatting instruction-following might offer a
promising avenue for more robust neuro-symbolic
modeling with open-source LLMs. Therefore,
we can cautiously conclude that, given sufficient
instruction-following capabilities for formatting,
the neuro-symbolic framework might allow open-
source LLMs to produce more human-like response
patterns.
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Abstract
Discourse parsing within the Rhetorical Struc-
ture Theory (RST) framework has inspired ex-
tensive research; however, it remains prone to
significant levels of annotator disagreement,
particularly in the labeling of relations and nu-
clearity. This paper investigates systematic dis-
crepancies in RST annotations, focusing on
two expert-annotated corpora of closely related
languages. We first compare different RST
treebanks to assess the availability of parallel-
labeled data and highlight their usefulness for
studying disagreement. We then perform both
quantitative and qualitative analyses of annota-
tion divergences, identifying factors that con-
tribute significantly to inconsistent interpreta-
tions. Finally, we propose two practical ap-
proaches for addressing disagreement: (1) fil-
tering out unhelpful biases and (2) capturing
legitimate ambiguity through more flexible an-
notation schemes.

1 Introduction

In the field of computational linguistics, discourse
parsing — particularly within the Rhetorical Struc-
ture Theory (RST) framework — offers a well-
established approach to analyzing the coherence
relations between different parts of a text. This
task involves identifying and classifying discourse
relations, such as the cause-effect relationship,
between individual units, like sentences or para-
graphs. Foundational work by Mann and Thomp-
son (Mann and Thompson, 1988) and advance-
ments by Daniel Marcu (Marcu, 1996, 2000) have
introduced methodologies for constructing trees
that represent discourse units and their connections,
ultimately reflecting the rhetorical composition of
texts. In RST, elementary discourse units (DUs)
are roughly analogous to clauses, but higher order
units can span indefinitely up to a complete text.
The framework employs 30 relations to capture the
full range of connections between these units. Re-
lated spans are classified into nucleus and satellite,

where the nucleus represents the central or more
significant unit of the relation1.

The complexity inherent in discourse annotation
frequently leads to disagreements among annota-
tors at multiple levels. Even rigorously designed
RST corpora, such as RST-DT (Lynn Carlson,
2002), the Potsdam Commentary Corpus (Stede
and Neumann, 2014), and the Dutch Discourse
Treebank (van der Vliet et al., 2011; Redeker et al.,
2012), typically yield kappa scores reflecting at
best substantial agreement.

Figure 1: Example from RST website (Taboada
and Mann, 2006) in RSTWeb (Zeldes, 2016).
Cropped labels: preparation, nonvolitional cause

On the other hand, while the subject of disagree-
ment in discourse annotation has been widely ad-
dressed in theory, there have been relatively few
suggestions on how this issue could be addressed
in practice. Meanwhile, recent years have seen

1Beyond RST, other frameworks such as the Penn Dis-
course Treebank (PDTB, Prasad et al. 2008) and Segmented
Discourse Representation Theory (SDRT, Asher and Las-
carides 2003) have explored alternative approaches to labeling
discourse relations. For the former, there exists a body of
work dealing with disagreement (Yung et al., 2024; Scholman
and Demberg, 2017), showing that this problem is relevant for
either framework.
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the emergence of a large body of work on learn-
ing from disagreement, proposing a number of ap-
proaches to handling varying interpretations. In
natural language processing, transformer-based ar-
chitectures (Devlin et al., 2019; Liu et al., 2019)
are increasingly used to capture nuanced linguis-
tic phenomena, and this includes work on leverag-
ing label distributions and annotator-specific biases
(Rodrigues and Pereira, 2017; Mostafazadeh Da-
vani et al., 2022). Such strategies include aug-
menting the gold standard based on the spectrum
of opinions (Plank et al., 2014; Fornaciari et al.,
2021), learning from distributions of labels using a
soft metric (Sheng et al., 2008; Aroyo and Welty,
2014; Peterson et al., 2019; Uma et al., 2020), and
training separate models on labels coming from
individual annotators (Akhtar et al., 2020). How-
ever, despite these trends, deeper engagement with
disagreements in discourse-level tasks like RST
parsing has been limited.

Given this tendency, addressing the research gap
mentioned above becomes increasingly important.
To this end, we pursue several objectives in this
paper:

• Review existing RST resources with respect
to the extent of disagreeing annotations they
contain.

• Perform quantitative and qualitative analyses
of factors contributing to disagreement, using
suitable data sources.

• Based on the obtained results, propose prefer-
able ways of integrating disagreements into
RST annotation and RST parsing.

The scope of this paper primarily concerns RST
relations and nuclearity, leaving aside two other
major aspects of RST: segmentation of text into
EDUs and organizing these segments into spans.
While these areas are also subject to disagreement
and require thorough analysis, we exclude them
here for several reasons. Firstly, in most existing
corpora, inter-annotator agreement on these tasks
is much higher compared to relation and nuclearity
labeling (see Das et al. 2017 for details). Addi-
tionally, in most flavors of RST annotation, EDU
segmentation is grounded in syntax and leaves con-
siderably less room for subjective interpretation.
This is evident to the extent that some RST parsers
assume text segmentation is given; while debat-
able, this assumption remains widely adopted in
practical applications (Maekawa et al., 2024).

Our results suggest that RST annotation is sub-
stantially influenced by individual preferences of
annotators, which sometimes conflict with the an-
notation manual. In such cases, considering the
entire range of disagreeing annotations seems re-
dundant. On the other hand, a larger portion of
disagreements is prompted by factors that allow
for multiple interpretations, making the adoption
of a spectrum of readings by individual experts a
generally feasible strategy.

2 Related Work

2.1 Theories of disagreements in discourse
annotation

The subject of discrepancies in RST analysis has
been widely discussed in the community, with par-
ticular attention given to the relational level.

In this context, two notions need to be distin-
guished: first, one annotator assigning multiple
complementary relations; second, several annota-
tors assigning multiple relations that may or may
not be complementary. We will refer to the for-
mer as "multi-level" annotation and the latter as
"disagreement." While our primary focus is on the
latter, the concept of multi-level analysis suggests
that diverging concurrent analyses may all be plau-
sible: if one annotator can assign multiple comple-
mentary relations to the same span, it is reasonable
to assume that several annotators can do the same.
For this reason, we consider the respective argu-
ments in the discussion, even though they do not
concern disagreement directly.

(1) The topic of multi-level analysis has been
widely discussed in the literature. For example,
Mann and Thompson, 1988 suggested that multiple
relations can be assigned to the same span. Simi-
larly, Moore and Pollack, 1992 argued that each re-
lation between rhetorical units should be annotated
on two levels: informational and intentional, as the
existing relation types exhibit significant overlap
with respect to these domains. Arguments in favor
of multi-level annotation have since appeared in
numerous works (see Taboada and Mann, 2006 for
a systematic overview).

However, Sanders and Spooren, 1999, followed
by Stede, 2008a, oppose this suggestion, claiming
that complex annotation would be redundant in
most cases, as the relations involved are typically
either exclusively informational or exclusively in-
tentional. Meanwhile, Taboada and Mann, 2006
notes that postulating multiple relations may be jus-
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tified in ambiguous cases that cannot be resolved
based on the context.

(2) The issue of ambiguity in the RST frame-
work has been directly addressed in several works
by Manfred Stede (Dipper and Stede, 2006; Stede,
2008b,a), based on the experience of building the
Potsdam Commentary Corpus (Stede and Neu-
mann, 2014). The results of this work are sum-
marized in Stede, 2008a, which identifies several
sources of ambiguity in RST annotations, such as
vagueness in definitions and conflicting scopes of
relations, and argues that many of these can be
resolved through distinguishing several levels of
discourse annotation: thematic, referential, and oth-
ers. To that end, the work introduces a specialized
framework, MLA.

A related line of work (Iruskieta et al., 2015;
Wan et al., 2019) proposed changes to how the sim-
ilarity of structures should be measured in RST
annotations. The alternative metrics penalize dis-
crepancies on different levels (relation directional-
ity, nuclearity, relation type) differently, depending
on how important each factor is for the overall
structure.

Finally, some recent works suggest a permis-
sive approach to concurrent interpretations, advo-
cating for their incorporation into the gold standard.
(Das et al., 2017) compare amateur and expert RST
annotations in English and German and propose
treating competing expert analyses as a “complex
ground truth.” They suggest Underspecified Rhetor-
ical Markup Language (URML, Reitter and Stede,
2003) as a means of storing discourse graphs. On
the other hand, eRST, a proposal for RST enhance-
ment, allows for additional edges, i.e., concurrent
relations, in RST structures, provided these rela-
tions are realized lexically through discourse mark-
ers. Although this notion does not directly address
disagreements, it enables the integration of several
alternative analyses into one structure and permits
at least some alternative readings on the relational
level. In other words, parallel annotations in exist-
ing corpora can partially be integrated into eRST
graphs.

2.2 Analyzing Annotation Discrepancies
Qualitative analyses of disagreements have primar-
ily been conducted by corpus designers. For in-
stance, da Cunha et al., 2011 examined disagree-
ments in Spanish RST. A significant amount of
qualitative analysis of RST disagreements, which
ultimately remained unpublished, was carried out

by the authors of the Dutch Discourse Treebank
(NLDT) based on their own material. While we
conducted our qualitative analysis independently
on a subset of their corpus, resulting in different hy-
potheses, we extend our gratitude to Gisela Redeker
for granting us access to their data and observations
(Redeker and van der Vliet, 2015).

3 Datasets with disagreements

Given the known complexities and disagreements
in RST annotations, it has become standard prac-
tice in corpus design to include at least a small
subset of texts annotated independently by multi-
ple annotators, facilitating measurement of inter-
annotator agreement. However, there are substan-
tial differences in how many documents receive par-
allel annotations, how many discourse units these
documents include, and how many annotators are
involved. These differences have implications for
how helpful the annotations are for learning from
disagreement: although the amount of suitable data
remains the most important factor, it is certainly
not the only one.

Despite this common practice, some datasets
lack parallel annotations. Specifically, the George-
town University Multilayer Corpus (Zeldes, 2017),
currently the largest RST treebank, used a develop-
ment procedure that purposefully avoids measuring
the relative annotation quality; as a result, the cor-
pus does not have parallel markup2. The Basque
RST treebank did not have parallel annotations on
the level of whole documents, as its developers
measured disagreement on granular tasks, such as
the assignment of causal relations (Iruskieta et al.,
2013); aside from that, only reconciled annotations
are available in the public release. For several cor-
pora, there exist a number of parallel annotations,
but these have not been made publicly available
for various reasons. This applies to the Potsdam
Commentary Corpus (Stede and Neumann, 2014)
and APA RST (Hewett, 2023).

Some resources are offered by the RST Dis-
course Treebank (Lynn Carlson, 2002), formerly
the largest RST dataset, containing 385 newswire
texts from the Wall Street Journal section of the
Penn Treebank. Fifty-three texts from this main cor-
pus body received parallel annotations, providing a
relatively large set of parallel RST structures that
was published with the main corpus. Still, some

2Secondary edges from eRST graphs cannot be fully con-
sidered as such, since, for instance, they are not independent
from primary ones.
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Corpus N annotators N docs N EDUs Notes
Dutch RST 3 80 2344 Docs unevenly split: 80 / 74 / 13
Kobalt RST 2 42 2216
CSTNews 6.0 2 5 97 3 or 4 versions for some docs.
Russan RST 3 3 225
APA RST 3 36 - *Non-public
RST DT - 52 2938 *Non-attributed
Spanish RST - 80 694 *Non-attributed

Table 1: Parallel data in RST corpora. N EDUs assumes the gold standard segmentation.

factors limit the utility of this data for analyzing
disagreement.

• Firstly, the primary corpus annotations are not
independent of the parallel annotations, as the
former result from a reconciliation process
involving these parallel versions.

• Secondly, annotations are not explicitly at-
tributed to individual experts, limiting the
analysis of annotator-specific perspectives or
biases.

The Spanish RST treebank shares the latter
two issues, although it remains one of the largest
sources in terms of parallel texts, comprising
around 700 discourse segments distributed across
80 parallel documents.

For a number of RST treebanks, the opposite
is true, i.e., the data is attributed and produced
by workers independently, but its amount is in-
sufficient to conduct a feasible quantitative analy-
sis. Such is the case with the Brazilian (CSTNews
6.0, Cardoso et al., 2011) and Russian treebanks
(Toldova et al., 2017). We provide the number of
annotated documents for these and other corpora
in Table 1.

Finally, several corpora feature substantial
amounts of attributed parallel annotations, though
these are not publicly available and must be re-
quested directly from their creators. A notable
example is the Dutch Discourse Treebank (NLDT),
which offers three annotation versions for each of
its 80 documents (comprising 2,344 EDUs). Typ-
ically, two experts annotated each text indepen-
dently (with a third annotator occasionally partici-
pating), followed by a reconciled version (van der
Vliet et al., 2011; Redeker et al., 2012). For our
analysis, we selected 74 texts annotated by the two
experts responsible for the largest annotation share.
Although the annotations are not anonymized, for

the purpose of our study, we treat the annotators
anonymously, labeling them experts A, B, and C.

Another corpus with the desired properties is
Kobalt RST (Wan, 2021), a subset of the Kobalt
corpus annotated with discourse trees. Similarly,
its 42 documents (comprising 2216 EDUs) have
three versions: two readings by experts and a rec-
onciliation. Although Kobalt covers a very specific
genre of discourse, i.e., argumentative essays by
non-native German speakers, it remains suitable
for analyzing RST disagreements, such as eliciting
individual biases of annotators. We do not incorpo-
rate the reconciled annotations in our experiments,
as we aim to preserve the raw perspective of each
annotator.

Remarkably, both Kobalt and NLDT were anno-
tated by trained experts holding at least a master’s
degree in linguistics or related disciplines. This ex-
pertise level (see Das et al. 2017) and their higher
motivation as opposed to crowd annotators ensure
the quality of their work. Another similarity is
that Kobalt and NLDT concern related languages
allowing for a cross-language comparison (which,
however, has to account for lexical and syntactic
differences). These similarities are another reason
why we use both Kobalt and NLDT in our further
analysis.

4 An analysis of disagreements in the
datasets

In this section, we compare disagreements across
the two corpora more closely by reporting confu-
sion matrices and inspecting the label pairs where
annotators show consistent divergences. To avoid
dealing with matrices that are too nuanced and
sparse, we only accounted for cases of disagree-
ment on relations and disregarded cases where ex-
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perts agree on a relation but disagree on nuclearity3.
We pay special attention to whether the experts’
markup exhibits systematic disagreements. To that
end, we consider the most frequently confused rela-
tions, dividing them into two categories: "symmet-
rical" cases, in which annotators A and B confuse
relations X and Y equally frequently or at least
similarly often, and "asymmetrical" cases, where
confusing X and Y is only typical for annotator A
or B.

In the first category, we note several tendencies:
firstly, problematic relation pairs often involve the
ELABORATION relation. Although the annotation
manuals for Kobalt and NLDT, the former based
on PCC (Stede and Neumann, 2014), treat it differ-
ently, it still remains a frequent option that experts
resort to when unable to assign a more precise label.
While the notion of this relation being problematic
has been around for a long time, it is even more
evident in a cross-lingual comparison on attributed
material. Of more interest is that CAUSE in Kobalt
is often confused with other relations by both an-
notators, sometimes multinuclear and non-causal
(LIST). Inspecting the data instances manually, we
notice that 81% of these are lexically unspecified
and involve adjacent sentences, as in (1).

(1) [Überregionale Produkte werden so stark wie nie
konsumiert .] CAUSE/LIST−−−−−−→[Die heutige Generation prof-
itiert von einem vielfältigen Warenangebot dank der
Globalisierung ... .]Kobalt_DEU_004

Understandably, in this setting, experts struggle
to agree on the relative importance of sentences,
since normal heuristics, like the deletion test4, are
harder to apply. Likewise, the causality of the
relation is also debatable, as human opinions on
whether one statement entails another can diverge
greatly, as shown by other text understanding tasks
(Nie et al., 2020). Some other prominent disagree-
ments, such as those involving JUSTIFY and MO-
TIVATION in NLDT (Redeker and van der Vliet,
2015), also occur in this underspecified setting.

We report the most frequent disagreements from
the second category in Table 2 & Table 3. One
of the tendencies we find remarkable is the great
number of disagreements over multinuclear rela-
tions. This could offer insight into the high value

3We report the most frequently confused relations in the
appendix in Table 5 & Table 6.

4The deletion test involves removing each part of a relation
in turn to determine whether the entire span would retain its
original meaning. The part that is harder to delete is consid-
ered more important.

of length as a feature, since multinuclear relations,
especially JOINT, which can be used to link arbi-
trary parts of text, tend to occur in an intersentential
position and thus their respective spans are longer
in length. Based on the provided numbers, it can be
argued that annotators tend to develop a preferred
reading for ambiguous cases and assign a specific
label based on past experiences. Such is the case
with NONVOLITIONAL CAUSE from NLDT, which
annotator A considers applicable to a wider range
of situations: overall, in our subset of corpus data,
expert A uses NONVOLITIONAL CAUSE 111 times,
while expert B only 86. Other relations with a simi-
lar skew are BACKGROUND (40 vs. 23), JOINT (57
vs. 27), and, to a lesser extent, CONJUNCTION (231
vs. 262).

Incidentally, some of the confusions we observe
in Kobalt are also characteristic of other RST cor-
pora: da Cunha et al., 2011 report CONCESSION

and ANTITHESIS to be frequently confused in the
Spanish treebank. On the other hand, unlike Span-
ish RST, MEANS and CIRCUMSTANCE are almost
never confused in the two corpora, suggesting that
the authors’ explanation based on connective poly-
semy is correct.

Relations Ann. A Ann. B
conjunction-list 26 2
joint-list 2 7
concession-antithesis 8 0

Table 2: Frequent preferences in Kobalt

Relations Ann. A Ann. B
joint-conjunction 1 22
nonvol-cause-nonvol-res 12 3
list-joint 11 1
summary-preparation 8 1
nonvol-cause-circumstance 7 1

Table 3: Frequent preferences in NLDT

4.1 Results: discussion

The previously made observations shed some light
on how various cases of disagreement are dis-
tributed in the corpora; we argue that a significant
part of these does not constitute an informative
signal. One example of this is ELABORATION:
keeping this label as an alternative to more spe-
cific relations may not be particularly helpful for
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understanding the text by either human or machine
readers, since the more specific relation often im-
plies that one discourse unit elaborates on the other.
Preserving ELABORATION may also have unde-
sired effects during parser training, as parsers tend
to develop a bias towards it as the most frequent re-
lation. A further example is constituted by relation
types that experts subjectively prefer — possibly,
contrary to annotation rules. For instance, the con-
fusion between CONJUNCTION and LIST observed
in Kobalt may be a case of this, as the respective
manual suggests that LIST should only be assigned
when lexical or graphic signals explicitly indicate
an enumeration. In cases like that, only one anno-
tator is "correct" with respect to the manual.

However, there also remain plausible diver-
gences in the analyses that can prove informa-
tive if preserved in the annotation, such as the
CAUSE/LIST example above. The factors behind
cases like that include both conflicting or ambigu-
ous signals (several DMs etc.) and underspecifi-
cation; the latter leads to conflicting readings es-
pecially frequently (as another example, consider
MOTIVATION and JUSTIFY in NLDT).

In order to determine the more suitable strategy
for preserving the meaningful disagreements, it is
essential to consider the relative impact of these
factors. In the following section, we propose a
computational experiment for that purpose.

5 Modeling disagreements

5.1 Motivation

Our experiment aims to quantify the relative impact
of surface variables on annotator disagreement, par-
ticularly, on discourse relations. In order to do so,
we train a classifier for a binary objective: whether
two annotators agree or disagree on the relation
class given two related discourse units. Our as-
sumption is that signals that consistently prompt
diverging interpretations will emerge as important
features, while irrelevant signals will not make an
impact. To that end, we pick XGBoost as a classi-
fier model that can leverage feature combinations
and robustly estimate their contribution (Chen and
Guestrin, 2016). As an example, Liu et al., 2023
and Pastor and Oostdijk, 2024 both used XGBoost
to analyze hard and easy signals in RST parsing.
We also consulted both of these works when deter-
mining the set of features.

5.2 Enhancing datasets

For our experiments, we ensured that both corpora
were annotated for relevant syntactic and discourse
variables, such as UD tags and discourse markers.
This required additional intermediate steps as de-
scribed below.

Concerning syntactic features, we addressed
the problem of dependency tagset mismatch. For
NLDT, syntactic dependency markup using the
Universal Dependencies (UD) standard was pub-
lished in 2023 as part of the DisRPT shared task
(Braud et al., 2023). In contrast, the dependency
annotations available for Kobalt use the Hamburg
Dependency Treebank (HDT, Borges Völker et al.,
2019) annotation standard, which, aside from dif-
ferent tags, also displays a number of differences
in tree-building rules (Shadrova, 2020). To ensure
that both of our models used syntactic features of
similar granularity, we converted the existing de-
pendency annotations from the HDT to the UD
standard using a robust converter developed by
(Hennig and Köhn, 2017) and obtained standard
CONLL-U files.

Discourse features presented a different chal-
lenge, namely, the need for a uniform way of an-
notating both datasets with discourse markers. The
task of detecting and disambiguating discourse con-
nectives has drawn significant attention in the con-
text of PDTB-style discourse parsing, with several
tools developed specifically for these tasks (Dip-
per and Stede, 2006; Bourgonje and Stede, 2020).
However, these tools only target German and lack
a Dutch counterpart. Another development in this
direction is the creation of discourse connective
inventories for both languages: DimLex (Stede and
Umbach, 2002) and DisCoDict (Bourgonje et al.,
2018), in which all entries are additionally anno-
tated for possible non-connective readings.

In our approach, we leveraged natural language
instructions and used OpenAI’s text-to-text gen-
erative model O1-mini (OpenAI, 2023) to high-
light DM candidates. We purposefully based the
model’s instructions on a relaxed definition of dis-
course markers (compared to PDTB), synthesized
from Fraser, 2009’s account. Our motivation was
to cover the entirety of discourse marker candidates
to assess their impact on experimental results. The
respective prompts are provided in Section A in the
appendix.

In the absence of gold DM annotations, we tested
the efficiency of this solution using a rule-based
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baseline that, while imperfect on its own, provides
a reliable approximation of ground truth. Specifi-
cally, this baseline highlights all entries from Dim-
Lex or DisCoDict in the text using regular expres-
sions; however, we discard all matches except those
that occur at an EDU-initial position (assuming the
existing EDU segmentation). This choice is based
on the understanding that a large portion of DM
candidates, such as “und” or “en” (“and”) or “als”
(“when”), occur at the start of a clausal EDU when
acting as subordinating conjunctions and, conse-
quently, as discourse connectives.

We then tested O1-mini’s robustness in detect-
ing these EDU-initial DM candidates, resulting in
accuracy scores of 79% and 83% on Kobalt and
NLDT, respectively. This, along with a manual
inspection we conducted, demonstrates that both
O1-mini’s predictions and the baseline show rea-
sonable reliability.

Regarding sources of errors, we note that a large
portion of misclassifications occurs due to GPT
selecting markers that do not fall into the defini-
tion of a discourse connective in PDTB terms and
are thus absent from the lexicons we used. These
alleged false positives include instances such as
“gelukkig” (“luckily”) or “overigens” (“besides”);
whether these can truly be regarded as connectives
remains an open question.

5.3 Predicting disagreements
Similarly to Liu et al., 2023 and Pastor and Oost-
dijk, 2024, we do not train the classification algo-
rithm on the text of the two discourse units but only
supply it with pre-extracted features. Originally,
the features we use were found to be related to item
difficulty and could, thus, help predict disagree-
ments; we supply the full list below:

• Discourse unit length in symbols;

• Number of discourse markers (dm_count),
type of the head DM, i.e., a DM that is the
highest in the constituent hierarchy of the sec-
ond span (dm);

• Dependency function of a discourse unit’s syn-
tactic head (DEPREL of the head in CONLL-U
terms);

• Number of elementary discourse units
(roughly, number of clauses) in the first and
the second discourse unit, and in total;

• Genre, when applicable;

• Intra-, inter- (involving two sentences), or mul-
tisentential status of the relation (Redeker and
van der Vliet, 2014) as three binary features;

• Lastly, the label assigned by one of the two an-
notators, which helps understand whether the
experts are in two minds over some particular
relation types.

As in the parser-oriented study (Liu et al., 2023),
we split our features into two groups. The first
group comprises surface features that experts can
utilize when annotating a text, while the second
group includes the full set of features. The surface
feature group includes the following attributes: DU
length, the number and type of discourse markers,
the syntactic function of the head, and the inter-,
intra-, or multisentential status.

Dataset All Surface
Kobalt 0.75 0.73
NLDT 0.68 0.59

Table 4: Mean F1 score of XGBoost (5-fold CV)

For each dataset, we separately utilize two sub-
sets of features: surface-only features ("realistic")
and all features. We report the average F1 score
across a 5-fold cross-validation in Table 4 and pro-
vide the relative weights for all factors in Figure 2.
It can be seen that, in general, the classifier does
not attain an optimal score, especially on NLDT,
where the model based on surface features performs
slightly above chance. This may indicate that the
collected features are insufficient or, at least, do not
correlate well with disagreement in NLDT.

5.4 Results: discussion
Despite different classification scores, the two mod-
els exhibit a clear pattern in terms of the features
they select as relevant. Concretely, discourse unit
length always emerges as the most important factor.
When the "label" feature is included, it is always
the next deciding factor, suggesting that annotators
consistently disagree over specific relations: e.g.,
one picks CAUSE while another picks EXPLANA-
TION. Lastly, the head’s syntactic function and
DM type also make a contribution in all settings,
although their role in Kobalt seems to be more
prominent. Importantly, DM variable appears not
as informative as other factors5.

5Evidence from PDTB annotation also demonstrates that
agreement does not hinge on the presence of markers: inter-
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Figure 2: XGBoost weights for Kobalt (left) and NLDT (right): all (top) and surface-only (bottom) features.
Abbreviations: edu_len: discourse unit length; dm: discourse marker (present/absent); dm_count: discourse marker
count; intra/inter/multi: intra-, inter-, or multisentential relation span; n_edus_start/end: number of EDUs within the
first/second argument of the relation.

The first notion aligns well with some of the ex-
isting hypotheses about automatic discourse pars-
ing, namely, that humans and parsers struggle more
when analyzing relations between lengthy spans
of text, as in Nguyen et al., 2021; Shi et al., 2020.
Nevertheless, unit length proves to be consistently
more important than similar features that account
for syntax or tree position: longer spans are often
multisentential and include more elementary dis-
course units, but these factors do not emerge as
important.

6 Discussion

The results of our analysis allow us to speculate
about the best way of preserving meaningful RST
interpretations. As mentioned in Section 2, the two
existing alternatives are URML (Das et al., 2017)
and eRST (Zeldes et al., 2024); the former of these
two could incorporate all parallel readings, and
the latter only those that are lexically grounded,
i.e., based on one or two discourse markers. Here,

annotator agreement for implicit relations (85.1%, Prasad
et al., 2008) is only slightly lower than for explicit ones
(90.2%).

we would like to address two properties of eRST
annotation that make it less feasible for this task.

The first of these is its definition of discourse
markers, which serve as a basis for secondary
edges. In this respect, eRST aligns completely with
PDTB’s notion of discourse connectives and its re-
spective restrictions: only subordinating conjunc-
tions, coordinating conjunctions, and adverbials
can have the status of discourse markers (Zeldes
et al., 2024). In this paper, we are not looking
to contribute to the vast theoretical discussion on
what lexical elements should be considered dis-
course markers; however, we must note that exist-
ing studies offer different answers to this question,
sometimes using the same linguistic material. For
instance, annotating the Wall Street Journal cor-
pus with PDTB-style discourse connectives (PDTB
2.0, Prasad et al., 2008) and with more vaguely
defined discourse markers (RST Signalling Corpus,
Das and Taboada, 2017; Das, 2014) results in a dif-
ferent number of unique markers being identified:
100 and 201, respectively. Partly, this is due to
the latter category including combinations like “but
also”, but also due to inclusion of broader lexical
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categories.
Undoubtedly, adopting a stricter definition sim-

plifies the task for corpus annotators, resulting in
better reliability of their work. On the other hand,
it raises the question of whether using a broader set
of markers, such as that of the RST Signalling Cor-
pus, would allow for broader coverage of secondary
edges and better reflect the space of possible inter-
pretations of discourse—something that eRST, as
well as ourselves, seeks to address. For example,
such items as “naturally”, “of course”, and “after
all” are not listed as explicit in either PDTB 2.0
(Prasad et al., 2008) or PDTB 3.0 (Prasad et al.,
2019). However, we could model cases where “nat-
urally” would signal REASON relation and “after
all” would signal CAUSE. In eRST terms, it would
prompt the addition of a primary or a secondary
edge.

(2) [We only left home at 8; ] REASON←−−−−[naturally, we were
late.]

(3) [He will do that for you, ] CAUSE−−−→[because, after all,
he is your brother.]

These examples suggest that relaxing the existing
lexical criteria for secondary edges could, in theory,
improve coverage.

A further possible shortcoming of eRST is that it
cannot incorporate plausible readings of underspec-
ified relations unlike URML. This is especially im-
portant since in the existing corpora, the larger part
of relations is not signalled by markers (Taboada,
2006; Das and Taboada, 2017). Our observations
also confirm that disagreement is strongly associ-
ated with underspecification; thus, we argue that
a standard that aims to integrate parallel readings
will profit from allowing multiple graph edges in
underspecified cases.

7 Conclusion

The analyses presented in this paper highlight that
RST annotations exhibit a persistent and systematic
degree of inter-annotator disagreement. Drawing
on two expert-annotated corpora (Dutch and Ger-
man), we observe that divergent interpretations of-
ten arise from the inherent complexity of discourse
relations, especially when label definitions are un-
derspecified or conflated. Although some discrep-
ancies reflect an annotator’s systematic bias (e.g.,
favoring ELABORATION or LIST), in many cases,
multiple readings of a relation are equally plausi-
ble. Our experiments suggest that span length and

certain label choices serve as strong predictors of
disagreement, indicating that large or complex dis-
course spans are particularly prone to ambiguous
interpretations.

From an applied perspective, two complemen-
tary strategies emerge. First, filtering out demon-
strable biases that run counter to annotation rules
can clarify the “true” consensus. Here, the judg-
ment needs to be based around surface signals han-
dled differently than prescribed; consequently, even
rule-based systems or simpler neural language mod-
els can prove helpful at this task.

Second, adopting flexible schemes that capture
legitimate ambiguity, such as URML or eRST, can
more comprehensively reflect discourse complex-
ity; of these two, we find URML better suited for
this (and only for this) specific task, as it gives
more freedom for genuine discrepancies to be in-
tegrated. Moving forward, these dual approaches
— tightening clearly defined guidelines while em-
bracing multiple valid analyses — hold promise for
improving both the reliability and the expressive
power of RST annotation.

Limitations

We acknowledge that our analysis focuses on RST
relations paying less attention to the partly over-
lapping problems of disagreements in nuclearity
and discourse unit spans. Furthermore, we high-
light that the features we used when predicting
disagreement do not offer an exhaustive picture of
factors behind annotation discrepancies. Consider-
ing additional variables, such as rhetorical "moves"
(Redeker et al., 2012) or syntactic signals beyond
clause boundaries, could make the analysis more
complete.
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A Connective detection prompts

A.1 NLDT connective detection prompt
**Instruction**
In the following Dutch text, identify all discourse
markers (DMs) and enclose them in <dm> tags.
**Definition of Discourse Markers (DMs):**

- DMs, also known as connectives, are lexical
expressions (e.g., *en*, *maar*, *omdat*, *dus*,
*hoewel*, *toch*) that belong to different syntac-
tic classes such as conjunctions, adverbials, and
prepositional phrases.

- They are used to connect discourse components
(text segments) and signal the coherence relations
that hold between those components (e.g., contrast,
cause, elaboration).

- The scope of a DM’s function is a single dis-
course sequence comprising adjacent text spans in
a relation.

- DMs can be present at the beginning, middle,
or end of a sentence (or segment).

- A DM signals relations that hold between two
adjacent text segments but does not create the rela-
tion; it guides the interpretation of the relation.
**Guidelines:**

1. **Scope of DMs:**
- The function of a discourse marker applies to a

single discourse sequence comprising adjacent text
spans in a relation.

- DMs signal relations that hold between two
adjacent text segments.

- A discourse marker does not create the relation
between text segments; it only guides the interpre-
tation of the relation.

2. **Position of DMs:**
- DMs can be present at the beginning, middle,

or end of a sentence (or segment).
- They may appear within the sentence or at

clause boundaries.
3. **Identification of DMs:**
- Use a list of common Dutch DMs to identify

potential markers, such as:
- **Addition:** *en*, *ook*, *bovendien*
- **Contrast:** *maar*, *echter*, *toch*
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- **Condition:** *als*, *indien*, *tenzij*
- **Cause/Reason:** *omdat*, *want*, *door-

dat*
- **Concession:** *hoewel*, *ofschoon*, *des-

ondanks*
- **Temporal:** *toen*, *terwijl*, *voordat*,

*nadat*
- **Result/Consequence:** *dus*, *daardoor*,

*zodat*
- **Example:** *bijvoorbeeld*, *zoals*
- Ensure the word functions as a DM in context

by connecting two propositions or clauses.
- Confirm that the token’s part of speech cor-

responds to typical DM categories (conjunctions,
adverbials, prepositional phrases).

4. **Annotation Format:**
- Enclose each identified DM within <dm> and

</dm> tags.
- Do not alter the original text other than adding

the tags around the DMs.
5. **Examples:**
**English Example:**
Input:
"A country is considered financially healthy

**if** its reserves cover three months of its im-
ports."

Output:
"A country is considered financially healthy

<dm>if</dm> its reserves cover three months of its
imports."

**Dutch Examples:**
**Example 1:**
Input:
"Drie nieuwe emissies beginnen vandaag te han-

delen op de New York Stock Exchange, **en**
één begon vorige week te handelen op de Nas-
daq/National Market System."

Output:
"Drie nieuwe emissies beginnen vandaag te

handelen op de New York Stock Exchange,
<dm>en</dm> één begon vorige week te hande-
len op de Nasdaq/National Market System."

**Example 2:**
Input:
"De Poolse rat zal deze winter goed eten. Tonnen

heerlijk rottende aardappelen, gerst en tarwe zullen
vochtige schuren over het hele land vullen **ter-
wijl** duizenden boeren de kopers van de staat
wegsturen."

Output:
"De Poolse rat zal deze winter goed eten. Ton-

nen heerlijk rottende aardappelen, gerst en tarwe

zullen vochtige schuren over het hele land vullen
<dm>terwijl</dm> duizenden boeren de kopers van
de staat wegsturen."
**Task:**

- Read the following Dutch text.
- Identify all discourse markers based on the

guidelines above.
- Enclose each DM within <dm> tags.
- Ensure that the rest of the text remains un-

changed.
**Notes:**

- Pay special attention to words that can function
as DMs but may have other grammatical roles. Use
context to determine their function.

- The goal is to produce a text identical to the
input except for the addition of <dm> tags around
the identified discourse markers.

- Do not tag words that are not functioning as
discourse markers in the given context.

By following these instructions, you will iden-
tify and annotate all discourse markers in the text,
which will help in analyzing the coherence rela-
tions within the text and assist in computational
processing.
**Text to Process:**

A.2 Kobalt connective detection prompt

**Instruction**
In the following German text, identify all dis-

course markers (DMs) and enclose them in <dm>
tags.
**Definition of Discourse Markers (DMs):**

- DMs, also known as connectives, are lexical
expressions (e.g., und, weil, obwohl) that belong
to different syntactic classes such as conjunctions,
adverbials, and prepositional phrases.

- They are used to connect discourse components
(text segments) and signal the coherence relations
that hold between those components (e.g., contrast,
cause, elaboration).

- The scope of a DM’s function is a single dis-
course sequence comprising adjacent text spans in
a relation.

- DMs can be present at the beginning, middle,
or end of a sentence (or segment).

- A DM signals relations that hold between two
adjacent text segments but does not create the rela-
tion; it guides the interpretation of the relation.
**Guidelines:**

1. **Identify Potential DMs:**
- **Common DMs in German include:**
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- **Conjunctions:** und (and), aber (but), oder
(or), denn (for), sondern (but rather), weil (be-
cause), obwohl (although), wenn (if), während
(while), falls (in case).

- **Adverbials:** deshalb (therefore), trotzdem
(nevertheless), allerdings (however), außerdem (be-
sides), folglich (consequently), inzwischen (mean-
while), dennoch (still).

- **Prepositional Phrases:** im Gegensatz zu (in
contrast to), aufgrund von (due to), trotz (despite),
infolgedessen (as a result).

2. **Position in Sentence:**
- DMs can appear at the beginning, middle, or

end of a sentence.
- Examples:
- Initial: <dm>Trotzdem</dm> geht er zur Ar-

beit. (Nevertheless, he goes to work.)
- Medial: Er geht <dm>trotzdem</dm> zur Ar-

beit.
- Final: Er geht zur Arbeit,

<dm>trotzdem</dm>.
3. **Confirm the Function:**
- Ensure the word or phrase is functioning as a

DM and not in another grammatical role.
- Exclude words that are not functioning as DMs

(e.g., "dass" as a complementizer). Exclude "dass"
as a complementizer. Exclude "dass" as a comple-
mentizer.

- Exclude "dass" as a complementizer.
- Exclude "und" if not interclausal.

**Examples:**
1. **Example (English DMs):**
- **Relation DMs:**
- Circumstance: when, as, with
- Condition: if, unless
- Contrast: but, however
- Concession: while, though
- Elaboration-additional: and, also
- Reason: because, due to
- List: and, in addition, moreover
- Temporal-after: since, after
- Temporal-before: before
2. **Example 1:**
Three new issues begin trading on the New York

Stock Exchange today, <dm>and</dm> one be-
gan trading on the Nasdaq/National Market Sys-
tem last week. On the Big Board, Crawford &
Co., Atlanta, (CFD) begins trading today. Craw-
ford evaluates health care plans, manages medical
and disability aspects of worker’s compensation in-
juries <dm>and</dm> is involved in claims adjust-
ments for insurance companies. <dm>Also</dm>

beginning trading today on the Big Board are El
Paso Refinery Limited Partnership, El Paso, Texas,
(ELP) and Franklin Multi-Income Trust, San Ma-
teo, Calif., (FMI).

3. **Example 2:**
The Polish rat will eat well this winter. Tons of

delectably rotting potatoes, barley and wheat will
fill damp barns across the land <dm>as</dm> thou-
sands of farmers turn the state’s buyers away. Many
a piglet won’t be born as a result, <dm>and</dm>
many a ham will never hang in a butcher shop.
<dm>But</dm> with inflation raging, grain in
the barn will still be a safer bet for the private
farmer than money in the bank. Once again, the
indomitable peasant holds Poland’s future in his
hands. <dm>Until</dm> his labor can produce a
profit in this dying and distorted system, even Sol-
idarity’s sympathetic new government won’t win
him over.
**Your Task:**

- Read the following German text.
- Identify all DMs as per the guidelines above.
- Enclose each DM within <dm> tags.
- Ensure that the rest of the text remains un-

changed.
**German Text:**

31



B Frequently confused relations

Relations Ann. A Ann. B
elaboration-evidence 13 10
cause-list 7 8
cause-reason 5 5
cause-evidence 6 4
cause-elaboration 5 4
conjunction-list 26 2
joint-list 2 7
concession-antithesis 8 0

Table 5: Frequent two-sided (top) and one-sided (bot-
tom) relation confusions in Kobalt

Relations Ann. A Ann. B
elaboration-interpretation 15 11
elaboration-nonvol-cause 15 11
elaboration-circumstance 14 11
elaboration-nonvol-result 12 11
elaboration-background 6 12
elaboration-conjunction 11 6
circumstance-condition 10 5
elaboration-preparation 8 7
justify-motivation 7 5
joint-conjunction 22 1
nonvol-cause-nonvol-res 12 3
joint-list 11 1
summary-preparation 8 1
nonvol-cause-circumstance 7 1

Table 6: Frequent two-sided (top) and one-sided (bot-
tom) relation confusions in NLDT
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Abstract

The impact of emotionality and abstraction on
language processing has been heavily studied
in monolingual and, to an extent, bilingual set-
tings. Most of these studies were experiments
with humans that yielded mixed results regard-
ing the exact effect of emotionality or abstrac-
tion on cross-linguistic tasks. To elucidate this
relationship between translation, emotionality,
and abstraction, we used a neural network to
model a bilingual mapping within an English-
Mandarin semantic space. We sought to un-
derstand what our quantitative results implied
about structural differences between English
and Mandarin lexical semantic spaces. Over-
all, our model translated concrete and emotion-
laden words more accurately than abstract
and emotionally neutral words, suggesting that
strong concreteness and emotionality are more
consistently perceived across languages. On
a more detailed level, our model learned clus-
ters of some related groups of words in both
languages, but failed to create a 1-to-1 seman-
tic mapping, with several types of errors we
hypothesize are due to linguistic and cultural
differences. Our results indicate interesting
possibilities for using quantitative word-level
modeling as a tool to analyze the overlapping
impacts of bilingualism, emotionality, and ab-
straction on each other.

1 Introduction

Emotionality and abstraction have long been impor-
tant topics of analysis in psycholinguistics. Emo-
tionality is typically measured along the dimen-
sions of valence - the positivity/negativity of a word
- and arousal - the level of activation a word inspires,
or "the negative probability of falling asleep" (Al-
tarriba and Sutton, 2004). Abstraction is mea-
sured through concreteness: the extent to which a
word denotes a physical object, action, or property.

*Equal Contribution. Authors listed in alphabetical order.

These measures form a basis for linguistic concep-
tual spaces and are dimensions along which words
are categorized and understood (Altarriba et al.,
1999; Altarriba and Bauer, 2004). A significant
body of work investigating the role of emotionality
and abstraction in the processing and interpretation
of words has been produced (Altarriba and Bauer,
2004; Altmann, 2001; Hinojosa et al., 2020; Majid,
2012). It has been shown, for example, that con-
creteness lends itself to quicker concept acquisition
and word processing, (Guasch and Ferré, 2021),
that highly emotional words are processed faster
than non-emotional ones (Kousta et al., 2011), and
that there is a "negative bias" wherein emotionally
negative stimuli take longer to process than emo-
tionally positive ones (Bromberek-Dyzman et al.,
2021; Mergen and Kuruoglu, 2017). While most of
these conclusions were drawn from monolingual
studies, it is worthwhile to study how emotionality
and abstraction impact word mapping in a bilin-
gual semantic space. How do these dimensions
characterize words in each language, and can these
characterizations be mapped accurately across lan-
guages?

Existing research in this area has shown that in-
creased levels of concreteness confer advantages in
monolingual word processing and bilingual word
translation (Binder et al., 2005; Guasch and Ferré,
2021; Ferré et al., 2017). These benefits may re-
sult from the referents of abstract words having
greater ambiguity and variety, and less tactile rep-
resentations, than concrete words (Pauligk et al.,
2019). Emotional valence confers similar process-
ing advantages in monolingual and multilingual
contexts (Kousta et al., 2011; Ferré et al., 2017).
This is likewise attributed to the constriction of the
available referent space, as strong values of emo-
tional valence highlight recognizability of certain
concepts (Kousta et al., 2011), which facilitates
processing of those concepts’ lexical representa-
tions. This effect is known to interact with concrete-
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ness levels, with enhanced effects for more abstract
stimuli (Kousta et al., 2011; Altarriba and Bauer,
2004). In summary, words with high valence or
concreteness represent concepts with increased rec-
ognizability, and confer processing advantages due
to their emotional specificity or tactile imageabil-
ity, respectively. We hypothesize the contexts in
which such words are used reflect this. Specif-
ically, there should be more similarity across the
contexts in which a concrete word is used, narrower
in variation than the contexts of abstract word us-
age. While some recent research in cross-linguistic
semantic alignment has suggested that concreteness
is uncorrelated with alignment, it was also found
that semantic domains with “high internal coher-
ence” have a “low dimensionality” that “seems to
enable high alignment” (Thompson et al., 2020).
This finding suggests that the narrower the variation
of a given concept’s associations, the greater ease
of cross linguistic alignment. If this is the case,
then our model should perform better on words
with narrower contextual variation.

The majority of bilingual studies on this topic
have focused on sequential bilinguals and the dif-
ference between L1 and L2 processing (Sharif and
Mahmood, 2023). The literature on the impact
of emotionality and abstraction for bilingual pro-
cessing has come to widely varied conclusions that
disagree based on the study structure and language,
the words used to test processing, and even the pop-
ulation discrepancies among studied bilingual com-
munities (Ferré et al., 2017). Given these results, it
is reasonable to turn our attention to simultaneous
bilinguals. They have learned both languages as
L1s, and the L1/L2 discrepancies (e.g. age and con-
text of L2 acquisition, and frequency of L2 usage)
that affect processing tasks would likely have less
of an impact (Liao and Ni, 2022; Pavlenko, 2012;
Ponari et al., 2015). This would create a more
even space in which to study cross-language dif-
ferences in emotionality and abstraction. However,
despite acknowledgment that this is a promising di-
rection of study, there are only a handful of papers
investigating how simultaneous bilinguals process
emotionality and abstraction (Sharif and Mahmood,
2023). Due to the lack of research into simultane-
ous bilingualism and given the extractable nature of
representations in computational modeling, using
computational methods to simulate simultaneous
bilingual spaces could yield fruitful results.

Computational modeling of language has a long,
interdisciplinary history of usage in linguistics and

psychology (Grishman, 1989; Krahmer, 2010; Ju-
rafsky and Martin, 2008). It benefits from using
a diverse range of language corpora instead of be-
ing restricted to participants with highly specific
language experience. We postulate that if a model
learns the contexts in which words with varying
concreteness and emotionality are used across lan-
guages, it could mirror the patterns of simultaneous
bilingual human participants in cross-linguistic pro-
cessing tasks, such as interlingual lexical decision
tasks or translation pair production tasks. Such a
model would yield large amounts of information on
how the two dimensions impact word translation
and semantic space mapping in a bilingual environ-
ment, as the model’s outputs would provide explicit
access to cross-linguistic representations of words
that can be visualized to understand their structure.

Thus, in this paper, we develop a word-level
neural network translation model for English and
Mandarin Chinese. Given pretrained monolingual
embeddings from two languages, our model’s goal
is to learn a simultaneous semantic mapping be-
tween the two languages. While simpler alignment
methods, such as Orthogonal Procrustes (Schöne-
mann, 1966), offer a useful baseline for aligning
embedding spaces, they assume a strict one-to-one
correspondence between words across languages.
This assumption does not hold in our setting, where
an English word can have multiple valid transla-
tions in Chinese depending on context. In contrast,
our encoder-decoder model can implicitly learn
one-to-many mappings and better capture the com-
plexity of cross-linguistic semantics.

We also considered using more modern architec-
tures, such as Transformer-based models (Vaswani
et al., 2017), which are widely used in contempo-
rary neural machine translation. However, Trans-
former models operate on subword token sequences
rather than whole-word embeddings, making their
learned representations harder to interpret in terms
of cross-lingual semantic structure. Since our goal
is to analyze how emotionality and abstraction
affect translation at the word level, the encoder-
decoder framework offers a more interpretable and
semantically meaningful approach.

By testing the model’s translation abilities on
words with different levels of emotionality and
abstraction, we can investigate the impacts of
differing emotionality and abstraction on cross-
linguistic processing, and analyze the between-
language structure of the two dimensions. As we
hypothesize the contexts of word use reflect the
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traits of the concepts they represent, we theorize
that our model, through learning such contexts,
will have greater translation performance on words
with greater emotionality and concreteness levels,
reflecting results from prior human studies (Ferré
et al., 2017). Our model’s results are interpreted
in the context of using computational modeling to
improve accessibility of further research into two
related areas: How emotion and abstraction varies
structure between languages, and the bilingual pro-
cessing of these categories. 1

2 Methods

2.1 Data
We chose English and Mandarin Chinese as our lan-
guages of investigation due to the relatively high
accessibility of emotionality/concreteness ratings
and corpora for them, as well as the accessibility
of simultaneous bilingual participants in the event
of a human-participant extension for this study.
Our training and testing data consisted of 38,000
pairs of English words and their Chinese transla-
tion equivalents. These pairs were sourced from
6 different online English-to-Chinese dictionaries
- Cambridge, Yabla, MDBG, Facebook MUSE
dataset, ECDICT, and CEDICT (Cambridge, 2024;
Yabla; MDBG; Conneau et al., 2017; Lin, 2024;
CC-CEDICT). We obtained these pairs by query-
ing each dictionary from a list of 119,354 English
words taken from the UNISYN English lexicon,
altogether covering a great variety of emotional,
abstract, and concrete words. All models in this pa-
per used the pretrained, 200-dimensional English
and Chinese embeddings, created by the Tencent
AI lab via a bidirectional skip-gram model. To en-
sure total overlap between the training data and the
pretrained embeddings, preprocessing was done on
the training data to filter out any pairs that included
words not in either set of embeddings.

After obtaining our dataset, it was separated into
the three aforementioned classes of words: con-
crete, abstract, and emotional. This was done by
using an online database of 40,000 English words
rated on mean concreteness/abstraction in a 5 point
scale from 1 (abstract) to 5 (concrete) (Brysbaert
et al., 2014). This database was then split into two
categories. Words with a lower concreteness rating

1There are many types of bilinguals; we assume both of
the model’s lexicons are stable and well defined, similar to
simultaneous bilinguals’. That is, we aimed not to model the
acquisition of a lexicon but rather to model the processing
behind mapping two fully formed lexicons.

than the median rating were categorized as abstract,
and words with a higher concreteness rating than
the median rating were categorized as concrete.
Words within 1 point of rating from the median
were then categorized as “weak” abstract and con-
crete words. Words that had exactly 2,3, or 4 as
a rating were excluded, as these were the exact
points on which we divided our dataset. Emotion
words are split into two categories: emotion label
words, or words that serve as representations for
emotions, and emotion-laden words, words with
high emotional values/associations. Using separate
databases of 497 emotion label words and 6453
emotion-laden words (Zupan et al., 2023; Moham-
mad and Turney, 2013), we identified the words
in our set that fit into either of these categories to
generate our emotion word set. Emotion words are
contextualized by their arousal and valence ratings,
or how pleasant/unpleasant and how intense a word
is. We utilized a dataset of these ratings for 14,000
English lemmas (Warriner et al., 2013) to tag and
measure the emotional properties of our emotion
words. As many emotion label words, such as
"grave", are polysemous with emotion-laden words,
we collapse the two categories into a singular emo-
tion word category for the purpose of testing.

We partitioned a lemmatized version of our
dataset (lemmatized using NLTK WordNet lem-
matizer (Bird et al., 2009)) by comparing every
word in these datasets against our list of concrete,
absolute, and emotion words. With this, we were
able to create a dataset split across the three cate-
gories. Each category’s data was then split into 10
equal batches, then each batch was linked across
categories. This way, we had proportional chunks
of the dataset to train or test on that each contained
10 percent of all the concrete, abstract, and emo-
tion words. This was done to ensure each batch
more consistently reflected realistic proportions of
all categories.

2.2 Latent Space Transformation
A common challenge in training Neural Networks
(NNs) is the variability of the learned latent rep-
resentations, even when the task and data distri-
bution remain fixed. Stochastic factors such as
weight initialization, data shuffling, and hyperpa-
rameter settings can lead to different latent spaces
across training runs (Wang et al., 2018). While
these embeddings may vary in their absolute coor-
dinates, they often preserve relative distances and
differ only by an isometric transformation. This
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Figure 1: Architecture design of the models in this paper. Note that the trained weights from the Zh-Zh Autoencoder
are directly transferred to the decoder in En-Zh Encoder Decoder model, as pointed by the dotted line.

variability complicates tasks like comparing rep-
resentations across models or reusing pretrained
components. To address this, Moschella et al.
(Moschella et al., 2022) proposed using relative rep-
resentations—computed as cosine similarities be-
tween selected anchor words and the rest of the vo-
cabulary—to provide a stable, geometry-invariant
alternative. By transforming the original latent
space to the one represented by relative embed-
dings, Moschella et al. demonstrated the desired
invariance to isometric and scaling transformations,
which makes zero-shot stitching of models possible.
Adopting the relative embeddings in our models
should presumably improve the translation accu-
racy as the latent spaces for English and Chinese
are invariant to the stochastic factors mentioned
above and are optimal in encoding the translation
information after transformation.

Mathematically, the transformation is achieved
as follows. Given a training set X, an embedding
function Eθ : X → Rd parameterized by θ is
learned to map each sample x(i) ∈ X to its absolute
representation ex(i) = Eθ(x

(i)). To transform ex(i)

to relative representation, a subset A ⊂ X is chosen
as the anchor set. For every training data x(i), a
cosine similarity score

SC(ex(i) , ea(j)) =
ex(i)ea(j)

||ex(i) ||||ea(j) ||

is calculated with respect to a(j) ∈ A. Then, the
relative representation is calculated as

rx(i) = (SC(ex(i) , ea(1)), . . . , SC(ex(i) , ea(|A|)))

To generate the anchor word set, we did a single ran-
dom sample of 200 English words from a uniform

distribution over all possible words in our dictio-
nary, following the procedure detailed in Moschella
et al. We used the Mandarin translation equivalents
of the English words to form the Mandarin anchor
word set.

2.3 Model Design

To translate from English to Mandarin, we devel-
oped an En-Zh encoder-decoder model, trained
on our custom dictionary. The model uses 200-
dimensional relative embeddings for English input.
During training, the encoder compresses the infor-
mation from these embeddings into a latent space.
This encoded information is then mapped to its cor-
responding Mandarin translations by a pre-trained
decoder. The decoder utilizes weights from a Zh-
Zh autoencoder trained specifically for this map-
ping process, enabling effective translation from
English to Mandarin. The code can be found here2.

2.3.1 Zh-Zh Autoencoder
The Zh-Zh autoencoder was trained to learn the
weights connecting the Chinese relative embed-
ding layer to its one-hot vector representation (a
binary vector where only one element is 1, indicat-
ing the presence of the Chinese word, and all other
elements are 0). As shown in the left of Figure
1, the relative embedding for a specific Chinese
word is selected by the one-hot vector. The autoen-
coder then learns the weights that transform the
embedding back to the corresponding one-hot vec-
tor. To expedite training, we initialized the weights
for this mapping as the transpose of the pretrained
weights from the one-hot vector to the embedding

2https://github.com/Jenniebn/wordLevelTrans
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layer rather than random initialization. The learned
weights were then used in the decoder of the En-
Zh model to map the Chinese embeddings back
to one-hot vectors. The autoencoder was trained
using the Adam optimizer with cross-entropy loss,
with a starting learning rate of 0.01.

2.3.2 En-Zh Encoder Decoder
Given the possibility of multiple correct Mandarin
translations for each English word, the En-Zh
model’s training objective is framed as a multi-
label classification task. The model aims to pre-
dict a set of Mandarin translations by learning the
mapping between the English and Mandarin latent
spaces. As shown on the right of Figure 1, a random
set of one-hot encoded English words are input to
the model, and processed through a 75-dimensional
hidden layer with leaky ReLU activation. With
frozen weights from the Zh-Zh autoencoder, the
decoder converts the vector into corresponding vec-
tors representing the translated Mandarin words. A
trainable bias term is added before the output to ad-
just the decision threshold from 0.5. A binary cross-
entropy (BCE) loss weighted by positive classes
is employed to address the class imbalance. The
model is trained using the Adam optimizer with an
initial learning rate of 0.01.

The positive class weight for the BCE loss was
determined empirically. Initially, without a positive
class weight, the model failed to predict any trans-
lations, as the penalty for incorrect predictions was
too small. Given that only a few out of 95,685 pos-
sible Mandarin words corresponded to the correct
translations, the model defaulted to predicting zero
for every Chinese word, effectively avoiding any
meaningful output. Conversely, when following the
recommended positive class weight from the doc-
umentation (PyTorch, 2025)—where the weight
is set based on the ratio of negative to positive
examples—the model produced excessively high
recall, generating a wide range of Mandarin words
with little precision. After empirical tuning, it was
found that using just 2% of the recommended posi-
tive weight provided the best balance, significantly
improving precision while controlling recall.

3 Results

3.1 Model Performance

Given the challenge of selecting the correct Man-
darin translations from nearly 100,000 possible
words, our primary focus is not on achieving high

Table 1: Model performance in training, validation and
testing dataset

Macro Metric

Precision Recall F1

Training 0.006 0.035 0.01
Validation 0.003 0.006 0.004
Testing 0.003 0.006 0.004

absolute performance but rather on analyzing the
model’s relative performance across different word
categories. Despite this inherent difficulty, after
training, the model achieved an F1 score of 0.004
on the test set, which is 40% of its training F1
score (0.01), as shown in Table 1. This suggests
that the model generalizes its learned patterns to
new data, even if overall performance remains low.
Notably, the model favors recall over precision,
capturing many possible Mandarin translations for
each English word but often failing to match the
exact dictionary translations.

3.2 Word Class Performance

Our model performs better on concrete words and
emotional words as shown by Table 2, with a sig-
nificant difference in the translation accuracy of
concrete vs. abstract (p < 0.001), concrete vs.
unknown (p < 0.001), and emotional vs. non-
emotional (p < 0.005), indicating that translation
accuracy is driven by both the concreteness and
emotionality of a word. Out of all classes, the best
performance is achieved on the concrete emotional
words with a translation accuracy of 14.36% on the
testing set.

We hypothesized that the model would translate
concrete words with the highest accuracy as they
represent tangible, physical objects. For example,
a table is the same in America and China, but the
feeling of shame in English may have different cul-
tural or linguistic subtleties in Chinese. As shown
by Table 2, out of all word classes, the model trans-
lates the concrete words with higher accuracy than
the other 2 classes. Similarly, we hypothesized that
emotional words would be more accurately trans-
lated than non-emotional words as they represent
concepts that are highlighted and more richly de-
fined by their emotional properties, and thus more
narrow in the contexts in which they can be used.
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Table 2: Model Performance on Word Classes in the Testing Set

Word Class Emotion Class Size Translation Accuracy Example

Concrete Emotional 195 14.36% grave, sweet
Non-Emotional 684 8.48% scallion, raincoat

Abstract Emotional 299 5.69% improve, depressed
Non-Emotional 536 4.66% control, overall

Unknown Abstraction Emotional 42 4.76% committed, bothering
Non-Emotional 914 3.39% biking, roadbed

Figure 2: English Embedding Space from the Testing
Data

3.3 Error Analysis

In order to better investigate how emotionality and
contextual similarity are preserved between lan-
guages, we undertook a qualitative error analysis
comparing the distribution of English input words
to the distribution of model outputs in the Man-
darin embedding and valence/arousal spaces. We
broke down the different types of words that the
model errs on into three dimensions of analysis.
For the purpose of this analysis, we only looked
at words with multiple outputs and valence and
arousal ratings in both languages.

First, we observe whether the model outputs for
each word are spread out or if they cluster in a par-
ticular area. We also check the distance of each
cluster of outputs for a given input word relative
to other input words and their clusters. As part
of this, we examine how similar the distances be-
tween input words in English embedding/valence

Figure 3: English Valence and Arousal Ratings from the
Testing Data

spaces are to distances between output clusters in
the Mandarin embedding/valence spaces. Lastly,
we see whether the valence and arousal of input
words in the English spaces are similar/in the same
areas as their output clusters and target Mandarin
equivalents. By looking at which words our model
exhibits with what combinations of behavior, we
can infer the different types of error and why they
may have occurred.

The first type of error occurs with input words
that have the following two features. One, their
outputs group together in the Chinese embedding
space in similar ways to words near them in the
English embedding space. Two, they have simi-
lar valence/arousal to the various Chinese outputs.
One example is the word "cantaloupe", seen in Fig-
ures 2, 3, 4. When the model errs on a word in
this way, it fails to return one of our expected tar-
get translations, but it often still has outputs that
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group together near where our target term is in
the embedding space. Errors on words like these
show our model is good at finding regions of the se-
mantic space that contain words similar to a target
rather than narrowing in on the specific word itself.
These errors are expected, as in these cases our
model learns an appropriate approximate mapping
between the lexical semantic spaces, but this map-
ping does not contain the best translation(s) given
in dictionaries. As we obtained a set of correct
translations for the model to reference via dictio-
nary validation rather than human rating or parallel
corpora, our “correct” translation set is somewhat
inflexible and potentially not entirely representative
of possible translations defined by real language
use.

The second type of error appears with words that
have model outputs that are spread out in both the
Mandarin embedding and valence/arousal spaces,
such as "hungry". Our model erring on such words
implies an issue with either our data or our model
architecture/parameters, such that our model can-
not make confident guesses on what such words
look like when translated.

The third type of error involves clustering and a
similar structure between spaces as in the first type
of error, but it also shows specific discrepancies
in emotionality such as flipped valence or arousal
in the Mandarin valence/arousal space. Such ex-
amples appear to have model outputs with strong
clustering, and investigation into output meanings
shows the potential for such errors to be due to
cross-cultural differences in the given words. In
"bashful", for example, outputs hone in around
a higher arousal value as opposed to its negative
arousal value in English, and the outputs are words
like "sexy". These discrepancies hint at these spe-
cific words being conceptualized differently in Chi-
nese but still having solid enough associations for
our model to have confident guesses about them,
albeit being incorrect, possibly as a result of these
words being more difficult to translate between
these languages for specific cultural differences.

4 Discussion

4.1 Implications/applications of Results

In this paper we have proposed a computational
method of exploring how transferable the di-
mensions of emotion and abstraction are cross-
linguistically. We hypothesized that a word level
machine translation model could learn how to align

the semantic spaces of two given languages, which
would then provide a direct method of investigat-
ing how words are retrieved across languages along
these dimensions of emotion and abstraction.

As hypothesized, our model had better transla-
tion performance for concrete and emotional words
than for other words, mirroring the patterns of hu-
man participant results. We specifically compared
our results to "simultaneous bilinguals", as finding
participant groups with nearly equal native-level
fluency in two languages theoretically controls for
language proficiency. (Ferré et al., 2017).

Congruent to previous psycho-linguistic liter-
ature, our model has higher accuracy on con-
crete/weak concrete words as opposed to abstract
words (Guasch and Ferré, 2021; Ferré et al., 2017).
Intuitively, this makes sense, as concrete words
have more imageable referents in the world com-
pared to more abstract concepts. While our model
has no built-in cognition of referents in the world,
it can learn patterns of contextual usage that may
differentiate concrete words from abstract ones.
Furthermore, when data was sufficient, our model
showed higher accuracy on translations of emotion-
laden/label words than on unknown/non-emotional
words. This also agrees with prior literature
(Kousta et al., 2011; Ferré et al., 2017).

This human-model congruence provides further
evidence for the presence of certain distinct fea-
tures that make "emotional" and "concrete" words
more recognizable than their neutral and abstract
counterparts, respectively. Previous literature has
investigated the effect of emotionality and abstrac-
tion within languages of simultaneous bilinguals
(Ferré et al., 2017).

Our model uses pre-trained word embeddings,
which are developed from the contexts in which
given words are used. Given this, our model better
recognizing concrete and emotional words could
mean that these word types have greater consis-
tency in their contexts compared to their abstract
and non-emotional counterparts. Similarly, in-
creased concreteness and abstraction of words have
been shown also to facilitate word processing in
human participants. This suggests that context can
be utilized to detect words that represent concepts
that are more recognizable/processable due to such
values. More direct confirmation of the encoding
of concreteness and abstraction in context and em-
beddings could be checked for via performance
analysis of a concreteness/emotionality classifier’s
agreeability with human ratings.
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Figure 4: Mandarin Embedding Space Examples

One avenue of further research would be to vali-
date our findings with English and Mandarin simul-
taneous bilinguals. As previous investigations into
emotion and abstraction have often used within-
language tasks (Ferré et al., 2017), an interlingual
lexical decision task that presents both Mandarin
and English stimuli within one experiment could
provide more insight into how emotion and abstrac-
tion are processed in cross-linguistic contexts.

The agreement of the model with human trends
of emotion/abstraction processing suggests poten-
tial for further research into the utilization of word-
level models as a point of comparison to human
processing of similar affect categories as explored
here. These models could be used as tools to as-
sist with experiments that would typically require
hard-to-recruit participant groups, specifically si-
multaneous bilinguals. As our model requires
pre-trained monolingual embeddings from two lan-
guages, rather than parallel translation data, it could
be more accessible than recruiting simultaneous
bilinguals for preliminary investigation depending
on the language groups one wishes to study.

To extend more directly on this study, one could
investigate other languages in addition to Mandarin
and English in a similar model architecture as ours
to see if results vary as a function of language re-
latedness. One potential option could be Japanese,
to distinguish the effects of historical influence and

linguistic relatedness. This could be a new way to
investigate how universal the concepts of emotion-
ality/concreteness are in human cognition.

4.2 Error Analysis Implications and
Applications

Looking back at the error analysis in Section 3.3, a
question arises as to what implications/applications
we can discern from the three kinds of errors de-
scribed earlier. Recall that one of the dimensions
of error is whether the model outputs are located
in the same approximate region of the lexical and
emotional space as their input. Depending on how
similar/dissimilar inputs and outputs are on this
metric, different errors can be considered “more
correct” or “less correct” than others.

This has interesting implications in the context
of the third type of error, which involves words
like "bashful", i.e., those that retain strong out-
put clustering and similarity between embedding
spaces, but vary in valence and/or arousal across
the spaces. Many words of the third error type also
have Mandarin outputs that intuitively seem more
semantically dissimilar to the English input than
expected. One such example is our model relat-
ing “bashful” to Chinese outputs that comment on
attractiveness, like “sexy”. This suggests that the
acceptable contexts in which to use a word vary
as a function of society/culture. This also aligns
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with recent semantic association research which
found that cross-linguistic semantic alignment of
sets of concepts is heavily impacted by the levels
of cultural similarity between the speakers of given
language pairs. (Thompson et al., 2020). Further
investigation is warranted to quantify how cross-
cultural variation may interfere with or facilitate
the mapping of concepts across languages, and how
to better contextualize cross-linguistic research re-
sults by it.

The arousal/valence of both target words and
their associated output clusters differing across lan-
guages in such cases implies that some concepts,
and the contexts their representations are used in,
can vary exceptionally depending on cross-cultural
differences. This suggests promising applications
for using further statistical/machine learning mod-
els to quantify how emotional sentiment can vary
cross-culturally within and across languages as a
factor of various cultural categories, such as reli-
gion or types of personality traits. Furthermore,
a question arises as to whether or not congruence
of cross-linguistic emotional sentiment is a con-
founding variable in machine translation model
performance.

5 Conclusion

This research developed a neural network model
using relative word embeddings to investigate the
impacts of emotionality and abstraction on a bilin-
gual semantic space mapping. Our model’s max-
imum accuracies were 14.36% for concrete emo-
tional words and 8.48% for concrete non-emotional
words. An in-depth error analysis revealed that
although the model didn’t learn word-to-word map-
ping, it generally achieved a mapping of sub-
regions onto each other, with a handful of errors
being due to a lack of data and cultural differences
impacting word representations. The model’s per-
formance agrees with previous results of emotional
and concrete words providing a processing advan-
tage, and furthermore suggests that this processing
advantage is cross-lingual.

Limitations & Future Work

Our most glaring limitation is the issue of polysemy
- a word having multiple meanings. Polysemy can
lead to lower translation accuracy due to differing
levels of emotionality and abstraction in the differ-
ent meanings of polysemous words such as "grave".
Some secondary limitations are that our embedding

visualization compresses a 200 dimensional seman-
tic space into 2 dimensions, leading to information
loss, and that we use full correctness as a criterion
for the model. Utilizing an information theoretic
measure such as cross entropy would allow for
more flexibility and sensitivity, and could reduce
the impact of polysemy as well. Finally, our model
with one hidden layer restricts the amount of com-
plex information it can learn. For further research
we suggest taking polysemy into greater consider-
ation and increasing the complexity of the neural
network model. Another interesting extension of
our work would be validating our results with an
English-Mandarin simultaneous bilingual popula-
tion, which would provide a direct comparison of
human vs. machine performance and serve as a
benchmark for future emotionality or simultaneous
bilingual research.
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Abstract
Some vowel harmony systems have neutral
vowels, which need not agree along the harmo-
nizing dimensions of vowel quality. Neutral
vowels differ in whether other vowels in turn
harmonize with them: those that are harmo-
nized with are opaque while those that are not
are transparent. Prior artificial language learn-
ing studies have found opaque vowels to be
more readily learned in laboratory settings than
transparent vowels. This was initially thought
to be because transparent vowels intervene be-
tween harmonizing vowels on a vowel tier,
making harmony non-local. However, subse-
quent computational work has demonstrated
that vowel harmony is typically tier-strictly-
local, even with transparent and opaque vow-
els, indicating that there may be less differ-
ence between them than once believed. I pro-
pose an explanation for the different learning
results between transparent and opaque vow-
els by making use of a recent learning model
that proposes learners create tier-like represen-
tations in response to being unable to suffi-
ciently generalize without them, as measured
by the Tolerance Principle. I demonstrate how
the representations that this model constructs
make sense of different learning results be-
tween transparent and opaque vowels, despite
their shared formal properties.

1 Introduction and Background
Vowel harmony involves non-local dependencies,
as vowels agree along the harmonizing dimensions
across intervening consonants. In the following ex-
ample (1) from Turkish, the underlined suffix vow-
els harmonize in backness with the vowel to their
left (Nevins 2010, p. 28; Kabak 2011, p. 3).

(1) [dAl-lAr-Wn]
[jer-ler-in]
[ip-ler-in]

branch-PL-GEN
place-PL-GEN
rope-PL-GEN

In some vowel harmony systems, a subset of
vowels are not required to harmonize—they are

neutral. These neutral vowels are coarsely grouped
into two categories: opaque and transparent.
Opaque vowels participate in harmony in that other
vowels harmonize with them. For example, in addi-
tion to backness harmony, Turkish high vowels [i,
y, W, u] also harmonize in roundness (2a). Low
vowels [e, ø, A, o] are neutral to the rounding
harmony (2b), but high vowels nevertheless harmo-
nize with them opaquely (2c).

(2) a. [ip-in]
[jyz-yn]
[kWz-Wn]
[buz-un]

b. [kWz-lAr]
[buz-lAr]

c. [el-in]
[søz-yn]
[sAp-Wn]
[jol-un]

rope-GEN
face-GEN
girl-GEN
ice-GEN
gril-PL
ice-PL
hand-GEN
word-GEN
stalk-GEN
road-GEN

Transparent vowels, on the other hand, are inert,
neither harmonizing nor being harmonized with.
For instance, while Hungarian has backness har-
mony (3a), the vowels [i:, e:] are transparent, with
theDAT vowel skipping them to harmonizewith the
next vowel to the left of (3b; examples from Benus
and Gafos 2007).

(3) a. [ørøm-nEk] joy-DAT
[mo:kuS-nOk] squirrel-DAT

b. [Emi:r-nEk] emir-DAT
[pOpi:r-nOk] paper-DAT
[my:ve:s-nEk] artist-DAT
[ka:ve:-nOk] coffee-DAT

The development of autosegmental theory
(Goldsmith, 1976) allowed for treating vowel har-
mony as local on a vowel tier (Clements, 1976,
1980). Opaque vowels do not harmonize with
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the preceding vowel on a vowel tier, but their fea-
tures take over the harmony, so all remains lo-
cal. However, vowel harmony must cross transpar-
ent vowels, which introduces non-locality even on
a vowel tier (Goldsmith, 1985; Bakovic and Wil-
son, 2000; Hayes and Londe, 2006; Finley, 2009).
Finley (2015) hypothesized that this makes trans-
parent vowels harder to learn than opaque vowels
and tested this hypothesis with a series of artifi-
cial grammar learning (AGL) experiments. Finley
found that adults indeed succeeded at learning the
behavior of an opaque vowel but failed to learn the
behavior of a transparent vowel under equivalent
conditions. Only by increasing the amount of ev-
idence of the neutral vowel’s transparency, by in-
creasing the amount of exposure to items that un-
ambiguously indicated transparency, did learners
eventually succeed at learning transparent vowel
behavior. Chen (2024) found compatible results:
when adults were trained on an artificial harmony
system with a neutral and a transparent vowel, they
either failed to learn the harmony system altogether
or appeared to treat both the opaque and transpar-
ent vowels as opaque (depending on the presenta-
tion of the training stimuli).

However, work in computational phonology has
found that from a formal-language-theoretic per-
spective, neither opaque nor transparent vowels
meaningfully change the computational character
of vowel harmony: vowel harmony is typically tier-
strictly-local (𝑘 = 2) (Heinz et al., 2011), with
or without opaque and/or transparent vowels (Bur-
ness et al., 2021). Learners could project a tier
that excludes transparent vowels along with the
consonants, and this renders all relevant depen-
dencies local on the tier. Moreover, as Finley
(2015) observed, transparent vowels must be learn-
able, since they appear in numerous natural lan-
guage harmony systems. Indeed tier-strictly-local
constraints and processes are provably efficiently
learnable (Jardine and Heinz, 2016; Jardine and
McMullin, 2017; Burness and McMullin, 2019)
and Finley (2015) did find that under the right con-
ditions, transparent vowel harmony can be learned
in the lab. Similarly, Ozburn et al. (2016) found
that adult Canadian French speakers succeeded at
learning the behavior of a transparent vowel in an
artificial vowel harmony system built around the
French vowel inventory.

Given that vowel harmony with opaque and
transparent vowels shares a fundamental underly-
ing computational structure and bothmust be learn-

able in natural languages, it is worth revisiting
what might underlie the picture from experimental
results that vowel harmony is harder to learn with
transparent vowels than opaque vowels.

To do so, I build on my prior work (Belth, 2024),
where I proposed that humans learn phonological
alternations by tracking dependencies between al-
ternating segments and the segments adjacent to
them—using the well-attested ability to track adja-
cent dependencies over many kinds of representa-
tions (Saffran et al., 1996, 1997; Aslin et al., 1998;
Saffran et al., 1999; Fiser and Aslin, 2002). In
that proposal, if adjacent dependencies are not suf-
ficiently predictive of the alternation, where suf-
ficiency is measured by the Tolerance/Sufficiency
Principle (Yang, 2016), learners use the same sen-
sitivity to adjacent dependencies to form a new
representation that excludes any adjacent segments
that led to incorrect predictions. The resulting
representations can be interpreted as tiers, which
are constructed in dynamic response to the input.
In Belth (2024), I implemented this proposal as
a learning model. The model succeeded at learn-
ing natural language harmony processes, including
Turkish vowel harmony, in which low vowels are
opaque to rounding harmony, and Finnish vowel
harmony, in which, similarly to Hungarian, [i, e]
are transparent to backness harmony (Ringen and
Heinämäki, 1999). In Turkish, the learner con-
structed a vowel tier and in Finnish it constructed
a tier that excluded the transparent vowels. Thus,
the proposal already accounts for the learnability
of vowel harmony with opaque and transparent
vowels in natural languages. In this paper, I will
demonstrate that it simultaneously accounts for the
difference in experimental settings between artifi-
cial vowel harmony systems with opaque vs. trans-
parent vowels.

Consider a transparent vowel harmony system,
such as the artificial one from Finley (2015), where
a suffix vowel harmonizes in backness with the fi-
nal vowel of the stem (4a), but where the vowel [E]
is neutral (4b)-(4c). Since the neutral vowel is it-
self front, only when the penultimate stem vowel
is back (4b) do we get unambiguous evidence that
[E] is transparent.

(4) a. [budok-o]
[degib-e]

b. [dotEb-o]
c. [tedEt-e]

It is thus possible that the learner treats the neu-
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tral vowel as opaque and handles the cases like
(4b), which contradict this, as lexicalized excep-
tions. If, during learning, enough of these excep-
tions accumulate that the learner’s harmony gener-
alization is no longer tenable with them as excep-
tions (which, as in Belth 2024, will be measured
with the Tolerance principle), then the learner will
again change representations, excluding the neutral
vowel because it is no longer sufficiently predictive,
thereby rendering it transparent. Thus, transparent
vowels can for a time be tolerated as opaque vow-
els with lexicalized exceptions. This is the main
idea underlying my proposed explanation for the
observed experimental differences in learning.

In the next section § 2, I introduce the model
from Belth (2024) (D2L) in more detail. In § 3, I
survey prior experimental work on learning trans-
parent and opaque vowels. I then demonstrate
how D2L accounts for these experimental results,
as conceptually described above, and also demon-
strate that a number of other models fail to account
for them § 4. I conclude with a discussion § 5.

2 Model
The model from Belth (2024), named D2L, was
based on the developmental trajectory of children’s
ability to track adjacent and non-adjacent depen-
dencies. Children show evidence of tracking ad-
jacent dependencies at a younger age—as young
as 8 months (Saffran et al., 1996, 1997; Aslin
et al., 1998)—than tracking non-adjacent depen-
dencies, which appears to develop around 15-18
months (Santelmann and Jusczyk, 1998; Gómez,
2002; Gómez and Maye, 2005). Tracking of adja-
cent dependencies has been observed over a range
of different kinds of structures, linguistic and non-
linguistic, including shapes (Fiser and Aslin, 2002)
and non-linguistic tones (Saffran et al., 1999).
These results serve as evidence of a language-
independent psychological mechanism—the abil-
ity to track adjacent dependencies—that could un-
derlie the learning of phonological alternations.

D2L implements the proposal that when learn-
ing a phonological alternation, a learner’s attention
is drawn to the alternating segment, and they begin
tracking segments adjacent to it. I will use Finley
(2015)’s artificial vowel harmony system as an ex-
ample (see § 3) to describe the model as it pertains
to the present paper. In (5), the underlying /-V/ suf-
fix alternates between [-e] ∼ [-o].1

1See Belth (2023a,b) for a proposal on how learners might

(5) /budok-V/ → [budoko]
/degib-V/ → [degibe]
/gemit-V/ → [gemite]
/kukop-V/ → [kukopo]
/tedEt-V/ → [tedEte]
/dotEb-V/ → [dotEbe]

D2L’s attention is centered around /-V/ and the
segments adjacent to it—here, the stem-final seg-
ments. D2L attempts to enforce harmony using the
final segments, but since they are all consonants,
the harmony fails. The learner then creates a new
representation, excluding any adjacent segments
that harmonizing with fails to yield the observed
surface form for /V/—here /k, b, t, p/. D2L at-
tempts to form a natural class for these segments, in
this case [−syl]. The new representation is the com-
plement of this deletion set, namely [+syl]. Clearly,
this has the interpretation of a vowel tier (6).

(6) /uo-V/ → [uoo]
/ei-V/ → [eie]
/ei-V/ → [eie]
/uo-V/ → [uoo]
/eE-V/ → [eEe]
/oE-V/ → [oEe]

D2L then tracks segments adjacent to /-V/ on
this new representation. The vowel [E] here is
opaque, so harmonizingwith the adjacent vowel on
this representation yields the expected surface re-
alizations of /-V/ and D2L has succeeded in form-
ing a representation and generalization that suffi-
ciently accounts for the alternation. Following the
notation from Belth (2024), (7) shows the gener-
alization, where the vowel /V/ agrees in the value
for feature [back] with an adjacent [+syl] segment
after projecting vowels.

(7) AGREE(V, [back]) / [+syl] __ ◦ proj([+syl])

If, on the other hand, the vowel [E] were trans-
parent, the surface form of /dotEb-V/ would be
[dotEbo], in which case enforcing harmony on the
new representation would yield the wrong surface
form for /-V/: *[e] instead of [o] (8).

(8) /oE-V/ → *[oEe]

In this way, stems where a back vowel precedes
a transparent front vowel will be exceptions to the
generalization D2L forms on the new representa-
tion. D2L changes representations whenever the
come to attend to learning an alternation in the first place, and
where the underlying forms might come from.

45



Figure 1: B = Back, F = Front, N = Neutral (opaque or
transparent, depending on condition). The black circle
represents the stems that are predictable from an adja-
cent vowel once D2L has constructed a vowel tier. The
blue circle represents stems where the adjacent vowel
is neutral. The orange sub-circle represents the only
stems for which the suffix is not predictable from the
tier-adjacent vowel.

generalization it forms over its current representa-
tion fails to sufficiently account for the alternation.
D2L uses the Tolerance Principle (TP; Yang 2016),
which has been evaluated in experimental settings
(Schuler et al., 2016; Shi and Emond, 2023), to de-
cide whether the generalization can sustain a par-
ticular number of exceptions (9).

(9) Tolerance Principle: a rule applying to
𝑛 items with 𝑒 exceptions is productive iff
𝑒 ≤ 𝑛

ln 𝑛

Thus, D2L will only change representations
again if the number of exceptions due to harmo-
nizing with the transparent vowel, relative to the
total number of alternating items, rises above the
TP threshold (9). If the number of exceptions fall
below the threshold, then D2L lexicalizes the ex-
ceptions and may overextend harmony with the fi-
nal vowel (7) to new words with a final transpar-
ent vowel. On the other hand, if the number of
exceptions grows too large, D2L will recursively
construct a new representation, this time excluding
the vowel [E]—the culprit behind the exceptions—
in addition to the consonants, as (10) shows.

(10) AGREE(V, [back]) / [+syl] __
◦ proj([+syl] \ {E})

This core idea is visualized in Figure 1. Once
D2L has constructed a new representation that
excludes consonants (i.e., a vowel tier), the suf-
fix vowel is entirely predictable from the newly-
adjacent vowel if the neutral vowel (N) is opaque.
This set of stems, for which the suffix is adjacently
predictable, is represented by the large black circle.

Table 1: The four basic kinds of training items in Fin-
ley (2015)’s study. B = Back, F = Front, N = Neutral
(opaque or transparent, depending on condition). The
right two columns give the suffix corresponding to the
condition (only the BN items differ between conditions)

Kind Types Example Opaque Transparent

BB 8 [budok] [-o] [-o]
FF 8 [degib] [-e] [-e]
FN 4 [tedEt] [-e] [-e]
BN 4 [dotEb] [-e] [-o]

On the other hand, if the neutral vowel is transpar-
ent, only BN words are not adjacently predictable
(the orange sub-circle). But if the orange part of
the diagram is small enough, then it may be rele-
gated to lexicalization, at least for a time.

3 Prior Experimental Studies
Finley (2015) carried out a series of artificial gram-
mar learning studies with adults, involving opaque
and transparent vowels. Finley first compared each
of two experimental groups—one OPAQUE and one
TRANSPARENT—to relevant control groups. The ex-
perimental groups were trained on CVCVC nonce
words, each of which could be suffixed with ei-
ther front [-e] or back [-o]. The artificial language
also had the vowels [i, u] and the neutral vowel [E],
which only occurred as the final vowel. The choice
of suffix was based on harmony with the final stem
vowel, except for the words in the TRANSPARENT
condition that had the transparent [E] as the final
vowel; for these the choice was based instead on
harmony with the penultimate vowel. This is sum-
marized in Table 1. There were 8 stems each with
two harmonizing vowels (8 BB and 8 FF), 4 stems
with a front vowel before the neutral [E] (FN), and
4 with a back vowel before it (BN).

In the OPAQUE condition, if learners choose the
suffix based on the final stem vowel, they would ac-
curately generalize to test words of all four kinds.
In the TRANSPARENT condition, however, accu-
rate generalization to test BN words would require
learning the transparency of [E]. In other words,
because [E] is front, only BN words show unam-
biguous evidence that [E] is transparent rather than
opaque. Finley’s first experiment, which presented
each stem-suffixed pair 5 times, suggested that the
participants in theOPAQUE condition learned vowel
harmony, including the behavior of the opaque
vowel. However, participants in the TRANSPARENT
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condition learned the basic vowel harmony pattern,
but showed no evidence of learning the behavior of
the transparent vowel.

Finley then attempted to find conditions in
which participants would succeed at learning the
transparent vowel’s behavior. In a second experi-
ment, the 4 FN words, for which it is ambiguous
whether the [-e] vowel is harmonizing with the fi-
nal or penultimate vowel (which are both front),
were replaced with 4 additional BN words (all tak-
ing [-o]). This decreased the learners’ test perfor-
mance across the board. One interpretation is that
because the suffix [-o] became more dominant—
now occurring with 2/3 of training items—learners
failed to attend to learning the alternation at all.

Finley then returned to the original setup (bal-
anced items between FN and BN), and tried replac-
ing the neutral vowel [E] with [I]. The participants
again learned the overall harmony pattern, but not
the transparent vowel. In another experiment, each
word was presented 10 times instead of 5. This
led to an increase in performance on the transpar-
ent vowel, but the increase over the control group
was not statistically significant. The next experi-
ment added 6 additional unambiguously transpar-
ent (BN) stems, with all words being presented 10
times. This also led to an increase, though not sta-
tistically significant, in performance on the trans-
parent vowel. Finally, increasing the number of
presentations of the BN stems to 20, while keep-
ing the others at 10, led to an increase in perfor-
mance on the transparent vowel that was signifi-
cantly higher than the control group’s.

The overall picture is that under some condi-
tions where adults will learn a vowel harmony sys-
tem with an opaque vowel, they will fail to learn
a transparent vowel. But, if sufficient exposure
to words that demonstrate the transparency of a
vowel is available, adults will succeed at learn-
ing its transparency. While this overall picture is
clear, the precise conditions in which learning a
transparent vowel will or will not succeed are less
so. In multiple of Finley (2015)’s experiments,
the results showed a numerical increase in perfor-
mance that was not statistically significant. The
number of participants in some experiments was
small (often < 20 per condition), thus warranting
a level of caution in drawing strong conclusions
from any particular significance test. The study
involved adults, but we also know that children
acquire vowel harmony systems with transparent
vowels (MacWhinney, 1978; Gósy, 1989; Leiwo

et al., 2006; Gonzalez-Gomez et al., 2019). More-
over, the stimuli were presented in auditory form
only, with no accompanying image. It is difficult
to know in such a scenario whether participants
treated multiple tokens of the same type as in fact
being part of a single word type or of multiple.
Consequently, the relative role of type and token
frequencies is not entirely clear.

Furthermore, Ozburn et al. (2016) note that Fin-
ley’s artificial language used the English vowel
inventory, which leads to both roundness and
backness alternating ([-e] is front, unround; [-o]
back, round), which is not typical in natural lan-
guage backness harmony with transparent vowels.
Ozburn et al. trained adult Canadian French speak-
ers in a similar setting as Finley’s, but using har-
mony centered around the French vowel inventory,
which includes front rounded vowels, allowing for
the rounding dimension to stay fixed. Ozburn
et al.’s participants did show evidence of learning
vowel harmony transparency in this setting. How-
ever, whether this difference in results from Fin-
ley’s was due to the difference in stimuli and partic-
ipant populations or to difference in type frequency
is not clear: Ozburn et al. do not report how many
items of each kind they used in their experiment,
but they do say that 1/4 of the items were unam-
biguously transparent (BN), which is a higher pro-
portion than in Finley’s experiments (1/6 to 1/5).

In a related study, Chen (2024) trained adult
speakers of TaiwanMandarin on an artificial vowel
harmony pattern with both an opaque and a trans-
parent vowel. The study was primarily interested
in a possible “starting small” effect—whether pre-
senting bisyllabic stems before trisyllabic stems,
and a disproportionate number of bisyllabic stems,
would yield better learning than presenting a bal-
anced number all at once. In the results, only
in the “starting small” condition did participants
show evidence of learning the vowel harmony
pattern. However—more relevant to the current
discussion—even in this condition, participants
only showed learning of the non-transparent vow-
els. They appeared to treat the transparent vowel as
also opaque. Thus, while this study deviates sub-
stantially from the prior two in goals and design,
the results largely corroborate the big picture of
Finley (2015)’s study: opaque vowels are learned
more readily by adults than transparent vowels.
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4 Evaluation

To evaluate whether D2L makes sense of the ex-
perimental results on opaque and transparent vow-
els, I tested whether D2L learns an opaque vowel
in conditions where it does not learn a transparent
vowel (§ 4.2), and whether increasing the amount
of training on items showing transparency eventu-
ally leads it to learn a transparent vowel (§ 4.3).
First, I will introduce the setup (§ 4.1).

4.1 Data and Setup
I used data from Finley (2015)’s study for training
and evaluation. As the base training set, I used the
same 24 stem-suffixed pairs that Finley, p. 22 re-
ports; these are summarized in Table 1.

In experimental settings (as in natural language
learning), participants likely do not learn every
word they are trained on. Yet it is over the
words that are learned that generalizations can be
formed.2 To simulate this variability in attained
vocabulary, I carried out 30 simulations with dif-
ferent samples of training words. For each, I sam-
pled an integer 𝑛 from a Gaussian distribution with
mean 20 and standard deviation of 4 to represent
the vocabulary size. I then sampled 𝑛 uniquewords
from the 24 training words, weighted by frequency.
In the first experiment (§ 4.2) all words were given
equal frequency, so the sampling was uniform. In
the second experiment (§ 4.3), where the amount
of exposure to unambiguously transparent (BN)
words is increased, this sampling procedure allows
for manipulating the saliency of BN words, as Fin-
ley (2015) did, by increasing their relative token
frequency.

For testing, I used the novel stems from Finley,
p. 23. These include 8 stems with two harmonizing
vowels (BB or FF) and 11 ending in the neutral [E].
Of the latter, 9 are BN.

4.1.1 Comparison Models
In a study of vowel harmony in Hungarian, Hayes
and Londe (2006) proposed two harmony con-
straints, applying over a vowel tier. The first, local,
constraint incurred a violation whenever a front
vowel immediately followed a back vowel on the
vowel tier, and the second, distal, constraint in-
curred a violation whenever a front vowel followed
a back vowel anywhere on the tier. The distal con-
straint was necessary because of Hungarian’s trans-

2See, for instance, Schuler (2017, ch. 4) for discussion of
this point for artificial language learning with children.

parent vowels. Finley (2015) reasoned that the dis-
tal constraint is more complex than the local con-
straint, and thus could make harmony more diffi-
cult to learn when transparent vowels are present.
This forms the first comparison model: I trained
a Maximum Entropy Harmonic Grammar model
using distal and local constraints like Hayes and
Londe’s. The model learns to map underlying
forms (e.g., /dotEb-V/) to surface forms, using a
Maximum Entropy model, as described by Gold-
water and Johnson (2003). For each underlying
form, two candidates are generated—one with [-o]
and one with [-e]—and the number of violations
of local and distal harmony constraints are used as
the features of each candidate. I will call thismodel
H&L, as an homage to Hayes and Londe (2006).

While H&L learns a Maximum Entropy gram-
mar with provided constraints, it is also possible
for constraints to be learned. Indeed, building on
Hayes and Wilson (2008)’s model, Gouskova and
Gallagher (2020) proposed a Maximum Entropy
model that automatically learns to project tiers and
form phonotactic constraints over the resulting tier
projections. I used the model publicly available
from the authors.3 I will call this model G&G.

Lastly, vowel harmony can typically be charac-
terized as 2-Tier-Strictly-Local (2TSL), whether
described as phonotactic constraints (Heinz et al.,
2011) or processes (Burness et al., 2021).4 This
is usually true even when opaque or transparent
vowels are present. Formal learning algorithms
have been proposed that allow for proving the effi-
cient learnability of 2TSL languages and functions
(Jardine and Heinz, 2016; Burness and McMullin,
2019). However, while these learnability results
apply to vowel harmony with opaque or transpar-
ent vowels, it does not necessarily imply that lan-
guages with either of these kinds of neutral vow-
els will be learned at equal rates. Like D2L, the
Jardine and Heinz (2016) and Burness and Mc-
Mullin (2019) models start with a representation
where all segments are present, and iteratively re-
move segments to create new tiers. Unlike D2L,
they use the formal properties of TSL to deduce
conditions where removing segments is provably
correct. Thus, I use TSLIA (Jardine and Heinz,
2016; Jardine and McMullin, 2017), which is pub-
licly available (Aksënova, 2020), as an additional
comparison model. Formal models of this family

3github.com/gouskova/inductive_projection_learner
4SeeMayer andMajor (2018) for an example of a harmony

pattern than cannot be characterized as TSL.
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often benefit from collapsing pattern-irrelevant dif-
ferences among segments (Aksënova, 2020; John-
son and De Santo, 2023), which simplifies the
learning problem and makes it more likely that the
characteristic sample (the information needed in
the training data for convergence onto an appropri-
ate grammar) will be present. Following this line
of work, I collapsed all consonants into the symbol
C, back vowels to B, non-neutral front vowels to F,
and neutral vowels to N. This collapsing was only
applied to TSLIA’s input, not the other models’.

For D2L, I used the implementation publicly
available in the Python package algophon.5

In the experiments, each test stem has two pos-
sible suffixed forms: [-e] or [-o]. I compute a
model’s accuracy based on the fraction of stems for
which it produces/chooses the form consistent with
the relevant vowel harmony pattern. Specifically,
the correct choice for BB and FF is the vowel that
agrees in backness with the final stem vowel. In
OPAQUE conditions, the correct choice for neutral-
vowel-final stems is [-e], while in TRANSPARENT
conditions, it is the vowel agreeing with the penul-
timate stem vowel. I report overall accuracy and
neutral-vowel accuracy, which is computed over
only the neutral-vowel-final test stems.

This scheme can be interpreted as either learn-
ing an alternation (mapping a stem with underly-
ing /-V/ to the surface form) or a phonotactic pat-
tern (learning where [-e] and [-o] can/cannot oc-
cur). D2L and H&L learn alternations, while G&G
and TSLIA learn phonotactics. At test time, the for-
mer are probed to produce a surface form for a stem
with the underlying suffix /-V/ and the produced
form is taken as the choice. Meanwhile, the phono-
tactic models are asked to score the two choices
and the one with the better well-formedness score
is chosen. This setup is identical to Belth (2024)’s.

4.2 Opaque vs. Transparent
The first experiment evaluates whether D2L and
the comparison models show a difference in gener-
alization between an OPAQUE vowel harmony con-
dition and a TRANSPARENT condition (learning the
former better). The experiment uses the training
data described above (§ 4.1), training 30 models in
each of the two conditions, where the number of
words for each simulation is 𝑛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(20, 4).

Figure 2 shows the accuracy on all test words
(All) and accuracy on test words where the final

5github.com/cbelth/algophon/tree/main/algophon/models

vowel is neutral (Neutral). D2L’s accuracy, in both
cases, is higher for the OPAQUE condition than the
TRANSPARENT condition, consistent with the over-
all picture that humans are better at learning har-
mony with an opaque vowel (§ 3). D2L shows this
asymmetry because, in most TRANSPARENT sam-
ples, the number of exceptions introduced by BN
stems does not rise above the TP threshold (9), so
D2L does not create a new representation.

No other model shows this pattern. H&L and
G&G learn both kinds of harmony equally well.
Thus, while Finley (2015) conjectured that the
added complexity of Hayes and Londe (2006)’s
distal harmony constraint might translate into dif-
ficulty learning transparent harmony, when tested
on even this quite small amount of data, there
is enough input to assign a weight to the distal
constraint large enough for the transparent vowel
to be learned. Perhaps surprisingly, even G&G,
which learns to project tiers and learns its con-
straints, also fails to show any difference between
conditions. In the OPAQUE condition, G&G consis-
tently finds a trigram constraint that marks vow-
els differing in backness across another segment.
This is sufficient to learn the harmony pattern. In
the TRANSPARENT condition, G&G learns a simi-
lar constraint, but only specific to the harmoniz-
ing (non-neutral) vowels. G&G then projects a tier
that includes only the vowels in that constraint—
the non-neutral vowels. Then, on this projection,
G&G learns a new constraint that marks dishar-
mony between vowels on the tier—which excludes
the transparent vowel. Thus, G&G learns trans-
parency in conditions where humans do not.

TSLIA does not learn either harmony pattern.
This indicates that there is no characteristic sample
present in the data. This is true even though I col-
lapsed irrelevant differences among segments (e.g.
all consonants were mapped to the symbol C, as de-
scribed in § 4.1.1), which simplifies the learning
problem and in some cases leads learners of this
sort to succeed at learning (Aksënova, 2020; John-
son and De Santo, 2023). Running the model with-
out collapsing segments yields the same results.

4.3 Eventual Learning of Transparent
In the second experiment, I evaluated whether D2L
and the comparison models get better at learning a
transparent vowel as the amount of training expo-
sure to words that unambiguously show the trans-
parency of the vowel increases. This follows the
same setup as the TRANSPARENT condition above,
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Figure 2: The distribution of accuracies (over All test words and over Neutral test words) of each model in Opaque
and Transparent conditions. Only D2L shows a difference in accuracy between conditions, as humans do.

but varies two parameters: the number of BN (un-
ambiguously transparent) types (4, 6 or 8), and
the relative token frequency of those types (1x,
2x, or 5x the token frequency of non-BN types).
Since the number of words for each simulation
is 𝑛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(20, 4) and the choice of those 𝑛
words is based on a sample weighted by token fre-
quency, varying the relative token frequency of the
BN words increases the probability that they enter
into a particular learner’s vocabulary. Thus, the to-
ken frequency also influences the type frequency
of BN words, but in a different way. Increasing the
type frequency was accomplished by replacing FN
wordswith BNwords (so the total number of words
available was always 24). Combining these varia-
tions means there are 9 conditions per model. I ran
30 simulations (different seeds) for each model in
each condition.

Figure 3 gives the results, where the top row
of heatmaps is accuracy over all words and the
bottom row is accuracy over words with neutral
vowels. If a model mirrors the basic pattern of
humans, who get better with transparency as ex-
posure to BN increases, then accuracy should in-
crease (darker colors) as the type frequency in-
creases (rightward movement) and/or relative to-
ken frequency increases (downward movement)—

in other words if more rightward and lower cells
are darker. This is the case for D2L, but no other
model. Increasing the prevalence of BN excep-
tions eventually leads D2L to form a new rep-
resentation that excludes [E]. H&L and G&G are
dark in all cells, mirroring the above results where
they learn transparent vowels when humans do not.
TSLIA is again at chance across the board. D2L’s
performance is tied to increases in type frequency,
which is consistent with arguments and evidence
that type frequency, rather than token frequency,
plays the primary role in the formation of lin-
guistic generalizations (Aronoff, 1976; MacWhin-
ney, 1978; Baayen, 1993; Elman, 1998; Pierrehum-
bert, 2001; Albright and Hayes, 2003; Endress and
Hauser, 2011; Yang, 2016).

5 Conclusion and Discussion

Do opaque and transparent vowels do different
things to a vowel harmony system? From one per-
spective, transparent vowels introduce non-locality
that opaque vowels do not (Goldsmith, 1985;
Bakovic and Wilson, 2000; Hayes and Londe,
2006; Finley, 2009). From another perspective,
neither opaque nor transparent vowels change the
kind of information needed to capture the harmony
generalization: in both cases there is a set of seg-
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D2L G&G TSLIAH&L

Figure 3: Heatmaps showing the accuracy of eachmodel when trained on a vowel harmony patternwith a transparent
vowel. The top row shows accuracy across all test words; the bottom shows accuracy across words where the
final vowel is transparent. Matching the trend from human learners in laboratory settings would yield an accuracy
gradient that increases as the type and/or token frequency of words exhibiting unambiguous transparent vowel
harmony increases. D2L matches this general trend. The same cannot be said of any other evaluated models.

ments that can be projected (a tier) that renders all
the dependencies local (Heinz et al., 2011; Burness
and McMullin, 2019). One way to approach this
question is to take the perspective of the learner.
In Belth (2024), I proposed that learners construct
new representations only when the ones they are
currently generalizing over let them down. The
results in that article demonstrated that in natu-
ral language harmony systems, this approach leads
to accurate generalization to test words. Trained
on a few hundred words from Turkish, where
low vowels are opaque to rounding harmony, or
Finnish, where [i, e] are transparent to backness
harmony, D2L constructed representations that al-
lowed for forming a successful harmony general-
ization. In this paper, I have demonstrated that in
Finley (2015)’s setting, the same model constructs
a vowel tier and only when a transparent vowel in-
troduces enough exceptions does the model again
construct a new representation, then generalizing
to transparent vowels. Thus, in this proposal, there
is a difference between opaque and transparent
vowels—but only for a time.

Further research into the factors influencing hu-
man leaning of vowel harmony in the presence of
opaque and transparent vowels—in particular chil-

dren’s learning and acquisition—would be of great
value. For instance, D2L predicts that, if the con-
ditions are right, there could be a stage of acquisi-
tion where learners incorrectly harmonize alternat-
ing vowels with preceding transparent vowels. In
the limited number of developmental studies on the
acquisition of vowel harmony systems with trans-
parent vowels (MacWhinney, 1978; Gósy, 1989;
Leiwo et al., 2006), I am not aware of reports of
such errors (see Goad and Ozburn 2024 for a re-
cent survey). However, if such a stage exists, D2L
predicts it to be transient, since accumulating ex-
ceptions would lead to recursive creation of a new
representation. Moreover, it is only a subset of
words (BN stems in the languages discussed here)
that have the potential of showing such overgener-
alization. And over-application of generalizations
to a particular word is influenced by the strength of
the word’s lexical representation, which in turn is
influenced by its token frequency (Hooper, 1976;
Bybee, 1985; Marcus et al., 1992; Bybee, 1995).
Errors are thusmore likely on low-token-frequency
words, which are less represented in child speech.
Consequently, identifying whether this is indeed a
developmental stage would likely require studies
aimed precisely at this question.
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Abstract

Understanding the inherent properties that ren-
der a language learnable remains a fundamen-
tal question in cognitive science and linguistics.
I propose to analyze language learning as a
codebreaking task, wherein the learner recov-
ers the underlying grammar (the cryptographic
key) from observed linguistic input (intercepted
ciphertext). I develop a standard information-
theoretic analysis of this codebreaking problem,
but with a twist: in cryptography, one wants to
make a code unbreakable, but in language, one
wants the language to be learnable. The anal-
ysis yields three main findings: (1) Semantic
redundancy—predictability of meanings given
context—is necessary for language learning;
(2) When learners have limited memory for
sequential information, this redundancy must
be local within linguistic strings; and (3) cer-
tain simple kinds of compositional languages
naturally embody this kind of local semantic
redundancy, enhancing their learnability. The
framework shows how distributional statistics
enable the learning of form–meaning mappings
even when learners only observe forms.

1 Introduction

Theoretical models of language learning often fo-
cus on the knowledge that a human brings to the
task, in the form of formal restrictions on possible
grammars (Chomsky, 1965), simplicity biases (Hsu
and Chater, 2010; Hsu et al., 2013), or Bayesian pri-
ors (Griffiths and Kalish, 2007; Pearl, 2023). Here
I instead ask what properties of language make
it learnable regardless of prior knowledge, based
on a cryptanalytic approach: I consider the lan-
guage learner to be a codebreaker attempting to
infer a cryptographic key (the grammar of a lan-
guage, which I take to include the lexicon) based on
intercepted encrypted ciphertexts (linguistic input).
I adapt the classic information-theoretic treatment
of this codebreaking problem (Shannon, 1949) with
a twist: whereas in cryptography one is interested

...attack at dawn... ...mffmow mf pmiz...

Plaintext Ciphertext

Meaning Form

Key

Grammar

/aɪ sɔ: ə kæt/

Figure 1: Parallel between language and cryptography.
In cryptography (top row), a plaintext (a string) is en-
crypted using a secret key to form a ciphertext (another
string). An attacker may determine the secret key by
observing many ciphertexts; the system is designed to
make this codebreaking task difficult. In language (bot-
tom row), a meaning (in an arbitrary representational
format) is expressed as a form (a string) using an un-
known grammar. A learner may determine the grammar
by observing forms; if the language is to be learnable,
it should be structured so that this codebreaking task is
easy.

in designing codes where the key is hard to break,
here I treat language as a code that wants to be
broken. The parallel language learning and code-
breaking is illustrated in Figure 1.

I present three main results:

• Language learning crucially depends on se-
mantic redundancy of the input.

• Given that learners have limited memory for
sequences, this redundancy must be local
within strings.

• Certain simple kinds of compositional lan-
guages exhibit exactly this kind of local re-
dundancy and are more learnable as a result.

Furthermore, the cryptanalytic approach clarifies
when and how semantics can be learned from dis-
tributional statistics (Harris, 1954; Mikolov et al.,
2013; Merrill et al., 2021).
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Figure 2: Probabilistic graphical model representation
of the learning problem. Forms are a function of a
key/grammar K and a meaning M . The learner ob-
serves context C and form S and tries to infer the
key/grammar K. The learner never observes under-
lying meanings M . For extralinguistic context, there is
no dependency of C on K. For intralinguistic context,
there is such a dependency.

2 Language learning as codebreaking

Idealizing, let a language Lk be an injective
mapping from plaintexts/meanings M to cipher-
texts/forms which are strings drawn from a finite
alphabet, parameterized by a key/grammar k, with
each key corresponding to a unique possible map-
ping.1 Let M be a random variable over meanings,
K be a random variable over keys, and S = Lk(M)
be a random variable over forms derived by apply-
ing some language to meanings M . The context
C may be extralinguistic (for example, the sen-
sory context of a caretaker pointing to a ball before
saying “ball”) or intralinguistic (for example, the
words “that red” appearing before “ball”). The
structure of the problem is schematized in a proba-
bilistic graphical model in Figure 2.

The main quantity of interest for the codebreak-
ing problem is the leakage rate, the amount of
information that each ciphertext sample S provides
about the key K. In cryptography one wants to
minimize the leakage rate, but when thinking about
language learnability we will be thinking about
how to maximize it. Leakage rate is formally the
mutual information between ciphertexts and keys
given context:2

L = I[S : K | C]. (1)

Each intercepted ciphertext S leaks some informa-
1In cryptography the plaintext is usually also a string, but

this is not necessary for the information-theoretic analysis
of codebreaking. In fact, the theory does not depend on any
assumptions about the nature of the set of meanings M.

2I assume familiarity with the information theory concepts
of entropy and mutual information. See Cover and Thomas
(2006, Ch. 2) for an introduction and reference.

tion about the key. The number of bits of leaked
information needed to break the code is (on aver-
age) the entropy over keys H[K]. Leakage rate
tells us how quickly the code can be broken, that
is, how much ciphertext the learner must intercept
before they can learn the language / determine the
key, a quantity called unicity distance (Shannon,
1949, p. 693).

Given this analysis, there are two ways to make
a language learnable.3 The first is to set up learners
to have a restricted distribution over possible gram-
mars, thus lowering H[K], the amount of leaked
bits that must be gathered to break the key. The
second is to increase the leakage rate, that is, to
speak a language where the average form is highly
informative about the key, regardless of what the
prior distribution on keys looks like. I will focus
on this latter aspect of language learnability.

3 Semantic redundancy

The first result is that languages are learnable to
the extent that meanings are more predictable than
forms. I formalize this using the notion of semantic
redundancy, the predictability of meanings given
context. I operationalize semantic redundancy us-
ing the conditional entropy of meaning given con-
text H[M | C], which represents the uncertainty
about meaning given context: lower conditional
entropy means more semantic redundancy. We
will see that a language is more learnable when
this quantity is small, corresponding to high se-
mantic redundancy. Semantic redundancy may be
contrasted with formal redundancy, the extent to
which a form is predictable given context, that is
the extent to which the entropy on forms H[S | C]
is not maximal.

3.1 Derivation: The importance of semantic
redundancy

The first result is that there is leakage when there is
more uncertainty about form than about meaning:

Proposition 1. For extralinguistic context C, the
leakage rate L is equal to formal minus semantic
entropy:

L = H[S | C]−H[M | C]. (2)
3A reviewer suggests that iconicity also makes a language

more learnable, for example if every word is represented by
an onomatopoeic form. I believe this kind of iconicity is best
thought of as a (soft) restriction on the prior over keys, such
that languages containing certain iconic mappings have high
prior probability.
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Proof. Starting with the definition of leakage and
applying standard information-theoretic identities
(Cover and Thomas, 2006, Ch. 2), we get

L = I[S : K | C] (3)

= H[S | C]−H[S | C,K] (4)

= H[S | C]− I[S : M | C,K]−H[S | C,K,M ].
(5)

The last term is zero because S = Lk(M) is a deter-
ministic function given knowledge of the key k, and
also we have I[S : M | C,K] = H[M | C,K]
because languages are injective. Finally, since
keys K are independent of meanings M , we have
H[M | C,K] = H[M | C] and we arrive
at (2).

Remark 1. The argument depends on the fact
that although the learner never has access to the
true underlying meanings, they do have access to a
distribution on meanings that they think are likely
to be expressed.

Remark 2. This argument corresponds to the
classic result that leakage rate is a function of redun-
dancy per character of plaintext (Shannon, 1949,
p. 689), but generalized. In the current setting, the
analog to plaintexts is meanings M , but these are
not necessarily expressible as strings. Shannon’s
result still holds, except instead of being phrased
in terms of characters of plaintext, the analogous
quantity is characters of ciphertext given the key
(appearing in Eq. 4).

Remark 3. For intralinguistic context C, we can
derive a similar form for leakage,

L = H[S | C]−H[M | C,K], (6)

which differs only in that the semantic entropy is
conditional on the key. This is because one can only
‘unlock’ the semantic redundancy in the intralin-
guistic context to the extent that one already knows
the language. The interpretation of this quantity is
largely the same as for extralinguistic context.

3.2 Why does redundancy enable learning?
There are two intuitions that elucidate why it is
possible to learn a form–meaning mapping when
there is a low entropy on meanings given contexts.

Intuition 1: Revealed meaning. Imagine a sce-
nario where you know exactly the single meaning
m ∈ M that will be conveyed, and receive a form

s ∈ Σ∗. Then you can filter your distribution over
languages to include the mapping m → s, in addi-
tion to any other updates. This scenario is the ex-
treme case where semantic entropy H[M | C] = 0.
As H[M | C] gets smaller, learning is more and
more like this scenario: low entropy over meanings
means that each utterance provides partial informa-
tion about the full mapping. On the other hand, if
the entropy over meanings is high, then no update
or only a small update is possible.

Intuition 2: Dancing men. In The Adventure of
the Dancing Men (Doyle, 1903), Sherlock Holmes
encounters messages represented as strings of danc-
ing men of different shapes. He deduces that this
is a substitution cipher, where each English letter
corresponds to a certain dancing man, and breaks
the code by matching the dancing men to letters
based on their statistical frequency of occurrence,
the letter E being the most frequent letter. In gen-
eral, a substitution cipher for English plaintexts
can be broken by plotting a histogram of ciphertext
letter frequencies against a histogram of English
letter frequencies, and finding the mapping that
makes the histograms match, an approach known
as frequency analysis. This is possible because
English letters are redundant, that is, the frequency
distribution over English letters is relatively low
entropy.

Similarly, given some string observations and
some low-entropy distribution on meanings H[M |
C], corresponding to a highly skewed histogram,
one can recover the key by matching the frequen-
cies of strings in context with the probability dis-
tribution on meanings in those contexts. On the
other hand, if the entropy of meanings H[M | C]
is high, then both the form frequencies and the
meaning distribution will be close to flat, and so
the histogram-matching approach will either not
yield a unique solution, or will only work after
intercepting a very large number of forms.

Distributional learning In distributional learn-
ing, one learns language entirely on the basis of
frequency of occurrence and co-occurrence with
context in the input. Distributional learning is a
successful approach to modeling aspects of child
language acquisition (Saffran et al., 1996) as well
as developing computational representations of
word meanings (Mikolov et al., 2013; Penning-
ton et al., 2014). The result above clarifies why
distributional learning works even when a learner
never observes meanings directly (compare Ben-
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der and Koller, 2020): because intra- and extra-
linguistic contexts are informative about meaning,
and thus can stand in as a proxy for meaning in an
information-theoretic sense.

If language lacked semantic redundancy of this
kind—that is, if H[M | C] were maximal—then
distributional learning would be impossible, as we
would have H[S | C] = H[M | C] and leak-
age L = 0. In fact, this corresponds to the no-
tion of perfect secrecy in the cryptography set-
ting (Shannon, 1949, §10), and optimal codes such
as Huffman codes (Huffman, 1952), which min-
imize redundancy by design, also have minimal
leakage. On the other hand, as long as the entropy
of meanings H[M | C] is not maximal (either due
to context, or simply because the distribution on
meanings is non-uniform), then we have nonzero
leakage L > 0 and the learner will be able to get
some information about the key.

3.3 Cognitive and linguistic significance
There are two linguistically significant interpre-
tations of this result, depending on whether one
thinks of the context C as extralinguistic or in-
tralinguistic.

If C is extralinguistic, then the result shows the
importance of the speaker’s choice of which mean-
ings to express in which contexts. Examples would
include a child’s caretaker pointing to a ball before
saying “ball”—thus creating a context C which is
highly predictive about the intended meaning M—
or the caretaker choosing to name objects already
present in the immediate environment, thus peda-
gogically choosing meanings M to fit the context
C. Cognitively, the result requires that the child is
able to infer communicative intent from context, at
least to some extent, and more generally has some
sense of what meanings are more or less likely.
Learning is possible when meaning is low-entropy
for the learner.

If C is intralinguistic, then the result shows the
importance of the language itself being semanti-
cally redundant, as a function of both its gram-
matical structure and usage choices of the speaker.
An utterance such as “My favorite vegetable is . . . ”
provides semantic redundancy by predicting certain
semantic features of the following word (provided
one has already worked out the meaning of “ve-
gatable”). Languages with grammatical cues to
semantic features, such as Bantu languages with
rich noun class systems, provide similar informa-
tion through grammatical means. Intralinguistic

semantic redundancy corresponds to the familiar
experience of being able to guess the meaning of
an unknown word in context, for example when
reading.

3.4 The role of formal redundancy

An interesting wrinkle is that formal redundancy
is not helpful for learning in this highly idealized
setting: leakage is upper bounded by the formal en-
tropy H[S | C]. This means that, when the form S
of some linguistic input is highly predictable from
context, this reduces the amount of information
that the input provides to a learner.

The role of formal redundancy and its relation-
ship with semantic redundancy must be interpreted
carefully. Formal redundancy does not simply
mean that a form is predictable, it means that a
form is predictable on average across the learner’s
key distribution. Effectively, when the learner has
narrowed down the keys to some subset, and a form
is totally predictable under all those keys, then there
is formal redundancy without semantic redundancy,
because observing the form is totally unsurprising.

Formal redundancy without semantic redun-
dancy can arise from, for example, phonotactic
constraints. For example, suppose that a language
has phonotactics where every front vowel is fol-
lowed by only front vowels, that is, it has vowel
harmony; and suppose that a learner is aware of the
concept of vowel harmony and has narrowed their
space of possible languages/keys only to those that
respect vowel harmony. Then when a front vowel
occurs in the context of a front vowel, it is formally
redundant: it is uninformative about anything, in-
cluding the meaning.

4 Locality: Learning with noise

The argument above establishes that a learnable
language must have semantic redundancy, but tells
us nothing about the structure of that redundancy.
Next I consider learners whose memory or atten-
tion for sequences is noisy, such that their observa-
tions effectively consist of contiguous substrings
rather than full strings. Such noisy memory is char-
acteristic of human children (Cowan et al., 1999;
Gathercole et al., 2004; Luna et al., 2004). In this
setting, I find that languages are more learnable
when their intralinguistic redundancy is local, that
is, when the meaning of a character or word is
predictable given nearby characters or words.
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4.1 Derivation: Effect of noise on learning

I now assume that with probability e, the context
C is unavailable to the learner, with L(e) being the
leakage rate as a function of the context erasure rate
e. The idea is that a learner with limited memory
or attention might find themselves processing part
of a string without knowledge of its context.

In order to understand how the leakage changes
as a function of noise rate e, one can calculate the
derivative of L(e) with respect to e:

Proposition 2. For extralinguistic context C, the
derivative of leakage with respect to context era-
sure rate e is equal to the formal minus semantic
mutual information:

∂

∂e
L(e) = I[S : C]− I[M : C]. (7)

Proof. Let C̃ represent the random variable over
noisy context, equal either to a true context or to
a special erasure symbol E not in the support of
C. The leakage as a function of erasure rate L(e)
comes out to

L(e) = H[S | C̃]−H[S | C̃,K] (8)

= H[S | C]−H[S | C,K] (9)

+ eI[S : C]− eI[S : C | K]

= H[S | C]−H[M | C] (10)

+ eI[S : C]− eI[M : C].

The derivative of (10) with respect to e is (7).

Remark 4. The analogous result for intralinguis-
tic context is

∂

∂e
L = I[S : C]− I[M : C | K], (11)

paralleling the intralinguistic version of Prop. 1.
The result means that as a context becomes more

likely to be unavailable to the learner, the learn-
ability of the language goes up in proportion to
the formal redundancy contributed by that con-
text, and down in proportion to the semantic re-
dundancy contributed by that context. Intuitively,
if the learner has no access to context, then the se-
mantic redundancy contributed by context cannot
help. In terms of language learnability, the up-
shot is that languages should be configured so that
helpful semantically redundant context is likely to
be available in practice: that is, somewhere in the
string where it is not likely to be erased.

4.2 Locality from noise

Consider now a scenario where a learner takes in a
string incrementally and, at each position, has some
probability of randomly forgetting (or otherwise
ignoring) the string prefix up to that point. This
represents a learner who either has noisy memory
for the sequence context, or who has had a lapse of
attention and is starting to process a string some-
where in the middle. Then the learner effectively
has perceptual intake (in the sense of Pearl, 2023)
consisting of contiguous substrings, rather than full
strings.

In that case, if there is some helpful semantic
redundancy between two nonlocal parts of a string,
then this redundancy is unlikely to help the learner,
since the learner is unlikely to get a large enough
substring to encompass all parts. On the other hand,
semantic redundancy between local parts of the
string is more likely to be available. The upshot
is that for a language to be learnable under these
circumstances, it must have information locality
(Futrell and Hahn, 2022): any helpful semantic re-
dundancy should be expressed in local parts of a
form, so that a learner with noisy memory or atten-
tion who is only receiving contiguous substrings
as input is able to detect that redundancy and learn
from it.

The idea of local semantic redundancy is re-
lated to the concept of diffusion from cryptanalysis
(Shannon, 1949, pp. 708–709). Diffusion is a de-
sirable property for cryptographic ciphers, where
the redundancy in the plaintext is dissipated into
long-range correlations involving many parts of the
ciphertext, so that a codebreaker must intercept and
analyze a very large quantity of contiguous cipher-
text in order to detect the redundancy and exploit
it. For learnability, human languages should do
the opposite of diffusion: they should be set up
so that semantic redundancy is detectable without
considering large amounts of context.

5 Simulations

The considerations above suggest that for lan-
guages to be learnable, (1) languages must have
semantic redundancy, and (2) if there is noisy mem-
ory for sequence context, languages should config-
ure strings so that semantically redundant parts are
local. Here I demonstrate this result by simulat-
ing learning of some very simple languages which
differ in their levels of redundancy, in the locality
of that redundancy, and in the level of noise under

58



Meaning → H H H H H T H T H H T T T H H T H T T T H T T T

Compositional 1 aaa aab aba abb baa bab bba bbb
Compositional 2 bbb abb bab aab bba aba baa aaa
Holistic 1 aab bbb bba aba baa bab aaa abb
Holistic 2 abb bbb bab baa aab aba aaa bba

Table 1: Example languages for the coinflip world, used in simulations. Possible meanings (coinflip outcomes) are
on the columns. In the ‘compositional’ languages, each character corresponds to an individual coin, as indicated by
color. In the holistic languages, there is no such correspondence.

which learning takes place. In line with the formal
results, I find that semantic redundancy facilitates
learning, and that in the presence of noise this re-
dundancy must be local. Furthermore, I show how
local redundancy obtains when languages are com-
positional in the sense that individual characters or
local groups of characters (that is, words or mor-
phemes) correspond to independent components of
meaning.

5.1 Setup

I simulate ideal learners who start with an initial
uniform distribution over keys/languages, observe
(noisy) sample forms one at a time, and update
their distribution on keys using Bayes’ rule (Bayes,
1763).

Source As the probability distribution over mean-
ings, I consider a very simple world consisting
of two or three weighted coinflips, for a total of
22 = 4 or 23 = 8 possible outcomes/meanings.
The first coin has weight b for heads, where I
vary the weight b in order to vary the entropy of
meanings H[M ]—more biased coins yield lower-
entropy distributions which should facilitate learn-
ing. The second and third coins have weights
b+0.1 and b+0.2 respectively. If the coins did not
have different weights, then the language would be
unidentifiable for the learner, because the learner
would never be able to identify which characters in
a form correspond to which coins.

Languages I first consider languages where
forms consist of binary strings of length 3, which
are either compositional or not, in the sense that
individual characters in the forms may or may not
correspond to the underlying coinflips. These lan-
guages are categorized with examples in Table 1.
I also consider redundant languages where forms
consist of binary strings of length 4 and meanings
consist of two coinflips. These languages are based
on the Compositional 1 language in Table 1, and are
either locally redundant (for example, a meaning

H T is encoded as aabb) or nonlocally redun-
dant (for example, the same meaning is encoded
as abab). In all conditions, the learner’s set of
possible languages/keys is the set of all possible
injective mappings from meanings to binary strings
of the appropriate length.

Learning and noise In each step of learning, a
learner observes a single (noisy) sample of a form,
and updates their probability distribution on mean-
ings exactly following Bayes’ rule. Noisy observa-
tions are generated by sampling a form, splitting it
into contiguous substrings, and uniformly choosing
one of those substrings. The splitting is done by
flipping a coin with probability e at each character
of the string; if the outcome is heads, the string is
split at that point. I vary the parameter e in exper-
iments. The condition e = 0 corresponds to no
noise. The condition e = 1 yields to a learner who
only ever sees a single character of input based on a
sampled string, corresponding to maximally noisy
memory for intralinguistic context.

Evaluation I evaluate learning in terms of key
entropy, the posterior entropy over keys given
data observed so far at each timestep. Lower key
entropy indicates the learner has less uncertainty
about the language. The main feature of interest is
the rate at which this entropy decreases.

I would like to emphasize that for all conditions
in these simulations, the key entropy will eventually
approach zero with enough observations: that is,
learning is ultimately possible for all the languages
considered here. They will differ, however, in their
rates of learning.

5.2 Analysis of languages

The compositional languages in Table 1 have se-
mantic redundancy local to each individual charac-
ter. This is because the meaning of each character
corresponds to one coinflip, and thus the semantic
entropy for a single character is bounded: it can-
not exceed the entropy of its corresponding single
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Figure 3: Learning curves (average over 10,000 runs)
for different levels of semantic entropy, with no noise.
Curves show key entropy H[K] as a function of the
number of forms observed (similar to Shannon, 1949,
Fig. 6). Key entropy decreases more rapidly when se-
mantic entropy is low. Curves are the same for all lan-
guages in Table 1.

coinflip. This redundancy is local in the sense that
it does not depend on context and cannot be de-
stroyed by erasure noise. On the other hand, in
the holistic languages, each character corresponds
to a mixture of different coins, which will gen-
erally have a higher entropy (thus less semantic
redundancy) than the distribution of a single coin.
Furthermore, there will be nonlocal correlations
among the characters within the string, represent-
ing nonlocal semantic redundancy which is in dan-
ger of being missed due to noise. This observation
is in line with the idea that noncompositional lan-
guages very generally create undesirable long-term
correlations within forms (Futrell and Hahn, 2024).

The locally redundant variant of the composi-
tional language extends this idea so that redun-
dancy is local to a pair of adjacent characters. The
helpful semantic redundancy in this adjacent pair
is unlikely to be disrupted by noise, and thus learn-
ing curves are favorable. On the other hand, in the
nonlocally redundant language, the redundancy is
nonlocal, highly likely to be disrupted by noise,
and so the learning curves are less favorable.

5.3 Results

Learning curves without noise (e = 0) by semantic
entropy are shown in Figure 3, which demonstrates
that learning is indeed faster when semantic entropy
is lower. The language used for this simulation is
Compositional 1 from Table 1, but this does not
matter: in this setting, all injective languages will

produce equivalent curves when there is no noise.
Learning curves under varying levels of noise are

shown in Figure 4. Here we find that the composi-
tional languages yield faster learning, as expected,
because their semantic redundancy is local and not
likely to be disrupted by noise. The difference be-
tween compositional and holistic languages gets
bigger as the noise rate increases. Learning curves
for the explicitly redundant languages are shown
in Figure 5. Languages with local redundancy are
faster to learn, while languages with nonlocal re-
dundancy are slower.

6 Discussion and Related Work

I emphasize that I have considered learners who
never directly observe meaning, and who have no
prior bias towards any language over another; nor
is any language ‘simpler’ than any other for the
learners. The fact that certain languages are learned
more rapidly is rather a function of their seman-
tic redundancy and information locality, which en-
ables learning in the presence of noisy memory
or attention for sequences, in a way that is inde-
pendent of the learner’s prior distribution over lan-
guages.

Distributional learning This work provides a
theoretical understanding of when it is possible to
learn a form–meaning mapping from observations
of form alone, and thus justifies distributional ap-
proaches to semantics and language learning (Har-
ris, 1954; Erk, 2010), both in the context of lan-
guage technologies (Mikolov et al., 2013), and as
a strategy for child learners (Saffran et al., 1996;
Erickson and Thiessen, 2015). The results are con-
sistent with Merrill et al.’s (2024) finding that cor-
pus statistics encode entailment relations under the
assumption that speakers are redundant, and I be-
lieve the notion of local semantic redundancy is
likely related to Merrill et al.’s (2021) notion of
semantic transparency, which is a precondition for
distributional learning of semantics.

Language acquisition The model shows how
language can be acquired when context provides
partial information about meanings, and thus it pro-
vides a generalized idealized version of the cross-
situational learning model of lexicon acquisition
(Siskind, 1996; Hendrickson and Perfors, 2019), in
which a child encounters a word across multiple
contexts until they can identify the word with a
single meaning by a process of elimination. The re-
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Figure 4: Learning curves for different levels of noise e, for a source with a fixed b = .75 (average over 10,000
runs). Curves show key entropy H[K] as a function of the number of forms observed. Key entropy decreases more
rapidly for the compositional languages, where semantic redundancy is local. It increases more slowly for the
holistic languages where semantic redundancy is spread out among characters of the form. The difference between
compositional and holistic languages is heightened for increased noise rates.
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Figure 5: Learning curves for locally redundant and
nonlocally redundant languages (see text) under noise
at rate e = .9, for coinflip heads probability b = .79
(average over 1000 runs). Key entropy decreases more
rapidly for the locally redundant languages.

sults about the importance of low semantic entropy
are in line with the finding that children learn word
meanings better given low-entropy input (Lavi-
Rotbain and Arnon, 2019). The results on noise
and locality show how cognitive constraints, such
as maturational constraints on working memory,
can imbue learners with a bias toward the kinds of
structures found in language (Newport, 1990; Mita
et al., 2025).

Unsupervised machine translation This work
bears a notable similarity to models of how one can
learn to translate between languages without seeing
parallel texts (Cao et al., 2016), or how one might
decode unknown communication systems such as
those used by whales, where the nature of the mean-
ings being expressed is unknown and possibly un-

knowable (Goldwasser et al., 2023). The current
approach to language learning can be seen as in-
ducing an unsupervised translation system from
meanings (represented in some unknown mental
form) to forms (represented as observable strings).

Language evolution Approaches to modeling
language evolution by iterated learning have
yielded the result that languages will generally re-
flect learners’ prior distribution on languages (Grif-
fiths and Kalish, 2007; Kirby et al., 2014). In con-
trast, I find a learning bias (toward locally redun-
dant languages) as a function of the noisy nature of
learners’ intake, independent of the prior. This bias
can be seen as arising from the learners’ likelihood
function rather than the prior, and it manifests in
the rate of learning, not in its initial or asymptotic
states. Under noise, locally redundant languages
can be learned to a higher degree of confidence
from fewer samples.

While humans may have innate prior knowledge
of what grammars/keys are possible, the question
remains of why that prior knowledge is what it is.
For example, if humans’ prior knowledge can be
characterized by a constraint that languages must
be compositional in a certain way, the question is
why that constraint rather than another. The con-
siderations above provide a potential explanation,
by showing how learning biases can emerge inde-
pendently of learners’ priors. One could imagine
a population of learners with flat priors, who end
up with local compositional languages due to gen-
eral memory limitations, as discussed in Section 4.
Then over generations of evolutionary time, the
population can evolve to incorporate these biases
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as innate prior knowledge.

7 Conclusion

I have presented a model of language learning
based on ideas from cryptanalysis, in which a
learner observes only forms and infers the under-
lying language, the mapping from hidden mean-
ings to forms. Whereas in cryptanalysis one is
concerned with making codes unbreakable, here
I considered what properties of languages make
them breakable. I found that languages with lo-
cal semantic redundancy—the opposite of crypto-
graphic diffusion, and corresponding to a kind of
compositionality—are more learnable in this set-
ting, even for learners without prior biases toward
such languages. The model shows how learning
is possible as long as the learner has some prior
knowledge of their interlocutor’s likely commu-
nicative intent.

The analytical and modeling approach taken here
provides a useful new angle on language learn-
ing which can be applied to test hypotheses about
how learning works, how properties of language
affect learnability, and how the learner’s hypothesis
space on languages could be structured to enable
rapid learning. More broadly, I believe that this
cryptography-inspired analysis of language learn-
ing offers a fresh perspective and set of analyt-
ical tools that can be used to approach the lan-
guage learning problem. Cryptanalysis is a well-
developed and rich field of science and engineering.
The analysis here shows that it may contain useful
ideas for linguistics and language acquisition.
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Abstract

Much evaluation work in the literature shows
that neural language models seem capable of
capturing syntactic dependencies in natural
languages, but they usually look at relatively
simple syntactic phenomena. We show that
a two-layer LSTM language model trained on
250M morphemes of Hindi data can capture
the relatively complex interaction between case
and agreement in Hindi-Urdu, at an accuracy
of 81.17%. Furthermore, we show that this
model encodes case-marking linearly, imple-
menting a geometrically intuitive and inter-
pretable syntactic processing mechanism. We
also show that this model doesn’t calculate
agreement extremely eagerly, as case infor-
mation seems to be persistent over time as
a sentence unfolds. This is surprising given
LSTMs autoregressive and recurrent nature,
which should exert an incremental processing
pressure onto our model.

1 Introduction

Neural language models trained for engineering
purposes tend to show human-like behavior when
evaluated on certain benchmarks constructed to
test their understanding of syntactic properties of
certain natural languages. These results are quite
significant, because they show that neural net-
works capture syntactic dependencies that target
latent hierarchical structures even when they are
trained on an objective as simple as next-word
prediction, which doesn’t provide any explicit sig-
nal about hierarchical structure. However, these
benchmarks often only target relatively simple
grammatical phenomena, such as English subject-
verb number agreement. Thus, we don’t know if
language models really learn the full range of com-
plex phenomena featured in various natural lan-
guages. Another problem concerns interpretabil-
ity: when these language models display human-
like behavior, what kind of computation underlies

their such performances? Understanding the ex-
pressibility and the computation implemented by
language models is empirically important for as-
sessing whether they are viable models of grammar
and sentence processing. In this paper, we show
a LSTM language model (Gulordava et al., 2018)
trained on Hindi data predicts the correct agree-
ment form of a participial verb correctly 81.17%
of the time, and encodes ergative and accusative
case in a subspace of its hidden layer vectors in a
way that makes representations for sentences con-
taining each of these case-markers linearly separa-
ble from those that don’t contain each case-marker.
Our results suggest that a LSTM language model is
not only capable of learning the relatively complex
interaction between case and agreement in Hindu-
Urdu, but also encodes case-marking information
in a geometrically intuitive and interpretable fash-
ion. We think this work points to a direction for fu-
ture work in which we can compare language mod-
els with different architectures in how they repre-
sent and compute with case.

This paper is organized as follows. In Section 2,
we describe relevant work. We discuss two groups
of methods: those for evaluating language models’
ability to learn syntactic properties of natural lan-
guages, and those for understanding the represen-
tations and computations tacitly implemented by
language models.

In Hindu-Urdu, verb agreement targets different
arguments depending on their case-marking pat-
terns, making it a relatively complex agreement
pattern and a good testing ground for evaluating
language models’ ability to capture syntactic de-
pendencies. We describe the Hindi-Urdu facts in
more detail in Section 3, and the training and eval-
uation procedures as well as evaluation results in
Section 5. Despite the modest model size and train-
ing setup, the language model performs reason-
ably well, predicting the correct gender agreement
81.17% of the time.

64
Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 64-73.

Eugene, Oregon, July 18-20, 2025



In the rest of the paper, we investigate the na-
ture of the computation that underlies our language
model’s decent performance. This investigation is
carried out from two perspectives, which we de-
scribe in Section 6. The first one concerns how
the language model represents case. We set forth
a very specific hypothesis, which is that the model
provides a linear encoding of case. If this were true,
the model implements a highly interpretable syn-
tactic processing mechanism. The second perspec-
tive concerns the memory usage. The computation
underlying our language model could be eager and
Markovian, making use of the subject’s case infor-
mation as soon as it is processed, after which this
piece of information no longer has any bearing on
the predicted gender agreement. Alternatively, it
could be lazy and memory-intensive, storing the
subject’s case information in its intermediate rep-
resentations, using it just-in-time as the model pre-
dicts a gender agreement marker. In the latter case,
subject case information is used long after it has
processed the subject.

We carry out the investigation using linear clas-
sifier probes and causal intervention techniques.
These methods, as well as our results, are described
in Section 7. We find positive evidence that the
language model provides such a linear encoding
for the presence/absence of ergative and accusative
case. Our results also align with a lazy characteri-
zation of the language model’s underlying compu-
tation. We conclude in Section 8.

2 Background and related work

There has been much interest in evaluating lan-
guage models’ understanding of grammatical phe-
nomena, a practice sometimes known as targeted
syntactic evaluation (Marvin and Linzen, 2018).
LSTM language models have been evaluated on
various syntactic phenomena, including subject-
verb agreement (Linzen et al., 2016; Bernardy
and Lappin, 2017; Kuncoro et al., 2018; Gulor-
dava et al., 2018), negative polarity item licensing
(Jumelet and Hupkes, 2018; Marvin and Linzen,
2018) and filler-gap dependencies (Chowdhury
and Zamparelli, 2018; Chaves, 2020; Da Costa and
Chaves, 2020; Wilcox et al., 2024). They show var-
ious levels of success on each phenomenon.

Much research also seeks to interpret language
models, i.e., understand their internal mechanisms
that grant them their performances. One popular
approach in this area is to probe language models

for representations of certain kinds of grammati-
cal information. Typically, this involves extracting
the intermediate representations from a language
model produced for certain linguistic expressions,
and using them to train and evaluate a shallow clas-
sifier that predicts some relevant grammatical in-
formation associated with these expressions. For
example, Tenney et al. (2019) show that BERT rep-
resentations can be used to predict syntactic cate-
gories of and dependency relations between con-
stituents in English.

A common criticism of probing is that it in-
volves training; thus a positive result can’t neces-
sarily be attributed to the language model. There
are ways to overcome this problem. For exam-
ple, probing with weak linear classifiers allows one
to conclude that the relevant grammatical informa-
tion is encoded by the language model as a sub-
space, allowing a geometrically intuitive interpre-
tation of the language model’s inner workings. Fur-
ther, by counterfactually intervening the language
model’s representations using the classifier probe’s
weights and checking if the intervention affects the
language model’s inference process, one can check
if the language model is actually using the gram-
matical information the way it is encoded as sug-
gested by the classifier probe. A recent line of
work incorporates both of these aspects; for exam-
ple, Hao and Linzen (2023) find a linear encoding
of number in a subspace of BERT’s contextualized
representations for English, and show that causal
intervention in this subspace affects BERT’s per-
formance on subject-verb number agreement tasks.

Agreement is a classic example of a syntactic
dependency that targets hierarchical structure; a
lot of interpretability work has focused on LSTM
language models’ learning of agreement. Linzen
et al.’s (2016) pioneering work shows that LSTMs
are capable of predicting English number agree-
ment as a classification task, on which they are
trained with explicit supervision. Gulordava et al.
(2018) show that LSTM language models naturally
learn to predict number agreement correctly in Ital-
ian, English, Hebrew and Russian. Lakretz et al.
(2019) argue that two units in Gulordava et al.’s
(2018) language model track number, which means
LSTM language models implement genuine syn-
tactic processing mechanisms.
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3 Case and agreement in Hindi-Urdu

In Hindi-Urdu, the participial main verb and any
auxiliary agree with the structurally most promi-
nent argument of the verb that is not case-marked
overtly (Bhatt, 2005). The subject is more struc-
turally prominent than the object. The overt case
marker for subjects is -ne, which we will call erga-
tive case. The overt case marker for objects is -
ko, which we will call accusative case. For exam-
ple, when the subject is not marked ergative, the
verb and auxiliary agree with the subject no mat-
ter whether the object is marked accusative or not
(1). This agreement is coded on an aspectual mor-
pheme that immediately follows the verb stem.
(1) Rahul

Rahul[M]
kitaab(-ko)
book[F](-ACC)

paṛh-taa
read-HAB;MSG

thaa
be[PST;MSG]
‘Rahul used to read a/the book.’

When the subject is marked ergative, agreement
targets the object if the object is not marked ac-
cusative (2).
(2) Rahul-ne

Rahul[M]-ERG
kitaab
book[F]

paṛh-ii
read-PFV;F

thii
be[PST;FSG]

‘Rahul had read a book.’
When both arguments are overtly case-marked,
agreement targets neither argument. The result is
default masculine agreement, shown in (3), where
there are no masculine arguments.
(3) Sita-ne

Sita[F]-ERG
kitaab-ko
book[F]-ACC

paṛh-aa
read-PFV;MSG

thaa
be[PST;MSG]
‘Sita had read the book.’

While case controls agreement in Hindi-Urdu, case
itself is controlled by independent factors. The sub-
ject receives ergative case iff its verb is transitive
and in the perfective aspect. The object receives
accusative case iff it is specific or definite.

4 Current study

As described in the previous section, Hindi-Urdu
features a more complex verbal agreement system
than subject-verb agreement systems found in lan-
guages like English, making it an interesting chal-
lenge for language models to learn. In the rest of
this paper, we train a LSTM language model on
Hindi data, and address the following two research
questions concerning this model. First, how well
does the model learn the case-agreement interac-
tion in Hindi-Urdu (Section 5)? Second, if learn-

ing is successful, how does the model compute
agreement using case information (Sections 6–7)?
In particular, we employ causal intervention tech-
niques to answer the second question.

5 Training and evaluation

5.1 Training
The training data for our language model comes
from the Hindi Wikipedia (Foundation) and the
Hindi data from the CC-100 corpus (Conneau et al.,
2020; Wenzek et al., 2020), both taken from the
Hugging Face website. The data mostly consists
of unromanized Devanagari. We perform unsuper-
vised morphological segmentation with Morfessor
2.0 (Smit et al., 2014), which reduced our vocab-
ulary size from 2.4M to 146K. We then discarded
all sentences longer than 80 morphemes and con-
verted all morphemes except the most frequent
30000 to a designated UNK(nown) token, giving
us about 246M non-UNK tokens. We follow a
train:dev:test split of 7:1:2.

We train Gulordava et al.’s (2018) LSTM lan-
guage model. Due to the limited size of our train-
ing data, we decided to train a LSTM language
model rather than a Transformer. Gulordava et al.
show that their LSTM language models predict Ital-
ian number agreement across long-distance depen-
dencies at near-human performance. The architec-
ture of the model is a two-layer LSTM with an em-
bedding size and hidden layer size of 650. We fol-
low the set of hyperparameters that gave Gulordava
et al. their best validation set perplexity, which
we detail in Appendix A. Our test set perplexity
is 47.17, comparable to Gulordava et al.’s results.

5.2 Evaluation
We artificially generate an evaluation dataset in-
tended to test our language model’s ability to pre-
dict gender agreement correctly. Each data point
is a pair ⟨𝑠, 𝛾⟩ where 𝑠 is a sentence prefix and
𝛾 is a gender label. The sentence prefix 𝑠 con-
sists of a subject, an object and a verb stem, and
should be continued with an aspectual morpheme
that shows gender agreement. The correct gender
is encoded by the label 𝛾. The data points are ma-
nipulated by three conditions: whether or not the
subject is marked ergative, whether or not the ob-
ject is marked accusative, and the genders of the
subject and object, which are always different. Ta-
ble 1 illustrates the kinds of data points generated
for each combination of conditions. We combina-
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torially generate 320K data points. Most sentence
prefixes in the data set are semantically nonsensi-
cal, an intended effect; we want the model to rely
only on structural properties of the data, not seman-
tic ones.

Evaluation proceeds as follows. For each data
point with sentence prefix 𝑠 and correct gender 𝛾,
we compare the conditional probability of the mas-
culine and feminine singular forms of the following
four aspectual morphemes given the context 𝑠:
(4) a. HAB: habitual (M: ता, F: ती)

b. INF: infinitival (M: ना, F: नी)
c. PFVC: perfective morpheme that begins with

the consonant य (M: या, F: यी)
d. PFVV: perfective morpheme that doesn’t be-

gin with a consonant (M: ◌ा, F: ◌ी)
Within each aspect, the form corresponding to gen-
der 𝛾 should be higher than the form for the in-
correct gender. Accuracy is aggregated over the
dataset for each aspect. Incorporating results from
multiple aspectual forms gives us a more com-
prehensive evaluation with more generalizable re-
sults, unlike previous evaluation work on English
subject-verb number agreement that only focuses
on one auxiliary pair, e.g. is/are.

However, it can be misleading to compare accu-
racy across items or conditions within each aspect,
because certain aspectual morphemes are incom-
patible with certain items and conditions. For ex-
ample, whether a verb takes the PFVC or the PFVV
morpheme in the perfective is lexically specified; a
verb takes PFVC iff its stem ends in a vowel (e.g.
सजा sajā, but not भेज bhej). Ergative marking
results only in the perfective. A language model
with adequate knowledge of Hindi-Urdu may rea-
sonably assign equally low probabilities to the mas-
culine and feminine PFVC forms of the verb भेज
bhej, and to the masculine and feminine PFVC forms
of the verb सजा sajā when the subject is not erga-
tive, because all of these forms are ungrammatical.
This would result in a low accuracy for PFVC forms.

To address this, we also calculate a form of ac-
curacy that incorporates all aspects. Specifically,
for each data point, we compare the probability
summed over the masculine forms of all four as-
pects with the probability summed over the femi-
nine forms of all four aspects. Intuitively, the sum-
mation represents marginalization over aspect, al-
lowing us to compare the probability of the two
genders directly. We call the accuracy aggregated
over the dataset this way general accuracy. Table 2

reports the by-aspect and general accuracy for our
language model, broken down by subject and ob-
ject case-marking as well as the correct gender to
show agreement for, i.e., the gender label 𝛾.

Additionally, in Table 2, we report the sensitiv-
ity index 𝑑′ for all three case patterns that doesn’t
result in default masculine agreement. We calcu-
late 𝑑′ as 𝑧(hits) − 𝑧(FA), where 𝑧 is R’s qnorm
function, hits is the proportion of true masculine
examples correctly predicted masculine, and FA
(false alarm) is the proportion of true feminine ex-
amples incorrectly predicted masculine. Thus, 𝑑′

quantifies the language model’s sensitivity to the
agreement contrast after factoring out any general
biases towards masculine or feminine morphemes
the model may have.

Among the four aspects, the habitual aspect
(HAB) gives the best results, with a high accuracy of
82.69 and a sensitivity index 𝑑′ of 1.84. In compar-
ison, the other aspects have a slightly above-chance
performance. Recall that general accuracy and 𝑑′

are calculated by comparing the marginal probabil-
ities of the masculine vs. feminine forms, where
marginalization is summation over aspects. Gen-
eral accuracy is 81.18 and 𝑑′ is 1.73, a decent per-
formance. For comparison, Gulordava et al. (2018)
train models with the same architecture on Ital-
ian, English, Hebrew and Russian data, and evalu-
ate their models using two subject-verb agreement
tasks. They report accuracies in the range 67.5–
95.2. The results suggest that our language model
has reasonably understood the case-agreement in-
teraction in Hindi-Urdu.

6 Characterizing the language model’s
underlying computation

We see that our language model has learned the
case-agreement interaction in Hindi-Urdu to some
extent. What kind of computation could our lan-
guage model be performing in order to determine
agreement?

To frame this question more specifically, let’s
consider what forms this computation can take. A
correct Hindi-Urdu agreement computation can be
thought of generally as a process that takes case
information as input and returns the agreement tar-
get as output. For example, it can be modelled as
the simulation of a finite-state machine illustrated
in Figure 1, where case determines the transitions
and the accepting states determine which argument
the agreement should target. The simulation keeps
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Genders Cases Data point ⟨𝑠, 𝛾⟩ Glossed example for 𝑠

Masc.
subject,

Fem.
object

∅,∅ ⟨NPM NP¬𝐴
F 𝑉 , M⟩

कुमार एक माता छोड़
Kumar[M] one mother[F] leave

∅,ACC ⟨NPM NP𝐴
F acc 𝑉 , M⟩

कुमार एक माता को छोड़
Kumar[M] one mother[F] ACC leave

ERG,∅ ⟨NPM erg NP¬𝐴
F 𝑉 , F⟩

कुमार ने एक माता छोड़
Kumar[M] ERG one mother[F] leave

ERG,ACC ⟨NPM erg NP𝐴
F acc 𝑉 , M⟩

कुमार ने एक माता को छोड़
Kumar[M] ERG one mother[F] ACC leave

Fem.
subject,
Masc.
object

∅,∅ ⟨NPF NP¬𝐴
M 𝑉 , F⟩

सीता एक ࣺपता छोड़
Sita[F] one father[M] leave

∅,ACC ⟨NPF NP𝐴
M acc 𝑉 , F⟩

सीता एक ࣺपता को छोड़
Sita[F] one father[M] ACC leave

ERG,∅ ⟨NPF erg NP¬𝐴
M 𝑉 , M⟩

सीता ने एक ࣺपता छोड़
Sita[F] ERG one father[M] leave

ERG,ACC ⟨NPF erg NP𝐴
M acc 𝑉 , M⟩

सीता ने एक ࣺपता को छोड़
Sita[F] ERG one father[M] ACC leave

Table 1: Data point templates for each combination of conditions, with examples. In the Cases column, ∅ means
no overt case-marking; e.g., ∅,ACC means non-overtly marked subject, ACCusative-marked object. In the Data
point column, each sentence prefix 𝑠 is described as the right-hand side of a rewrite rule. Uppercase variables are
non-terminals: NP𝛾 stands for a singular noun phrase with gender 𝛾, NP𝐴

𝛾 specifically stands for one that may be
ACC-marked, i.e., specific or definite, NP¬𝐴

𝛾 specifically stands for one that may not be ACC-marked, i.e., not specific
or definite. 𝑉 stands for a verb stem.

ERG? ACC? Correct HAB INF PFVC PFVV General
Acc 𝑑′ Acc 𝑑′ Acc 𝑑′ Acc 𝑑′ Acc 𝑑′

− − M 74.18 1.18 57.86 0.33 32.11 0.32 93.76 0.28 78.00 1.04− − F 70.35 55.38 78.36 10.52 60.56
− + M 98.96 3.17 88.84 1.12 72.08 0.97 99.97 2.03 99.53 3.16− + F 80.57 46.09 64.97 8.24 71.22
+ − M 95.25 2.55 59.52 1.14 56.10 1.41 97.05 1.62 84.42 1.96+ − F 81.02 81.44 89.63 39.49 82.82
+ + M 83.30 68.38 79.68 99.88 91.60

Average 82.69 1.84 65.27 0.77 68.00 1.08 66.80 1.17 81.18 1.73

Table 2: Accuracy and 𝑑′ for our language model evaluated on the case-agreement dataset.
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𝑞1

Subject

𝑞2

Object

Default
[+ERG]

[−ERG]

[+ACC]

[−ACC]

Figure 1: Agreement computation as a finite-state ma-
chine.

track of the current state, and follows transitions
depending on subject and object case.

In order for the language model to implement
such a simulation, it needs to represent case in-
formation somehow. But exactly how does it rep-
resent case? We take a very specific hypothesis
to this question: our language model linearly en-
codes case in a subspace of its hidden layer vec-
tors. That is, there is a subspace for ergative case,
such that the hidden layer vectors for sentences
with an ergative-marked subject are linearly separa-
ble from those for sentences with an non-ergative-
marked subject when both sets of vectors are pro-
jected onto this subspace. In other words, we can
use an ensemble of linear binary classifiers to pre-
dict the presence of ergative marking in a sentence
from its hidden layer vector representation. The
same applies to accusative case. Under this hypoth-
esis, our language model implements a highly inter-
pretable syntactic processing mechanism.

Aside from representations of the input, we can
also consider other aspects of this computation.
One dimension along which we can characterize
alternative forms of computation is memory us-
age. This places an eager and Markovian compu-
tation on one end of a spectrum, and a lazy and
memory-intensive computation on the other end.
These two computations differ in how soon they
advance the simulation as they process linguistic
input. As soon as an eager and Markovian compu-
tation processes case information, it advances the
simulation by following the corresponding transi-
tion. A lazy and memory-intensive computation
would store the subject and case information, and
performs the entire simulation in one fell swoop
when it reaches the verb stem, just in time be-
fore it needs to compute agreement. Where is our
language model’s underlying computation located
along this eager/lazy spectrum?

In the next section, we use linear classifier

probes and causal intervention techniques to inves-
tigate whether our language model encodes case
linearly, and how eager/lazy it is at advancing the
simulation.

7 Investigating the language model’s
underlying computation

For our first investigation, we first explore the hy-
pothesis that the language model linearly encodes
the presence/absence of each case-marking as a
subspace in its hidden layers. To do this, we first
use a method known as iterative nullspace projec-
tion (INLP) to find three sets of orthonomal basis
vectors that identify a potential case subspace; two
for ergative, and one for accusative. We then re-
run the evaluation described in Section 5.2, but in-
tervening on the subject and object representations,
reflecting them onto the “opposite side” of the case
subspaces, effectively making the representation of
a case-marked argument not case-marked, and that
of a non-case-marked argument case-marked. We
check how effective the intervention is by measur-
ing how intervention affects the language model’s
performance. An effective intervention suggests
the subspace identified by INLP really is how the
language model encoding case.1

7.1 Method: intervention
Intervention is a process that takes three things as
input: a vector 𝑥 ∈ ℝ𝑑, which is a representation
produced by our language model, a set of orthonor-
mal basis vectors 𝔹 = 𝑏1, ⋯ , 𝑏𝑘 ∈ ℝ𝑑, which iden-
tifies a subspace that encodes case, and an intensity
parameter 𝛼 ≥ 1. First, for each 𝑗 = 1, ⋯ , 𝑘, cal-
culate 𝜆𝑗, the scalar projection of 𝑥 onto 𝑏𝑗 with
𝜆𝑗 = 𝑥⊤𝑏𝑗. Then, return the intervened vector
𝑥′ ∈ ℝ𝑑, calculated as 𝑥′ = 𝑥−𝛼 ∑𝑘

𝑗=1 𝜆𝑗𝑏𝑗. The
interpretation of 𝑥′ depends on 𝛼. When 𝛼 = 1,
𝑥′ is the projection of 𝑥 onto the nullspace of the
case subspace; 𝑥′ then represents 𝑥 but with all
case information removed. When 𝛼 = 2, 𝑥′ is the
reflection of 𝑥 onto the opposite side of the case
subspace; 𝑥′ then inverts the case information of
𝑥. For example, if 𝔹 represents the ergative sub-
space, and 𝑥 represents an ergative-marked argu-
ment, then 𝑥′ represents the same argument as 𝑥 ex-
cept it’s non-ergative-marked. Any 𝛼 > 2 pushes
𝑥′ further in the opposite case direction, intensify-
ing the effect of the intervention.

1Our description of intervention and INLP largely follows
Hao and Linzen’s (2023) presentation.
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7.2 Method: iterative nullspace projection
To perform intervention with respect to a case sub-
space, we first need a set of orthonormal basis
for that subspace. Iterative nullspace projection
(INLP) (Dufter and Schütze, 2019; Ravfogel et al.,
2020) is a supervised method to help us find the
bases for a subspace of interest. We describe INLP
for identifying the ergative subspace; the same pro-
cess works for the accusative subspace. First, we
designate a training split of the evaluation dataset,
and run the language model on each sentence pre-
fix 𝑠(𝑖) of the training split to obtain a hidden layer
vector ℎ(𝑖) at some position of interest. Each ℎ(𝑖)

is paired with a binary label 𝑐(𝑖) representing the
presence/absence of ergative case in that sentence
prefix. Then, we train a linear classifier to predict
𝑐(𝑖) from ℎ(𝑖). The normalized weights of the clas-
sifier, a vector in ℝ𝑑, is taken to be the first basis 𝑏1.
For each additional 𝑗th basis we’d like to find, we
train another linear classifier the same way, except
we preprocess the input ℎ(𝑖) by intervening it with
the first 𝑗 − 1 bases and intensity 𝛼 = 1, removing
the ergative case information captured by the first
𝑗 −1 bases. We train each classifier using gradient
descent, which guarantees that the new classifier
weight 𝑏𝑗 is a weighted sum of the preprocessed
inputs ℎ(𝑖). Since the preprocessing projects each
ℎ(𝑖) onto the nullspaces of the first 𝑗 − 1 bases, 𝑏𝑗
is guaranteed to be orthogonal to all of 𝑏1, ⋯ 𝑏𝑗−1.

7.3 Evaluation with causal intervention: is
case encoded linearly?

We perform a 50-fold cross validation on the eval-
uation dataset, with a training split of 6.4K data
points in each fold. For the ergative subspace, we
run INLP on hidden layer vectors obtained from
two positions: one set after processing the subject,
and another after processing the object. For the ac-
cusative subspace, we run INLP on hidden layer
vectors obtained after processing the object. This
gives us three sets of bases: one for the post-subject
ergative subspace, one for the post-object ergative
subspace, and one for the post-object accusative
subspace.

The remaining 313.6K data points in each fold
is used for evaluation. We re-run the evaluation de-
scribed in Section 5.2, while performing causal in-
tervention with respect to each one of the three case
subspaces at the appropriate location. For example,
for the post-object ergative subspace, we feed each
sentence prefix into our language model, and pause

once the model processes the object. We intervene
the hidden layer vectors with respect to the post-
object ergative subspace using some intensity 𝛼,
and resume model inference using the intervened
hidden layer vectors, effectively flipping the pres-
ence/absence of ergative marking. We compare the
agreement performance of the language model be-
fore and after the intervention to see how success-
ful the intervention was. We use sensitivity index
(𝑑′) to quantify model performance. The results
are shown in Figure 2 for ergative intervention and
Figure 3 for accusative intervention. We present
the results for 𝛼 = 5 just as Hao and Linzen (2023)
did, noting that lower values for 𝛼 doesn’t change
our results qualitatively.

Let’s first consider ergative intervention. We be-
lieve ergative case information should be the most
recoverable at the post-subject position; hence in
this section, we only look at the results of the post-
subject ergative intervention. In the [-ERG,-ACC]
condition, agreement should target the subject. A
successful ergative intervention should assimilate
this to the [+ERG,-ACC] condition, where agreement
should target the object. Indeed, we see that the
agreement performance flips to the opposite pre-
diction, as 𝑑′ drops below zero. In the [-ERG,+ACC]
condition, agreement should target the subject. A
successful ergative intervention assimilates this to
the [+ERG,+ACC] condition, which requires default
agreement. This should be reflected as chance per-
formance, which is exactly what we see in our re-
sults. Finally, in the [+ERG,-ACC] condition, agree-
ment should target the object. A successful inter-
vention assimilates this to the [-ERG,+ACC] condi-
tion, where agreement should target the subject.
However, our ergative intervention only drives the
agreement performance to near-chance level, not
exactly reversing the agreement predictions.

Let’s turn to accusative intervention. In the two
[-ERG] conditions, a successful accusative interven-
tion shouldn’t affect agreement computations, be-
cause agreement should always target the subject if
it isn’t ergative-marked. Indeed, our intervention
doesn’t change the agreement predictions qualita-
tively, as it remains above chance in both condi-
tions. In the [+ERG,-ACC] condition, agreement tar-
gets the object. A successful accusative interven-
tion should cause agreement to fall back to default
masculine. However, our intervention keeps the
agreement above chance, which means agreement
is still targetting the object.

Thus, we have found positive evidence that our
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Figure 2: Ergative intervention results. The two inter-
vention locations are post-Subject and post-Object. The
light dashed line is drawn at 𝑑′ = 0, indicating chance
performance. The dark solid line indicates the original
performance of the language model before intervention.
Error bars indicate one standard error average across
cross validation.

language model uses a linear encoding of ergative
and accusative case marking, and uses this encod-
ing to calculate agreement.

7.4 Is agreement computation eager or lazy?
For our second investigation, we check whether our
language model aligns more with an eager or a lazy
characterization of agreement computation. We
suggest that looking at the effectiveness of the post-
object ergative intervention may give us a clue,
because it should only be effective in a lazy, but
not an eager, computation. An eager computation
would use the ergative case information to advance
the simulation as soon as it processes the subject,
discarding that information, while a lazy computa-
tion would store the ergative case information until
it sees the verb. Looking at Figure 2 again, we ob-
serve that post-object ergative intervention is still
effective, although the magnitude of the interven-
tion effect is smaller than post-subject intervention.
This suggests our language model isn’t computing
agreement in a purely eager way.

Although this by itself is a very weak conclu-
sion, we think that the general method of causal
interventions with respect to linear encodings we
pursue here can be extended in interesting ways to
help us better understand the underlying computa-

Figure 3: Accusative intervention results. The interven-
tion location is post-Object.

tion of language models. For example, we plan to
perform the same analysis we describe in this pa-
per to Transformers. We think the autoregressive
and recurrent nature of the LSTM architecture cre-
ate an incremental processing pressure that encour-
ages performing computations on the fly, while
Transformers aren’t subject to this pressure. Thus,
we expect Transformers to show signs of a lazier
computation than our LSTM language model.

8 Conclusion

In this paper, we train a LSTM language model
on Hindi data and show that it has learned case-
agreement interactions in Hindi-Urdu, predicting
correct gender agreement 81.17% of the time. We
further show that our language model has learned
to encode case information in a low-dimensional
subspace of its hidden layer vectors, where case-
marked arguments are linearly separable from non-
case-marked arguments. In addition, our model
uses case information encoded this way as part of
its agreement computation. Preliminary evidence
also suggests that our language model doesn’t cal-
culate agreement extremely eagerly, as our causal
intervention methods reveal that case information
seems to be persistent over time as the language
model processes a sentence. The general method
described in this paper can be adopted to study in-
teresting phenomena concerning case and agree-
ment in other languages.
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Limitations
We see two limitations in our work, which both
concern interpreting our causal intervention results.
The first limitation is that we don’t know how much
of the effectiveness of our case interventions is
meaningful. For example, Figure 2 shows that post-
subject ergative intervention in the [−ERG,−ACC]
condition decreases general 𝑑′ by about 2.5. Can
all of this 2.5 point decrease be attributed to suc-
cessful ergative intervention? For example, if we
had performed multiple post-subject interventions,
each time with respect to a set of randomly gen-
erated orthonormal basis vectors, and observed a
𝑑′ decrease in the range 1.5 to 3, then our ergative
intervention result wouldn’t be meaningful, since
just any intervention would affect 𝑑′ in a similar
way. We plan to add a comparison between our
current results and intervention with respect to ran-
dom bases in a future version of this paper.

The second limitation is that we presently offer
no way of quantifying how lazy or eager our lan-
guage model’s underlying computation is. This
would be possible if we know how effective we
would expect post-object ergative intervention to
be under a fully lazy and a fully eager computation.
While a fully lazy computation should result in
equal effectiveness between post-object and post-
subject ergative intervention, we don’t know how
effective a fully eager computation should be. In
the future, we hope to consider alternative ways of
quantifying the eagerness/laziness of our language
model’s underlying computation.
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Abstract 

Negation is an important aspect of human language and 
reasoning. Prior work has proposed that positive- and 
negative-polarity sentences exhibit a number of 
asymmetries. This paper focuses on two of them: (i) 
Regarding cost, marked forms like negation are known 
to elicit more production cost than the unmarked 
positive polarity, and (ii) regarding pragmatic inference, 
the negative polarity is said to presuppose the 
prominence of its positive-polarity counterpart, but not 
the other way around. We present novel empirical 
evidence regarding these two asymmetries and offer one 
of the first formalizations of these asymmetries within 
the Rational Speech Act (RSA) framework. We show 
that existing extensions of the standard RSA model, e.g., 
soft semantics and common ground update, while not 
originally proposed to address sentence polarity 
asymmetries, can nonetheless be applicable to these 
phenomena. 

1 Introduction 

As one of the most influential cognitive models of 
pragmatics, the Rational Speech Act model (RSA; 
Frank and Goodman, 2012) formalizes the 
recursive reasoning involved in language use and 
communication. See formulas (1) - (4) for a formal 
definition of the standard RSA model:  
 !Lo(#|%)∝			⟦%⟧(#) ⋅ !(#)  (1) 

 ⟦%⟧(#) ∈	{0	,	1}  (2) 

 !S1(%|#)∝		exp(1	(23 !Lo(#|%) − 56#7(%)) (3) 

 !L1(#|%)∝			!S1(%|#) 	 ⋅ !(#) (4) 

This model centers on a pragmatic listener, 
PL1(s|u), who infers the intended state s from an 
utterance u by reasoning about a pragmatic speaker, 
PS1(u|s), who selects utterances based on their 
utility U. This speaker derives informativeness 
(how much an utterance reduces uncertainty about 
the intended meaning or referent) from a literal 
listener, PL0(s|u), who interprets u deterministically 
as true or false (⟦"⟧(%) ∈	{0	,	1} ) and factors in the 

cost of u, ./%0("). The speaker is modeled as a 
SoftMax-optimal agent choosing utterances to best 
convey s. Both listeners apply Bayesian inference 
to update beliefs over states from the prior, P(s), 
which serves as the shared common ground 
(Stalnaker, 1978, 2002). 

The RSA model and its close extensions 
successfully cover a wide range of pragmatic 
phenomena (see Degen, 2023; Scontras et al., 2021 
for a review), including those involving negation, 
such as indirect politeness and negative 
strengthening (e.g., not bad vs. not amazing in 
Yoon et al., 2020), projective content that survives 
negation (Qing et al., 2016), and presupposition 
triggering (Warstadt, 2022). However, the use of 
RSA to specifically address the pragmatic 
consequences of sentence polarity asymmetries has 
received less attention. Theoretical work on 
negation (e.g., Jakobson, 1963; Givón, 1978; Horn, 
1989) suggests that positive and negative polarities 
show (at least) two asymmetries, which we refer to 
as Asymmetry Hypotheses 1 and 2:  

 
• Asymmetry Hypothesis 1:  Marked forms 

like negation are typically realized using 
more complex structures and longer 
linguistic forms, which are known to elicit 
higher production cost than their unmarked 
counterparts; and  

• Asymmetry Hypothesis 2: Negation 
presupposes that its positive-polarity 
counterpart is relevant or prominent in the 
common ground, not the other way around.  

 
In this paper, we aim to (i) empirically test the 

pragmatic consequences of the two asymmetry 
hypotheses and to (ii) characterize the empirical 
patterns associated with two types of asymmetry 
within the RSA framework.  

The first asymmetry is closely linked to the 
trade-off between informativeness and cost that the 
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pragmatic speaker in RSA must consider. Given 
that a pragmatic speaker aims to maximize 
informativeness and minimize cost, the standard 
RSA model predicts that a negative utterance is less 
likely to be produced than a similarly informative 
positive-polarity utterance, i.e., when the states 
they refer to have similar prior probabilities. 
Consider part-whole relations as a concrete 
example. Assuming that situations like The house 
doesn’t have a bathroom and The house has a 
ballroom have similar prior probabilities (see 
below for details on a norming study of state 
priors), utterances describing these situations 
should be similarly informative. However, when 
the standard RSA model (in particular, the 
pragmatic speaker) penalizes higher-cost 
utterances, the negative utterance yields a lower 
utility and is therefore less likely to be produced. 

The second asymmetry regarding 
presupposition accommodation is closely related to 
common ground update. Assuming that negation 
presupposes the probability of its positive-polarity 
counterpart, a negative utterance requires that this 
positive counterpart be either part of the common 
ground or can be accommodated. If it is not already 
common ground knowledge, listeners must 
accommodate the presupposition before the 
negative utterance can successfully update the 
common ground with the negated information. 
Thus, if a speaker says The house doesn’t have a 
ballroom, then in principle the negative utterance 
presupposes the possibility of The house has a 
ballroom. However, since ballroom is not a typical 
part of house, the listener must accommodate this 
atypical part-whole relation before the negative 
utterance can be deemed pragmatically motivated 
and smoothly integrated into common ground. 

Utterance choices can be easily probed by 
asking naïve participants how likely they are to 
mention certain things. In contrast,  directly asking 
whether a negative utterance presupposes the 
possibility of its positive-polarity counterpart is 
less likely to yield interpretable results. To probe 
this second asymmetry, we instead asked 
participants to rate the typicality of the whole entity 
under discussion (e.g., house, see more details in 
Experiment 2 in Section 3.2).  

As we show in Section 3, (i) the empirical data 
patterns are more complex than those predicted by 
either hypothesis, (ii) while the standard RSA 
model aligns with the predictions of Hypothesis 1, 
it fails to account for our findings, and (iii) the 

standard RSA model lacks a mechanism for 
common ground updating such that it can’t capture 
Hypothesis 2, let alone explain the observed data. 
In light of this, we extend the standard model to 
better capture our empirical findings. 

2 Related Work 

The standard RSA model (formalized in (1)-(4)) 
tends to idealize the key components–such as 
common ground and the literal listener–that are, in 
practice, subject to uncertainty in real-world 
communication. Before delving into the empirical 
findings and our extended RSA models, we review 
relevant work on common ground update and soft 
semantics (as opposed to deterministic semantics).  

2.1 Common ground update in RSA 
Degen et al. (2015) observed that the single prior 

mechanism in the standard RSA model predicts no 
scalar implicature in a some-utterance that 
introduces a high-prior event, e.g., Some marbles 
sank into water, while both theoretical 
observations (Geurts, 2010) and empirical data 
(Degen et al., 2015) suggest that the scalar 
implicature is, in fact, strong. To solve this issue, 
Degen et al. proposed a complex prior, P(s|w) in 
(5), which determines the world (wonky vs. 
normal) based on the variable wonkiness, w.  In 
their wRSA model (see (5) – (8)), the pragmatic 
listener, PL1 (s, w|u), jointly infers the actual state 
and the world wonkiness.  

 !(#|8) 	∝ : 1									;<	863=>	86?2@!(#)				;<	36?AB2	86?2@  (5) 

 !Lo(#|%, 8)∝			⟦%⟧(#) ⋅ !(#|8)		  (6) 

!S1(%|#, 8)∝		exp(1	(23 !Lo(#|%, 8) − 56#7(%))	  (7) 

!L1(#, 8|%)∝			!S1(%|#, 8) 	 ⋅ !(#|8) ⋅ !(8)		  (8) 

This model predicts that, when observing a some-
utterance that introduces a high-prior event, the 
pragmatic listener backs off to the wonky world 
where the event has a lower prior probability. This 
adjustment makes the some-utterance a more 
reasonable utterance choice for the speaker. Degen 
et al.’s study shows that this extended model fits the 
empirical data much better than the basic model, in 
terms of updating both state and world priors. 

Kravtchenko and Demberg (2022b), using the 
core ideas from the wRSA model to predict 
atypicality inferences in redundant descriptions of 
habitual events, found that low-utility utterances 
led listeners to infer that the habituality of an 
agent’s actions was lower than typically expected.  
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However, as Cremers et al. (2023) point out, 
Degen et al. (2015)’s implementation of the wRSA 
model deviates from strict Bayesian reasoning. 
Instead of directly using the empirically obtained 
prior distribution over world states in the pragmatic 
listener’s belief of common ground, the model 
assigns a weighted combination of two worlds: one 
uniform (‘wonky world’) and one empirical 
(representing ‘normal world’), which contaminates 
the so-called ‘observation’. Therefore, Cremers et 
al. (2023) replaced P(s|w) with P(s|normal world) 
for the literal listener. See (9) for the modification 
that we adapted from Cremers et al. (2023): 
!L1(#, 8|%)∝			!S1(%|#, 8) 	 ⋅ !(#|36?AB2) ⋅ !(8)		  (9) 

Degen et al.’s proposal of a complex prior 
inspired more work on the joint inference of 
common ground and state (Qing et al., 2016; 
Warstadt, 2022) that involve another approach, 
namely, Question under Discussion (QUD; 
Roberts, 1996/2012). By inferring a pragmatic 
speaker’s question under discussion, the pragmatic 
listener finds a way to rationalize utterances.  

For the present study, we want to start with the 
approach of complex prior, for which our empirical 
data provide a meaningful test ground.  However, 
this does not exclude QUD as a future direction.  

2.2 Soft semantics in RSA 
The literal listener’s model in the vanilla RSA 
model and most of its variants interprets an 
utterance with a deterministic Boolean semantics. 
Using the examples from Degen et al. (2020), the 
utterance “small” assigns a probability of 0 to the 
referent ‘big red ball’ (false) and the referent ‘big 
blue ball’ (false) and assigns a probability of 1 to 
the referent ‘small blue ball’ (true), in a finite set 
consisting only of these three objects.  

“Small ball” is the optimal utterance for a 
listener to most efficiently identify the ‘small blue 
ball’, but in natural production, speakers are often 
redundant, producing “small blue ball” instead. To 
address this and other empirical-modeling 
discrepancies with referential expressions, Degen 
et al. (2020) introduced soft semantics—a 
continuous semantics—into the RSA model.  

Continuing with the examples from Degen et al. 
(2020), the soft semantics of the utterance “small” 
can assign a probability of .48 to the ‘small blue 
ball’ and a probability of .26 to both the ‘big blue 
ball’ and the ‘big red ball’, reflecting flexibility in 
literal meaning. Such fuzzy (i.e., vague in the sense 

of fuzzy logic, Zadeh, 1978) interpretations can be 
simply represented as follows:  

 ⟦%⟧(#) ∈ [0	, 1] ⊂ 	ℝ	  (10) 

The literal interpretation is no longer restricted to a 
binary ‘true’ vs. ‘false’ but instead ranges from 0 to 
1 in a continuous manner. Regarding the 
implementation of this continuous semantics, 
probabilities of literal meanings are decided during 
model fitting, e.g., using optimization techniques 
such as Maximum Likelihood Estimation (Degen 
et al., 2020), or by plugging in pre-normed data 
when applicable (Yoon et al., 2020). In addition to 
Degen et al. (2020), the model of the literal listener 
can also be modified by introducing lexical 
uncertainty to the lexicon (Bergen et al., 2012).  

Degen et al. (2020)’s approach can be 
interpreted as introducing noise to literal meaning. 
Relatedly, Bergen and Goodman (2015)’s noisy-
channel RSA introduces noise to the transmission 
of utterance itself that affects literal meaning as 
well: The received utterance may differ from the 
intended utterance at the string level. Kravtchenko 
and Demberg (2022b) adapted the noisy-channel 
RSA to model the effects of framing on atypicality 
inferences, showing that emphasis (e.g., via 
exclamation punctuation) strengthens these 
inferences. They argue that with emphasis 
redundant utterances are less prone to 
misremembering or being ignored, and thus more 
likely to trigger pragmatic inferences. 

In the case of negation, soft semantics might be 
able to capture both types of noises, namely fuzzy 
interpretations of negative utterances and their 
potentially noisy transmission. This is suggested by 
various prior observations regarding negation: (i) 
Theoretically, negation is said to presuppose the 
existence of the negated (Horn, 1989), (ii) 
empirically, negative sentences trigger the 
activation of both the negated representation (e.g., 
door-not open) and the negative representation 
(e.g., door-open) (Kaup et al., 2006), and (iii) 
negation impacts memory in that negative 
situations can be misremembered as their positive 
counterparts (Maciuszek & Polczyk, 2017; Cornish 
& Wason, 1970). 

3 Sentence Polarity Asymmetries 

We collected utterance choice preferences in 
Experiment 1 to test Hypothesis 1 and the standard 
RSA model. We collected typicality ratings in 
Experiment 2 to test Hypothesis 2. As previewed 
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earlier, the results of the experiments reveal more 
nuanced sentence polarity asymmetries than can be 
fully captured by either of the two asymmetry 
hypotheses or the standard RSA model.  

3.1 Norming of the state prior 
In both experiments, our stimuli were sentences 
describing real-world part-whole relations such as 
house-garage and their negative forms house-no 
garage. To test how prior probabilities of these 
part-whole relations influence utterance likelihood 
and sentence interpretation in the standard RSA 
model and human data, we first conducted a 
norming study. This norming study (n=57) 
measured prior probabilities of 81 part-whole pairs. 

The pairs consisted of 27 whole entities and 
three part entities for each whole entity. On each 
trial, participants saw two words: the whole entity 
in capitals (e.g., CLASSROOM) and the part entity 
in lower case (e.g., stove). Participants gave their 
ratings on a slider scale (0-100%) to answer 
questions about state prior probability, e.g., how 
likely they think a stove is part of or seen in a 
classroom. The percentage rating distributions for 
each pair were smoothed using a nonparametric 
density estimation method suited for ordinal 
categorical variables with the np package in R 
(Hayfield & Racine, 2008), following Degen et al. 
(2015). This non-parametric smoothing method is 
used in all experiments reported here to handle 
outliers in our relatively small samples, while 
preserving the ordinal nature of the rating data.  

As Figure 1 shows, the data have a wide range 
of coverage while somewhat oversampling the 
high and low ends of probability. This is ideal for 
generalizing findings across levels of state priors. 

3.2 Informativeness-cost trade-off 
Experiment 1 (n=52) measured utterance 
likelihoods of individual part-whole relations being 

explicitly mentioned. On each trial, participants 
read a two-sentence sequence followed by a 
question. The first sentence is a lead-in that 
introduces the ‘whole’ entity, e.g., Emma visited a 
friend’s house yesterday. The second sentence 
states a fact about what the place has (i.e., the ‘part’ 
entity), in either positive or negative polarity (The 
house has a bathroom or The house doesn’t have a 
bathroom). Each participant saw an equal amount 
of positive and negative-polarity items. For each 
item, participants rated utterance likelihood, e.g. 

How likely do you think it is that Emma would 
mention that? Participants gave their ratings on a 
slider scale (0- 100%).  

Figure 2a shows the utterance likelihoods from 
the human participants for both positive-polarity 
and negative statements. Visual inspection indicate 
that (i) for both sentence polarities, utterance 
likelihoods decrease as the state priors increase, (ii) 
for negative polarity, the decrease of utterance 
likelihoods as state priors increase is steeper than 
positive polarity. These patterns suggest a main 
effect of state prior and an interaction between state 
prior and sentence polarity. 

Beta regression analysis confirms that there is a 
main effect of state prior (β = -4.36, SE = 0.28, z = 
-15.74, p < .001), and an interaction effect between 
state prior and sentence polarity (β = 2.43, SE = 

 

Figure 1: Norming study. Histogram of expected 
values of each smoothed prior distribution  

 

 

Figure 2: a. Empirically collected utterance 
likelihood (top) b. Model (standard RSA) 
predictions of utterance likelihood (bottom) 

Expected prior probability

Empirical data (utterance likelihood)

em
pi

ric
al

_u
tt 

lik
el

ih
oo

d
State prior

positive
negative

Standard RSA (utterance likelihood)
pr

ed
ic

te
d_

ut
t l

ik
el

ih
oo

d

State prior

positive
negative

77



 

 
 
 

0.35, z = 6.96, p < .001). From the positive sign of 
the interaction effect, we can confirm that the 
negative polarity yields a steeper decrease in 
utterance likelihood as the state prior increases. In 
addition, we found no main effect of sentence 
polarity (β = -0.20, SE = 0.20, z = -1.05, p = .296).  

These results reveal patterns that Asymmetry 
Hypothesis 1 does not predict. On one hand, 
overall, positive utterances are not always 
perceived as having higher utterance likelihood. 
On the other hand, speakers are more likely to 
communicate low-informativeness information 
using positive polarity and more likely to 
communicate high-informativeness information 
using negative polarity.   

Model predictions (standard RSA): Now let 
us see whether the standard RSA model can capture 
these observations. The model (as in (1)-(4)) is run 
in R using the rwebppl package1.  

The model considers two states: Ustate = {spos, 
sneg} and three possible utterances: Uutterance = {upos, 
uneg, unull}. These utterances are mapped to truth 
values of different states. When the null utterance, 
unull  (say nothing), is made, people simply rely on 
their prior expectations (state prior) to interpret the 
situation. The positive utterance, upos “A has B”, 
maps to the truth of only the positive state, spos. The 
negative utterance, uneg “A doesn’t have B”, maps 
to the truth of only the negative state, sneg. 

The utterance utility term consists of an 
informativeness component, a cost component, and 
a speaker rationality parameter. 1 is set to 1 and 
utterance cost is specific to each of the three 
utterances (Cost(unull)=0; Cost(upos)=1;  Cost(uneg)= 
2). P(s) is the normed state priors data that we 
plugged in the model as input.  

Figure 2b shows the model-predicted utterance 
likelihoods for both sentence polarities. Visual 
inspection indicates that (i) similar to the empirical 
data, for both sentence polarities, utterance 
likelihoods decreased as the state priors increase, 
and (ii) for positive polarity, the predicted utterance 
likelihood is always higher than the negative. 
These patterns suggest a main effect of sentence 
polarity and a main effect of state prior. 

Beta regression analysis reveals a main effect of 
state prior (β = -4.43, SE = 0.36, z = -12.47, p < 
.001). However, unlike human data, we found in 
the model predictions a main effect of sentence 
polarity (β = 0.78, SE = 0.28, z = 2.83, p < .01), 

 
1 https://github.com/mhtess/rwebppl   

indicating that the positive polarity always yields 
higher utterance likelihood than the negative 
polarity. Moreover, we did not find a significant 
interaction between state prior and sentence 
polarity (β = 0.13, SE = 0.44, z = 0.28, p = .78).  

The results suggest that the standard RSA model 
follows predictions of the Hypothesis 1 and fails to 
fully capture the empirically observed patterns. 

Comparing empirical data and model 
predictions: The discrepancy centers on the lower 
bound of the state prior that approaches a 
probability of 0: Based on human data, negative-
polarity situations that have low priors (e.g., The 
classroom doesn’t have a board.) are more likely to 
be communicated than positive-polarity situations 
that have similarly low priors (e.g., The classroom 
has a stove.). However, given that our human data 
were not collected in a spontaneous production 
study, it is possible that the Experiment 1 
participants did not consider the role of utterance 
cost. We want to be cautious about committing to 
this pattern of sentence polarity asymmetry, so we 
ran another model simulation with the utterance 
cost constant as 1 for both sentence polarities.  

Beta regression analysis now shows a main 
effect of state prior (β = -4.45, SE = 0.32, z = -
13.75, p < .001), no effect of  sentence polarity (β 
= 0.14, SE = 0.27, z = 0.53, p = .59), and no 
interaction between state prior and sentence 
polarity (β = 0.01, SE = 0.41, z = 0.02, p = .98). 
This shows that the model-predicted utterance 
likelihood of negative and positive sentences 
patterns alike, which is not surprising given how 
the model parameters do not differentiate them.  

The results above suggest that even when cost is 
controlled, the standard RSA model fails to capture 
the sentence-polarity asymmetry observed in our 
empirical utterance likelihood data. 

In the other model implementations in this 
paper, we thus assume higher cost for negative 
utterances than positive ones (also in line with 
cognitive psychology and linguistics research).  

3.3 Common ground update 
Experiment 2 (n=52) collected typicality ratings 
of the whole entity (e.g., house) using the same 
stimuli as in Experiment 1, except that the fact 
statement of a positive/negative part-whole relation 
was embedded in direct speech in Experiment 2, 
e.g., “The house has a bathroom,” Emma told her 
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partner. Participants were instructed to rate the 
typicality of house based on what the protagonist 
said about it (e.g., How likely do you think it is that 
the house is a typical house?).  

Following standard RSA practice (Frank and 
Goodman, 2012; Degen et al., 2015),  we compare 
ratings before and after utterances are presented to 
participants. Pre-utterance ratings (the norming 
data in Section 3.1) reflect (the listener’s belief of) 
common ground prior to communication, while 
post-utterance typicality ratings (this section, 
Experiment 2) reflect updated common ground 
triggered by the utterance, in line with the 
discussions about Asymmetry Hypothesis 2.   

Figure 3a shows these two types of ratings for 
positive polarity (solid line: state prior; dashed line: 
updated common ground). Figure 3b shows the 
same results for negative polarity. 

The ratings were analyzed with Pearson 
correlation and beta regression. First, we assessed 
the correlation between state prior (norming) and 
typicality ratings (Experiment 2). To test this, we 
conducted a Pearson correlation: the typicality 
ratings are more strongly correlated with the state 
prior in positive polarity (rutt(76)= 0.84, p<0.01) 
than in negative polarity (rutt(76)= 0.75, p<0.01).  

Second, to compare sentence polarities directly, 
we analyzed the interaction between polarity and 

state prior on typicality ratings using beta 
regression. We found a main effect of polarity (β= 
-0.41, SE = 0.08, z = -5.16, p<0.01) where the 
negative polarity yielded lower typicality ratings 
than the positive polarity, a main effect of state 
prior (β= 1.66, SE = 0.11, z = 15.01, p<0.01) where 
typicality ratings increased with state priors, but no 
interaction (β= 0.05, SE=0.22, z=0.21, p=0.83). 

These results suggest that negation triggers 
stronger common ground update/inferences. 
However, importantly, our results suggest that (i) 
the positive-polarity is not free of inferences, and 
(ii) both sentence polarities can trigger atypicality 
inferences (Kravtchenko and Demberg, 2022ab) 
and what we call typicality inferences (i.e., low 
prior states are inferred to be more typical post- vs. 
pre-utterances).  

Model predictions (standard RSA): The 
standard RSA model uses Boolean semantics, so 
the model updates the state posterior to 1 based on 
the only state that a non-null utterance makes true, 
but makes no inferences about common ground.  

Comparing empirical data and model 
predictions: The comparison is fairly 
straightforward: The standard RSA model cannot 
handle common ground update.  

Motivated by the discrepancies between 
empirical observations and model predictions (of 
the standard RSA), in the following Sections 4 to 
6, we extend the standard model to better capture 
our empirical findings.  

4  fuzzyRSA 

The goal of Section 4 is to pinpoint the sentence 
polarity asymmetry related to the informativeness-
cost tradeoff (i.e., a pragmatic speaker aims to 
maximize informativeness and minimize cost). 
Building on prior work, we introduce soft 
semantics into the standard RSA model to capture 
the asymmetry observed in utterance likelihood. 
We call this extended model the fuzzyRSA model.  

4.1 Model 
The fuzzyRSA model is extended from the 
standard RSA model by configuring different 
interpretation functions across sentence polarities. 
For a negative utterance, the fuzzy interpretation 
is defined as a constant probability distribution of 
a negative state and a positive one (see (11), where 
2 ∈ [0,1] ), with its optimal value determined 
during model fitting. For instance, when n is 

 

 

Figure 3: a. Ratings pre- vs. post- positive polarity 
utterances (top)  b. Ratings pre- vs. post- negative 
polarity utterances (bottom) 
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assigned a value of .7, “A doesn’t have B” assigns 
a probability of .7 to “A-no B” and .3 to “A-B”.  

G%!"#HI#!"#J = 3, G%!"#HI#$%&J = 1 − 3		  (11) 

This constant formulation reflects the ‘inherent’ 
pragmatic feature of negation as a presupposition 
trigger, which applies to all negative utterances. 

For a positive utterance, the fuzzy 
interpretation is defined as a parametrized 
sigmoid function of the priors of positive states 
(see (12-13)), also fit during model optimization. 

LG%$%&HI#$%&J = M;NA6;@(!I#$%&J; 	P)
G%$%&HI#!"#J = 1 − G%$%&HI#$%&J

		  (12) 

M'({*,,,-!,.} Q!I#$%&JR =
*

01""#$%$&'(&)"*!)
+ T		  (13) 

The sigmoid function in (13) increases rapidly for 
state priors that are relatively low and gradually 
approaches the maximum value (i.e., approaching 
1) towards relatively high state priors. The sigmoid 
function captures a systematic relationship 
between the state prior and the probability of 
interpreting a positive utterance as intended. 
Compared to the negative polarity, the 
interpretation function associated with positive 
polarity disincentivizes the communication of low-
prior positive states. 

4.2 Model fitting 
We optimized model parameters by minimizing 

the joint loss across negative and positive 
polarities. This joint loss was computed as the sum 
of squared differences between model predictions 
and empirical data. A grid search over pre-specified 
parameter ranges—informed by exploratory model 
simulations—was used to identify the best fitting-
values: n=.8, 1=1, 5={L=0.7, k=6, x0=.35, c=0.3}. 
The best-fit model has a mean square error (MSE) 
of 0.04 (compared to a MSE of 0.06 for standard 
RSA model).   

4.3 Model predictions 
Figure 4 shows that the fuzzyRSA model predicts 
patterns that resemble the empirical data. The 
results suggest that the fuzzyRSA model provides a 
better approximation of the empirical data and 
potentially of the cognitive processes involved in 
inferring utterance likelihood. 

5 wonkyRSA 

In another extended model, we introduce a 
complex prior to capture the asymmetry in 
typicality ratings and provide a mechanism for 
common ground update. We call it the wonkyRSA 
model.  

5.1 Model 
As discussed earlier, we integrate Cremers et al. 
(2023)’s modification into Degen et al’s (2015) 
‘wonky world’ model, resulting in the following:  

 !Lo(#|%, 8)∝			⟦%⟧(#) ⋅ !(#|8)		  (14) 

!S1(%|#, 8)∝		exp(1	(23 !Lo(#|%, 8) − 56#7(%))	  (15) 

!L1(#, 8|%)∝			!S1(%|#, 8) 	 ⋅ !(#|36?AB2) ⋅ !(8)		 
 (16) 

In the wonkyRSA model, presupposition 
accommodation is reflected in an updated 
wonkiness, i.e., the wonky world has a higher or 
lower probability based on how much 
accommodation is needed.  

Before the accommodation, the common ground 
is P(s|w = normal). After the accommodation, the 
common ground is a complex probability 
distribution: P(s|w = normal) with a probability of 
(1-P(w)) and P(s|w= wonky) with a probability of 
P(w). In other words, the updated common ground 
can be represented by the marginalized probability 
of a state across both worlds. We assume that the 
post-utterance ratings collected (typicality ratings; 
Experiment 2) reflect this updated common 
ground, which we refer to as expected typicality, 
formalized as following:  

 !(#$%&'()&#$) = ∑ -(./0)1) ∗ -(3|./0)1)*+,-. 		  (17) 

5.2 Model fitting 
We optimized model parameters by minimizing the 
joint loss across negative and positive polarities. 
This joint loss was computed as the sum of squared 
differences between expected typicality and 
typicality ratings. A grid search over pre-specified 
parameter ranges—informed by exploratory model 

 

Figure 4: fuzzyRSA. Utterance likelihood values 
generated from the best-fit model.  
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simulations—was used to identify the best fitting-
values: w=.5, 1=2. The best-fit model has a MSE 
of 0.02 (while the standard RSA model is unable to 
make predictions regarding presupposition 
accommodation). 

5.3 Model predictions 
The best-fit model is able to capture two aspects of 
our empirical patterns. (i) Figure 5a shows that the 
wonkyRSA model predicts both typicality and 
atypicality inferences in both sentence polarities. 
(ii) Figure 6 shows that the model-predicted 
wonkiness values more or less align with the 
inference patterns: lower-than-prior wonkiness is 
predicted where typicality inferences are observed, 

and higher-than-prior wonkiness is predicted 
where atypicality inferences are observed.  

However, the wonkyRSA model is not yet able 
to reflect the stronger inferences associated with 
the negative polarity: Instead of predicting lower 
typicality ratings for negative polarity (Figure 5b), 
the model predicts similar typicality values for both 
sentence polarities (Figure 5a).  

This is not surprising given that the wonkyRSA 
model does not differentiate two sentence 
polarities. Therefore, it is necessary to further 
extend the wonkyRSA model, which we will 
discuss in Section 6.  

6 funkyRSA 

In a third extended model, we bring together two 
approaches, soft semantics and the complex prior, 
from the preceding two models in Sections 4 and 5. 
This is an attempt to introduce polarity asymmetry 
into the wonkyRSA model. We call this 
combinatory model the funkyRSA model. 

6.1 Model 
The funkyRSA model integrates components from 
fuzzyRSA and wonkyRSA, formalized as shown: 
 !Lo(#|%, 8)∝			⟦%⟧(#) ⋅ !(#|8)		  (18) 

LG%$%&HI#$%&J = M;NA6;@(!I#$%&J; 	P)
G%$%&HI#!"#J = 1 − G%$%&HI#$%&J

		  (19) 

M'({*,,,-!,.} Q!I#$%&JR =
*

01""#$%$&'(&)"*!)
+ T		  (20) 

!S1(%|#, 8)∝		exp(1	(23 !Lo(#|%, 8) − 56#7(%))	  (21) 

!L1(#, 8|%)∝			!S1(%|#, 8) 	 ⋅ !(#|36?AB2) ⋅ !(8)		 
 (22) 

6.2 Model predictions 
Instead of fitting the model from scratch, we 
plugged in the values of parameters that 
contributed to the best-fit fuzzyRSA and 
wonkyRSA models. Note that these two models 
differ in their values of the speaker rationality 
parameter 1. We thus ran the funkyRSA model 
with both values which yielded similar results for 
typicality. Figure 7 shows the model predictions 
of typicality in both polarities. 

The model does predict a difference between 
sentence polarities; however, the predicted 
difference does not align well with the empirical 
findings: The negative polarity does not yield 
lower typicality values than the positive polarity. 

This suggests that while optimal parameter 
values from fuzzyRSA and wonkyRSA models 

 

 

Figure 5: a. Model predictions of post-utterance 
expected typicality in positive vs. negative 
polarities (top) b. Post-utterance typicality ratings 
in positive vs. negative polarities (bottom) 
 

 

Figure 6: wonkyRSA’s predictions of wonkiness 

positive
negative

Best-fit model predictions (wonkyRSA)

pr
ed

ic
te
d_

ty
pi
ca

lit
y

State prior

positive
negative

Empirical data (typicality)

em
pi
ric

al
_t
yp

ic
al
ity

_r
at
in
gs

State prior

positive
negative

Wonkiness (model predictions)

pr
ed

ic
te
d_

w
on

ki
ne

ss

State prior

81



 

 
 
 

provided a starting point, they do not yield 
satisfactory predictions when applied directly to 
the funkyRSA model. Due to the increased 
complexity and computational cost of jointly 
optimizing all parameters in the funkyRSA model, 
we leave full optimization for future work. 

For utterance likelihood, we assume that the 
empirical ratings reflected participants’ choices in 
a normal world. the funkyRSA model makes the 
same predictions as the fuzzyRSA model 
regarding utterance likelihood. 

7 Discussion 

In this paper, we (i) empirically tested two 
hypotheses about sentence polarity asymmetries  
and (ii) introduced three extended RSA models that 
demonstrated the potential to better capture our 
empirical data than the standard RSA model.  

The empirical data from Experiments 1 and 2 
reveal patterns that are not predicted by the 
standard RSA model. Results of utterance 
likelihood ratings (Experiment 1) show that, 
although negation is theoretically deemed as a less 
optimal utterance choice than the positive polarity 
regarding the informativeness-cost tradeoff, 
negative utterances are not always less likely than 
positive utterances. Results of typicality ratings 
(Experiment 2) show that both state priors and 
sentence polarity play a role in triggering pragmatic 
inferences. Although negative utterances were 
associated with stronger inferences, positive 
utterances also yielded pragmatic accommodation.   

To capture these novel empirical findings within 
the RSA framework, we targeted two components 
of an RSA model, namely the interpretation 
function that gives rise to literal meaning, and the 
configuration of common ground that allows 
presupposition accommodation. Inspired from 
prior work on soft semantics in RSA, our fuzzyRSA 
model uses different soft-semantics interpretation 

functions for different sentence polarities. Adapted 
from prior work on wonky world RSA models, our 
wonkyRSA model provides a complex prior for 
common ground update. Combining fuzzyRSA and 
wonkyRSA models, we then propose the funkyRSA 
model which aims to introduce interpretation-level 
sentence polarity asymmetry into the wonkyRSA 
model. The three extended RSA models yield 
somewhat better predictions than the standard RSA 
model and somewhat satisfying results that align 
better with the results of Experiments 1-2.  

However, some questions remain open. First, 
regarding the different configurations in how 
different sentence polarities are literally 
interpreted, we formalized a sentence polarity 
asymmetry at a semantic level (i.e., through fuzzy 
interpretations). This worked for the predictions of 
utterance likelihood (fuzzyRSA model) but not for 
the predictions of typicality (funkyRSA model), 
which might suggest that sentence polarity 
asymmetry is not limited to the difference in literal 
interpretations. Thus, future work should explore 
approaches to formalizing the sentence polarity 
asymmetry more closely related to common 
ground update. Second, regarding the complex 
prior used in the wonkyRSA model, we explored 
one version of the wonky world—a uniform prior. 
This, however, is a potential source of sentence 
polarity asymmetry. For example, the wonky world 
assumed for negative utterances may differ from 
that for positive ones We plan to explore other 
configurations of the wonky world in future work. 

8 Conclusion 

This paper presents novel empirical findings on 
sentence polarity asymmetries and offers one of 
the first formalizations of these asymmetries 
within the RSA framework. The contributions are 
two-fold. Theoretically, this study highlights the 
important role of prior knowledge in pragmatic 
reasoning and offers new insights into both 
production and comprehension of negation. 
Empirically, we show that existing extensions of 
the RSA model, e.g., soft semantics and common 
ground update, while not originally proposed to 
address sentence polarity asymmetries, can 
nonetheless be applicable to these phenomena. 
This supports the generalizability of these 
approaches, as well as strengthens the broader 
applicability of the RSA framework.  

 

Figure 7: funkyRSA model’s predictions of 
typicality(	1 = 1). 
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Abstract
Recent work (Ross et al., 2025, 2024) has ar-
gued that the ability of humans and LLMs re-
spectively to generalize to novel adjective-noun
combinations shows that they each have access
to a compositional mechanism to determine the
phrase’s meaning and derive inferences. We
study whether these inferences can instead be
derived by analogy to known inferences, with-
out need for composition. We investigate this
by (1) building a model of analogical reason-
ing using similarity over lexical items, and (2)
asking human participants to reason by anal-
ogy. While we find that this strategy works
well for a large proportion of the dataset of
Ross et al. (2025), there are novel combina-
tions for which both humans and LLMs derive
convergent inferences but which are not well
handled by analogy. We thus conclude that the
mechanism humans and LLMs use to general-
ize in these cases cannot be fully reduced to
analogy, and likely involves composition.

1 Introduction

How are humans able to generalize to complex
linguistic expressions they have not encountered
before? One view on how this can be achieved is
through a mechanism of composition, determining
the meaning of the phrase and any resulting infer-
ences from the meanings of its parts (Partee, 2009;
Szabó, 2012, i.a.). Others, however, believe that
composition is not required: mechanisms such as
analogy are sufficient to explain humans’ ability
to generalize to novel phrases (Bybee, 2010; Am-
bridge, 2020 i.a.). The same question arises when
we study LLMs’ ability to generalize. If they can
generalize to novel phrases, is this evidence that
they must be composing these phrases from their
subparts, or is there another way to achieve the
same results?

Ross et al. (2025) argue that humans must be
using composition, since they converge on the in-
ferences of at least some combinations that they

Figure 1: Possible analogical reasoning to infer that
counterfeit scarf is a scarf, since a counterfeit purse is
a purse and a fake (or counterfeit) watch is a watch.

are assumed never to have seen before (e.g., for
fake reef or counterfeit scarf, which never appear
in a large corpus). Ross et al. (2024) suggest a
similar conclusion for LLMs based on the same
dataset, since LLMs show reasonably human-like
behavior on at least some bigrams that are assumed
not to be in the LLMs’ training datasets. These
combinations are interesting because the member-
ship inferences targeted (e.g., “Is a counterfeit scarf
still a scarf?”) depend not just on the adjective but
also on the noun, involving significant detail about
how exactly the adjective affects the noun and what
properties are important for membership in that
noun category in typical situations.

This paper questions these conclusions, and in-
vestigates whether this task can in fact be solved
by analogical reasoning, without composition. For
example, for counterfeit scarf, one might reason (as
in Figure 1): “Is a counterfeit scarf still a scarf? A
scarf is an accessory like a watch or a purse, and a
counterfeit watch is still a watch, and a counterfeit
purse is still a purse, so a counterfeit scarf is most
likely still a scarf”. This skips the compositional
step of combining the meanings of the words to
derive the meaning of the bigram and further vi-
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olates the principle of compositionality as stated
by Szabó (2012) by referring to information be-
yond the meaning of the bigram’s parts, namely
the inferences associated with other adjective-noun
bigrams.

We investigate analogical reasoning through two
complementary approaches. First, we build a com-
putational model of analogical reasoning which
attempts to derive ratings for the low-frequency
and zero-frequency (assumed novel) bigrams in the
dataset of Ross et al. (2025), by analogy to the high-
frequency ones. A computational model allows us
to precisely define what we mean by analogy, and
explore the consequences of different implementa-
tion decisions. Second, we ask human participants
to reason analogically, guided by examples and
their own intuition of what analogy means. We
then evaluate how often they can produce an anal-
ogy, and whether the resulting rating distributions
derived analogically are the same as the distribu-
tions from Ross et al. (2025), where no instructions
on how to reason were given. We find that the
ratings derived by analogy significantly differ for
several bigrams, suggesting that the original partic-
ipants did not derive (all) their ratings by analogy.

Between the two methods, we find convincing
evidence that while analogical reasoning produces
similar results in many cases, it is not sufficient
to derive the full set of inference data. Thus, we
find support for the view that humans must have
access to a compositional mechanism. Further, our
analogy model performs worse on novel bigrams
than the best LLM in Ross et al. (2024), and our
analogy model’s successes and failures correlate
poorly with those of the best LLM. This suggests
that the LLM is not (just) using analogy in the cases
where it can generalize, and supports the claim in
Ross et al. (2024) that such LLMs are performing
some kind of composition (productively combining
the meaning of adjective and noun) in these cases.
We share our code and data on GitHub.1

2 Related Work

So-called “privative” adjectives such as fake pose a
challenge for compositional accounts of semantics,
since they cannot be simply intersected with the
noun (Kamp and Partee, 1995). Multiple accounts
have been proposed for how composition with pri-
vative adjectives should work (Partee, 2010; del

1https://github.com/rossh2/
artificial-intelligence/

Pinal, 2015; Martin, 2022; Guerrini, 2024 i.a.).
Most previous computational work on adjective-

noun composition using distributional semantics
does not discuss privative adjectives (Baroni and
Zamparelli, 2010; Vecchi et al., 2017; Hartung
et al., 2017). Boleda et al. (2013) cover 16 “non-
intensional” adjectives, including two which are
commonly taken to be privative (former, mock; see
Nayak et al. (2014) for a classification). Boleda
et al. build distributional semantic models of
adjective-noun composition that use vector addi-
tion and matrix multiplication to model adjective-
noun composition, but they do not cover analogy.
Cappelle et al. (2018) study the distributional se-
mantics of fake and bigrams in which it occurs, but
do not implement any method of composition or
generalization.

Ross et al. (2025) gather a large quantity of of-
fline human judgments on (privative) adjectives
and their membership inferences, discussed further
in Section 3, and Ross et al. (2024) extend this
dataset to assess LLMs. While Ross et al. (2024)
do propose a simple analogy baseline to compare
to their LLMs, we propose an improved, more pow-
erful and configurable analogy model and present
a detailed analysis of its performance.

Analogy has been much studied as a core compo-
nent of human reasoning (see Hofstadter, 2001 for
an overview), and approaches such as construction
grammar propose that analogy to known exemplars
can be used to understand any novel phrase (Bybee,
2010; Ambridge, 2020). Rambelli et al. (2024) pro-
pose a computational model of this process based
on distributional semantics. While we also build
our computational model around analogy between
phrases, we only attempt to derive membership in-
ferences from the analogy, and avoid commitment
to whether the full meaning of the phrase can be
accessed by analogy.

3 Human Judgment Dataset

Ross et al. (2025) present a dataset of human judg-
ments on adjective-noun inferences of the form “Is
an {adjective} {noun} still a {noun}?” on a 5-point
Likert scale. The dataset covers 798 bigrams (102
nouns crossed with 6 typically privative and 6 typi-
cally subsective adjectives, filtered to only include
combinations that make sense).2 In this dataset, the

2In this paper, we follow Ross et al. (2025) in using
“(typically-) privative / subsective adjective” to refer to ad-
jectives historically classified as such, which often but not
always result in the respective inference.
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question is presented out of the blue as a generic,
rather than in a discourse context. The additional
information in a discourse can sometimes deter-
mine the inference on its own (without needing
to interpret the bigram at all), whereas the out of
the blue setting requires some kind of reasoning
strategy (composition, analogy or otherwise) to de-
termine the inference. 180 of the 798 bigrams are
zero frequency in the C4 pretraining corpus (Raffel
et al., 2020), which Ross et al. (2024) take as a
proxy for the undisclosed pretraining corpora of
the models they study. These bigrams are assumed
to be novel to both humans and LLMs. A bigram
is referred to as high frequency if it is in the top
quartile of bigrams they study.

Ross et al. (2025) show that the membership in-
ference in question depends on both the adjective
and the noun, with bigrams with “subsective” ad-
jectives usually yielding subsective inferences (e.g.,
“a homemade N is an N”, but not always: consider
homemade cat), while bigrams with “privative” ad-
jectives such as fake crowd elicit a wide distribution
of ratings from subsective (“is”) to privative (“is
not”), with high variance for many (but not all)
bigrams. Varying ratings between participants are
expected in this setting, since we are dealing not
only with the lexicon but also with a broad question
(a linguistic generic) which may depend on partici-
pants’ world knowledge. Participants nonetheless
show convergent ratings for many zero-frequency
bigrams, demonstrating their ability to generalize
and implying a shared underlying mechanism.

4 Analogy Model

4.1 Algorithm

We implement a computational model of analogy
which is “trained” on the human ratings from Ross
et al. (2025) for a set of common (high-frequency)
bigrams, which are stored in the model’s mem-
ory. This is intended to imitate human prior expe-
rience with certain bigrams, where they may have
learned that, for instance, a counterfeit watch is
still a watch. Humans are known to store frequent
multi-word expressions even when those expres-
sions are compositional, not just when they are
idiomatic (Arnon and Snider, 2010; Tremblay and
Baayen, 2010; Caldwell-Harris et al., 2012, i.a.),
so it is plausible to assume that they can also store
the associated inferences. Specifically, we consider
the top quartile of bigrams in Ross et al. (2025) as
“known”, i.e., in the training set. (Appendix C also

explores an alternative approach where the training
set is balanced evenly across adjectives.)

Given these known bigrams, the model predicts
the ratings for the remainder of the bigrams by
analogy to similar bigrams in its training set, via the
algorithm in Figure 2. The setting mem configures
whether this algorithm is also applied to bigrams
in the training set, as if they were not known; we
discuss in Section 4.4 what is more human-like.

The model stores and predicts the entire rating
distribution for each bigram, rather than a single rat-
ing. As Ross et al. (2024) discuss in the context of
LLMs, it is not clear how to evaluate the alignment
of a single rating against high variance distributions
like the human data we are taking as the evaluation
target. As discussed in Section 3, such high varia-
tion is a natural consequence of working with the
lexicon, but does necessitate a more complex met-
ric than just accuracy to assess model fit. We use
same metric that Ross et al. (2024) use for LLMs:
the Jensen-Shannon divergence between the model-
predicted rating distribution and the human rating
distribution for each bigram. We compute an ag-
gregate score by averaging across all bigrams. We
report this aggregate score as well as the average
score over zero-frequency bigrams (presumed to
be novel to both humans and LLMs) to measure
its ability to generalize. These zero-frequency bi-
grams are always held out from the model.

Implementing analogical reasoning in a compu-
tational model allows us to define precisely what
we mean by analogy and test the effects of these
implementation choices. We explore two types of
analogy: either just over nouns (counterfeit scarf
→ counterfeit watch),3 or allowing analogy over
both noun and up to one additional adjective (coun-
terfeit scarf → fake watch; N+A setting). We allow
the model to retain k ≤ 5 nearby bigrams (after fil-
tering to bigrams in the training set) to impose con-
straints akin to human working memory (Cowan,
2001; Adam et al., 2017). The exact value of k
is a hyperparameter optimized on the training set
(with memorization disabled). Appendix C also dis-
cusses the case where k = 1, i.e. where the model
only considers the most similar bigram, which is a
plausible route for humans.

We calculate word similarity in three ways: (1)
cosine similarity over GloVe embeddings (Pen-
nington et al., 2014); (2) cosine similarity over

3We see in Section 5 that this is a popular human strategy:
humans choose an analogy over just nouns 58% of the time.
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Figure 2: Algorithm for the analogy model. Yellow
paths are dependent on the configuration options mem
and N+A (Noun + Adjective). k is a hyperparameter.

embeddings from Llama 3 70B Instruct (Dubey
et al., 2024) and (3) Wu-Palmer similarity over the
WordNet taxonomy (Wu and Palmer, 1994; Miller,
1995). Llama 3 70B Instruct was selected as the
source for LLM embeddings because this was the
model with the highest performance in Ross et al.
(2024). To derive word embeddings from Llama,
we pass each word individually to the LLM and
average the hidden states of the subword tokens
in the final layer.4 Wu-Palmer similarity groups
nouns5 that share common hypernyms in WordNet,
penalized by how broad that hypernym is. Using
WordNet allows us to measure similarity based
solely on a human-created dataset, as opposed to
distributionally derived embeddings. Since Word-
Net does not provide a taxonomy of adjectives, this
approach is limited to noun-only analogies.

4We could alternatively pool the embeddings from the
initial embedding layer, but the absence of contextualization
in this approach may degrade results for multi-token words
(~40% of our dataset). Nevertheless, we show in Appendix C
that results are similar in this setting.

5Strictly, the metric groups noun synsets (“senses”); we
use the 2 most common synsets per noun.

4.2 Results

Figure 3 shows the performance of the different
analogy model configurations on the whole dataset
(allowing memorization of the training set) and
on held-out, zero-frequency bigrams (assumed to
be novel to humans and LLMs). More details, in-
cluding results for privative adjectives only and
for single-bigram analogies (k = 1), are given in
Appendix C (Table 1).

GloVe embeddings. Both the noun-only and
N+A setting perform well overall, with the N+A
setting appearing to be on par with LLM perfor-
mance. However, we find that this is reliant on
memorizing the training set; neither setting gener-
alizes well to zero-frequency bigrams. In particular,
noun-only analogies perform below a uniform dis-
tribution baseline on zero-frequency bigrams.

WordNet. Perhaps surprisingly, we find that this
qualitatively different similarity metric yields very
similar results to using GloVe embeddings, at least
in the noun-only case where this metric is defined.
We discuss the implication further in Section 4.3.

Llama Embeddings. Using the embeddings de-
rived from Llama 3 70B Instruct also does not im-
prove performance significantly compared to using
GloVe, though we see a small increase for the noun-
only setting—see also the discussion in Section 4.3.

Error Analysis. To investigate where the anal-
ogy model fails, we fit a linear regression in R (R
Core Team, 2023) that predicts the JS divergence
of the best-performing model from the adjective
class (subsective vs. privative), human rating mean
and human rating SD, with an interaction between
adjective class and mean. Including the human SD
allows us to target bigrams with divergent ratings;
including an interaction of adjective class and mean
allows us to pick out e.g. bigrams with subsective
adjectives but privative ratings.

All main effects and the interaction are signifi-
cant: JS divergence is lower for privative-class ad-
jectives, higher for bigrams with subsective-class
adjectives with privative ratings (i.e., low mean rat-
ings, such as homemade money or tiny abundance),
higher for privative-class bigrams with subsective
ratings (i.e., high mean ratings, such as false ru-
mor or counterfeit watch), and lower for bigrams
with a high human standard deviation. The fact
that it struggles on bigrams like homemade money
(JS = 0.81) and tiny abundance (JS = 0.58) in
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Figure 3: Average JS divergence between distributions produced by the analogy model and human distributions
from Ross et al. (2025) on zero-frequency bigrams and on the whole dataset (with memorization of the training set).
Additional results are given in Table 1 in the Appendix.

particular is not surprising, given that these adjec-
tives are subsective for all except two bigrams in
the model’s pool of analogy candidates.

4.3 Discussion: Effect of Similarity Metric

The similarity metric used is not a main modulator
of model performance. One possible explanation
is that the analogies found by our model may often
be suboptimal or inadequate, regardless of the sim-
ilarity metric used. There are two potential sources
of this inadequacy: first, analogical reasoning may
inherently be a flawed approach for some bigrams.
Second, the training set may be so sparse that the
model cannot retrieve sufficiently similar nouns or
bigrams to adequately support analogical reason-
ing. After all, our training set contains ratings for
only 279 bigrams using 89 nouns (of 102 nouns in
the original dataset).6 While we cannot fully tease
these two possibilities apart with our current exper-
iments, Appendix E explores adding data from the
human rating experiment in Section 5.

4.4 Discussion: Humans

Working with lexical semantics requires us to deal
with per-bigram distributions and a distribution
comparison metric, rather than proportions of cor-
rect answers or significant effects in a regression.
This makes interpretation of the results more com-
plicated. It is not clear at what threshold to con-
clude that the model captures human performance,
versus what amount of JS divergence represents
noise/artifacts generated by the relatively small
distribution sample size in the human experiment

6The 102 nouns were selected by Ross et al. such that each
noun has at least one closely related other noun.

(n = 12 per bigram). Short of replicating the
human experiment in Ross et al. (2025) and cal-
culating the JS divergence between the two, we
have three points of reference: (1) We can approxi-
mate a human JS divergence by resampling from
the human distribution. This yields an average JS
divergence of just 0.05; (2) The best LLM perfor-
mance that achieves JS divergence of 0.17 both
overall and on zero-frequency bigrams (Ross et al.,
2024); (3) The ratings collected from the exper-
iment in Section 5, where humans are asked to
perform the same task as the analogy model, yield
an overall JS divergence of 0.16 compared to the
original distributions.

Our analogy model achieves a JS divergence of
0.17 at best, when allowed to memorize its training
data; 0.25 when it does not memorize it. On zero-
frequency bigrams, the best score is 0.25. While
the results are impressive with memorization, its
ability to generalize to zero-frequency bigrams is
8 points worse than LLMs and 11 points worse
than humans. This suggests that our analogy model
does not fully capture human behavior. While a key
part of the modeling assumption is that the training
data represents humans’ known and memorized
bigrams, it is still unclear whether it is human-
like to return the exact perfect distribution—all the
more so considering that we typically ask humans
to give single ratings, not entire distributions.

As an alternative metric, we conduct per-bigram
Kolmogorov-Smirnoff tests (Holm-Bonferroni ad-
justed) comparing the distributions predicted by
the analogy model to the human distributions. We
find that with memorization of the training set, 10
of the predicted distributions are significantly dif-
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ferent (p < 0.05), of which 3 are zero-frequency
bigrams; without memorization, this rises to 20.
Since we only have a sample size of n = 12, this is
a conservative estimate. Figure 8 in Appendix C.3
shows a selection of such distributions. The fact
that the analogy model significantly deviates from
the correct distribution for these cases supports our
conclusion that while analogy is successful in most
cases, it does not offer a full explanation.

4.5 Discussion: LLMs
It may seem striking that the analogy model can
achieve the same overall JS divergence as Llama 3
70B Instruct, the best model studied by Ross et al.
(2024), when we allow training set memorization.
However, comparing results on the zero-frequency
bigrams (and also on performance without mem, see
Table 1) shows that Llama 3 70B Instruct general-
izes much better than our analogy model. Further,
fitting a linear regression to predict the LLM’s JS
divergence per-bigram from the Llama embedding
analogy model’s divergence shows that although
the effect is significant (p < 0.001), this only ex-
plains 12% of the variance in the LLM’s ratings
(R2 = 0.12; R2 = 0.04 with mem enabled). In
other words, the LLM’s behavior is not particularly
well explained by the analogy model, and it does
not succeed and fail in the same places.

5 Human Analogical Reasoning

While the analogy model allows us to precisely
control the mechanism and data used for analogical
reasoning, it also suffers from an artificial restric-
tion on the bigrams to which it can draw an analogy:
its training dataset is strictly limited to the bigrams
that Ross et al. (2025) gathered human ratings for.
Actual human analogical reasoning would not be
limited in the same way, and is likely to involve a
much wider range of analogy targets. In this ex-
periment on human participants, we expand the
definition of analogy to whatever our participants
construe as analogy (given our instructions and
training examples), enabling access to whatever
bigrams they are able to come up with as suitable
analogies. This allows us to measure two things:
(1) how easy it is for people to come up with analo-
gies at all, and (2) what effect analogical reasoning
has on the resulting rating distributions.

5.1 Method
We select 96 bigrams from the 798 bigrams from
Ross et al. (2025) such that they are evenly bal-

anced by adjective and by zero vs. top quartile fre-
quency, and all have convergent human rating dis-
tributions (µ ≤ 2 or µ ≥ 4 on the 5-point scale).7

For each bigram, we show participants the ques-
tion “Is an {adjective} {noun} still a {noun}?” and
first ask them whether they are able to come up
an analogy that helps them answer the question.
We then ask them to answer the question, either
using the analogy or not, depending on their first
answer. Screenshots of each path are shown in
Figure 4. Participants first see an explanation of
what we mean by analogy, including an example
(toy hippo → toy elephant), followed by three train-
ing examples which include another example of an
analogy (melted plastic → melted wax/chocolate).
The full instructions, including our description of
“analogy”, are given in Appendix F. The analogy
text field is limited to 1-3 words to encourage anal-
ogy to adjective-noun phrases (pilot participants
sometimes typed a reasoning process into the field).

We recruited 176 native American English speak-
ers8 on Prolific, of which we excluded 33 for not
meeting our native speaker criteria, failed attention
checks, or failing to adequately follow our instruc-
tions for analogical reasoning (verified based on
manual inspection and regular expression searches
on the free text entry fields).

5.2 Results

Overall, participants self-reported that they could
find an analogy for 56.4% of responses. For every
bigram except fake impression, at least one person
was able to find an analogy, although 13 of 143
participants never produced an analogy. A plot of
analogy availability for each bigram is shown in
Figure 7 in Appendix A.9

Type of analogy. Figure 5 shows statistics for
the types of analogy drawn. We find that 58.4%
of analogies use the same adjective as the original
bigram, such as knockoff watch → knockoff purse,
while only 10% change the adjective and use the
same noun, such as homemade money → coun-
terfeit money. A further 6.2% of analogies use a
single noun. While a number of these single-noun
analogies seem intended as same-adjective analo-

7We also attempt to include a high proportion of bigrams
where analogy might be hard—see Appendix D. For example,
we adversarially pick some nouns for homemade which are
likely to yield privative judgments, such as homemade money.

8See Appendix B for detailed criteria.
9We attempted a regression to predict analogy availability

but found nothing of interest; see Appendix D.
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(a) Path when analogy found. (b) Path when no analogy found.

Figure 4: Screenshots of questions in the analogy prompting experiment.

Figure 5: Types of analogy chosen by participants.

gies (such as tiny bed → (tiny) chair), we do see
some interesting cases such as artificial rumor →
lie, which may not be an analogy in the strict sense
but are still solving the task by mapping to a known
phrase. The remaining 25.4% use a different adjec-
tive/modifier and noun.

Qualitatively, we see that our participants reach
for a much wider set of concepts than our analogy
model when drawing analogies; choices such as
homemade lake → homemade cookies, false im-
pression → wrong interpretation or even multicol-
ored weapon → painted nails are common. Partici-
pants are more likely than our model to reach for
nouns that are not that similar to the original noun
but are highly associated with the adjective, such as
knockoff purse (11 occurrences as analogy), coun-
terfeit money (10 occurrences), homemade cookies
or illegal immigrant (3 occurrences each).

Distribution shift. Does analogical reasoning
shift the distribution compared to the original rat-
ings gathered by Ross et al. (2025), where no in-
structions on how to reason were provided? In the
cases where an analogy was found, we find an aver-

age JS divergence of 0.16 overall between bigram
distributions in this experiment vs. in Ross et al.
(2025), with 0.21 on privative-type adjectives (0.32
for fake), 0.35 on homemade (recall that nouns for
homemade were picked adversarially to be more
likely to be privative) and 0.14 on zero-frequency
(presumed novel) bigrams.

We also conduct Kolmogorov-Smirnoff tests per-
bigram (with Holm-Bonferroni adjustment) to de-
termine which of the distributions are significantly
different. Since our n per bigram is quite small for
statistical purposes (at best n = 12, lower if not
all participants found an analogy for the bigram),
no bigrams are significantly different. We cannot
conclude from this that the distributions are indeed
the same when analogy is used; the sample size
is just too limited. Instead, we plot the distribu-
tions for 6 bigrams with the highest JS divergences
in Figure 6. The divergence for homemade cur-
rency and homemade money (and to a lesser extent
false friend) is particularly striking: analogy leads
people to dramatically different inferences in these
cases, since most homemade and many false items
(such as false rumor) still clearly qualify as an in-
stance of the noun.

Correlation between analogy availability and
distribution shift. We fit a beta regression in R
(Brooks et al., 2017) that predicts JS divergence as
a function of analogy availability. We find a strong
negative correlation: JS divergence decreases as
analogy availability increases (p < 0.001). In other
words, the harder it is to find an analogy, the more
likely any analogies that are found will lead people
astray from the original distribution.
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Figure 6: Distributions for the 6 bigrams with the highest JS divergences when an analogy is used. n = number of
ratings in each distribution; for analogy prompting, this is however many people found an analogy.

5.3 Discussion

This experiment shows that analogy is a viable ap-
proach for many bigrams, and in many cases results
in similar judgments as in Ross et al. (2025), where
participants could reason freely. However, for sev-
eral bigrams such as homemade money, using an
analogy yields dramatically different inferences,
suggesting that analogy was not used to derive the
original distribution. We also see bigrams where
people struggle to come up with any analogy at
all, such as fake impression (n = 0). This was
the case for 10 of our 35 zero-frequency bigrams
(n ≤ 50%), putting into question the viability of
analogical reasoning for generalization. Our anal-
ogy model also shows a higher-than-average JS
divergence for all bigrams (except one) where ana-
logical reasoning substantially shifts human ratings.
It also shows a higher-than average JS divergence
for over half the bigrams where humans struggle
to come up with an analogy. Overall, a linear re-
gression predicting human JS divergence from the
analogy model’s JS divergence explains 40% of
variation, suggesting that analogy serves as a viable
explanation for some, but not all of the variation in
human inferences. As for LLM behavior, human
analogy availability and human-human JS diver-
gence when using analogies both correlate poorly
with LLM-human JS divergence per-bigram, with
R2 = 0.05 in both cases (p = 0.03 and p = 0.04
respectively). A similar regression with our anal-
ogy model in Section 4.5 also showed low correla-
tion. This suggests that analogical reasoning poorly
explains LLM behavior, corroborating our previous
conclusion in Section 4.5.

Finally, we observe that our participants use a
much broader definition of “analogy” than our anal-
ogy model (or the examples we gave during train-
ing), suggesting that our model adheres to adjec-

tive and noun similarity overly strictly. Further,
our analogy model is strictly non-compositional at
the meaning level, whereas some human analogies
such as false impression → wrong interpretation
may well be arising from the participants first com-
posing the meaning of false impression and then
looking for phrases with a similar meaning.10

6 Conclusion

Ross et al. (2025) claim that humans must be
handling adjective-noun bigrams compositionally,
since they draw consistent inferences about novel
bigrams, and Ross et al. (2024) take LLMs’ capac-
ity to draw reasonably human-like inferences on the
same novel bigrams as evidence for composition.
We explored the possibility that this generalization
might be explained without composition in either
or both cases, specifically by analogical reasoning
over adjective and nouns using previously encoun-
tered and memorized inferences.

Composition in humans. We find that while
many of the novel bigrams in the dataset can in-
deed be handled successfully by analogy, analogy
is not sufficient to explain human behavior fully.
Our analogy model diverges significantly from hu-
man distributions on 20 bigrams and shows insuf-
ficient generalization to zero-frequency bigrams,
with a JS divergence of 0.25 from humans. Hu-
mans both struggle to come up with analogies for
24% of bigrams tested and are led astray when
they do for several bigrams, such as homemade
currency. We thus conclude that analogical rea-
soning is a successful strategy for generalization
in a remarkable proportion of the dataset of Ross
et al. (2025), but analogy does not suffice to han-
dle the full data. Thus, their conclusion that some

10False may mean not truthful/insincere or just fake (as in
false teeth); the choice of meaning depends on the noun.
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mechanism of composition seems necessary to han-
dle the whole range, homemade currency and all,
is supported—even if humans need not (and judg-
ing by our data, quite possibly do not) invoke it
in every case. This conclusion is similar to the
result of Albright and Hayes (2003), who found
that an analogical model of English past tense mor-
phology did not explain participant behavior well,
and concluded that speakers used abstract rules to
generalize rather than analogy.

Composition in LLMs. We likewise find that
LLM behavior can be partially, but not fully ex-
plained by analogical reasoning. Our analogy
model is unable to reach the performance of the
most successful LLMs in Ross et al. (2024), in
particular when generalizing to zero-frequency bi-
grams. Moreover, a linear model predicting LLM
JS divergence as a function of analogy model JS di-
vergence only explains 16% of the variance. While
this does not prove that Llama 3 70B Instruct is con-
ducting bona fide composition, it provides exciting
indications that it might—at minimum, Llama 3
70B Instruct is better able to incorporate the interac-
tion between the adjective meaning and noun mean-
ing than our purely word analogy-based model.
Investigating how composition, typically concep-
tualized as abstract rules, can be implemented in
LLMs would be an interesting avenue of future
research—the abstraction-via-exemplars account
discussed in Misra and Kim (2023) may provide a
promising starting point.

Standards of evidence for composition This
paper contributes to a broader discussion about
the standards of evidence required for composition
(McCurdy et al., 2024; Pavlick, 2025). If behav-
ioral experiments about generalization can provide
evidence about composition (and not all researchers
believe they can), we must be sure to rule out other
methods of generalization such as analogy. We fur-
ther need to ensure we have a precise enough defi-
nition of compositionality to capture our intuition
that analogy, by virtue of referring to information
not (obviously) included in the meanings of the
parts, is not a kind of composition (Szabó, 2012).
By making an explicit model of analogical reason-
ing, we can both show the way in which it requires
this additional information and show that analog-
ical reasoning fails to generalize in the expected
way, relative to our human data.
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A Analogy Availability for Humans

Figure 7 shows the percentage of times participants
were able to find an analogy for each bigram, col-
ored by the estimation of analogy difficulty dis-
cussed in Appendix D.

B Participant Recruitment Criteria

For our experiment in Section 5, we recruit people
on Prolific who self-report English as their first and
primary language and are located in the US. We fur-
ther ask them at the end of the study whether they
learned English before the age of 5 and whether
they speak American English—if not, they are paid
but excluded from the analysis. This implemen-
tation of “native speaker” is merely intended as
a practical way to expect shared language experi-
ences among our participant sample (Cheng et al.,
2021).

C Detailed Analogy Model Results

C.1 Model Configuration
As discussed in Section 4.1, the model has three
configurable parameters: whether to do analogy
over just nouns or also to include up to one adjec-
tive (“Noun only” vs.“Noun + Adjective”), how
many nearby bigrams to retain (k), and whether to
return the memorized distributions from the train-
ing set when asked about a bigram in the training
set, or to apply the algorithm as if that particular
bigram were not known.

We consider only up to 1 adjective since a hyper-
parameter search over up to 10 adjectives showed

that 1-2 adjectives were always optimal; moreover,
we only have 12 candidate adjectives to begin with,
and manual inspection suggests that at most 1-2 of
them ought to be relevant.

We consider 100 nearby nouns since we do not
want to artificially constrain our model and pre-
vent it from finding enough bigrams that it actually
knows. Having separate steps for adjective/noun
retrieval, assembling candidate bigrams, and then
checking which bigrams are known is an artificial
implementation choice that we make for our al-
gorithm; humans could well be retrieving similar
nouns and checking whether the resulting bigram
is known in tandem. Thus, we always retrieve 100
nearby nouns “just in case” and instead rely on
the number of bigrams k to constrain the model.
As discussed in Section 4.1, we set k ≤ 5 to im-
pose constraints akin to human working memory
(Cowan, 2001; Adam et al., 2017). We allow the
model to do a grid search over the exact value of
1 ≤ k ≤ 5 by evaluating the model on the training
set with memorization disabled. The optimal k typ-
ically ranges between 3-5 bigrams. In Table 1, we
also report the special configuration k = 1, where
the model only considers the most similar bigram
it can come up with. This mimics humans going
with the “first bigram they can come up with”, as-
suming that their retrieval process chooses a good
candidate as its first choice.

The final configuration choice, which we did not
discuss in Section 4.1, is the training data – what
should be considered as bigrams that humans have
previously encountered. Option 1 is to include
all bigrams classed as “high frequency” by Ross
et al. (2024), i.e. all bigrams in the top quartile of
their dataset. This results in sparse data for some
adjectives. Notably, this only includes a single
bigram involving the adjective knockoff and no
bigrams including unimportant, meaning the model
will be at a disadvantage for bigrams with these
adjectives. In the N+A setting, it will have to rely
primarily on bigrams involving e.g. counterfeit;
in the noun only setting, it will often return no
distribution. It is unclear whether this sparsity is
precisely realistic, because these adjectives and
their bigrams are low-frequency, or not. Options
2a and 2b are to train on the top x most frequent
bigrams for each adjective, where we can consider
(a) x = 5 (akin to the k ≤ 5 setting for nearby
bigrams), or (b) x = 23, which results in a nearly
identical size training set (276 bigrams) to taking
the top quartile (279 bigrams). We report all three
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Figure 7: Analogy availability for all 96 bigrams in the analogy prompting experiment. Color indicates whether it
was predicted in advance that it might be difficult to find an analogy, based on the ratings from Ross et al. (2025) in
conjunction with noun frequencies and WordNet-based distance measures (see Section D).

settings in Table 1.
Finally, in the case where no similar bigrams

have known ratings, we opt to return a null dis-
tribution, which is always incorrect. We could
alternatively return a fallback distribution which
concentrates all its probability mass on “Unsure”,
but this will also be very unlike the human distribu-
tions under the Jensen-Shannon metric (which tend
to have high SD when not concentrated at the ends
of the scale), so this makes little difference. In prac-
tice, this only occurs in the “Noun only” setting
for some bigrams involving knockoff and unimpor-
tant when we use the top quartile of bigrams as
the training set, since these adjectives have few or
no high-frequency bigrams (1 for knockoff, 0 for
unimportant).

C.2 Detailed Results

Table 1 shows the results for the analogy models
built with GloVe embeddings, comparing the noun
only setting with the N+A (noun + adjective) set-
ting, and the single bigram setting (k = 1) with
k ≤ 5. We report the exact value for k chosen by
the hyperparameter search. We also compare train-
ing on the top quartile of bigrams vs. training on
the top 5 or 23 per adjective. Note that for the top
5 case, the set of novel bigrams (column 2, “Novel
bigr.”) is larger than in the other cases. We find
that the simplest setting, analogy to a single noun
(N only, k = 1) does not outperform a uniform

distribution baseline overall. However, if we al-
low multiple adjectives, analogy to a single bigram
(k = 1) is sometimes the best (selected even when
we tune on k ≤ 5). We also achieve similarly good
results if we use nouns only but allow averaging
over k ≤ 5 bigrams. In the noun + adjective case,
results are also similar whether we train on the top
quartile of bigrams or the top 23 bigrams per ad-
jective – training set size appears to be the driving
factor, not how it is balanced. However, in the noun
only case, which includes all the WordNet models,
we unsurprisingly see a performance boost from
including more bigrams for each adjective. (When
training on the top quartile, the noun only setting
necessarily fails for all bigrams involving unimpor-
tant, since there is no bigram with unimportant in
the training data, and does poorly for knockoff as
well, since there is only one bigram with knockoff
in the training set.) Memorization of the training
set boosts overall performance, as expected, though
not so much when the training set is very small (top
5 bigrams per adjective).

Further, we observe that performance is gen-
erally lower on privative adjectives than overall,
which makes sense because many bigrams with
subsective adjectives have distributions almost en-
tirely consolidated around “Definitely yes”, and
can be predicted from other bigrams.
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JS Divergence (lower is better)
Model Novel bigr. Zero-freq. bigr. Privative A Total Total (+mem)

Human (resampled) N/A 0.04 0.05 0.04 N/A
Human (analogy exp.) N/A 0.14 0.21 0.16 N/A
Llama 3 70B Instruct N/A 0.17 0.26 0.17 N/A
Uniform distr. baseline N/A 0.33 0.20 0.34 N/A

Analogy models: GloVe
N only, k = 1, top qt. 0.44 0.57 0.45 0.39 0.29
N only, k = 1, top 5/A 0.32 0.34 0.44 0.32 0.30
N only, k = 5, top qt. 0.41 0.55 0.39 0.36 0.27
N only, k = 3, top 5/A 0.28 0.28 0.36 0.28 0.25
N only, k = 4, top 23/A 0.26 0.25 0.33 0.26 0.17
N+A, k = 1, top qt. 0.29 0.31 0.39 0.29 0.19
N+A, k = 4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 3, top 5/A 0.27 0.27 0.36 0.27 0.25
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
Analogy models: WordNet
N only, k = 1*, top qt. 0.41 0.54 0.36 0.36 0.26
N only, k = 1*, top 23/A 0.25 0.24 0.32 0.25 0.16
Analogy models: Llama 3 70B embeddings (final layer)
N only, k = 1, top qt. 0.44 0.53 0.44 0.40 0.28
N only, k = 4, top qt. 0.40 0.50 0.37 0.35 0.26
N only, k = 5, top 23/A 0.26 0.26 0.34 0.26 0.17
N+A, k = 1, top qt. 0.33 0.33 0.44 0.34 0.22
N+A, k = 4, top qt. 0.28 0.27 0.35 0.28 0.18
N+A, k = 5, top 23/A 0.27 0.26 0.34 0.28 0.18
Analogy models: Llama 3 70B embeddings (initial layer)
N+A, k = 5, top qt. 0.28 0.30 0.35 0.27 0.18

Table 1: Average JS divergence (best / second) between various configurations of analogy models and human rating
distributions, with & without training data memorization, for ‘N only’ vs. ‘N+A’ (1 nearby adjective) and k = 1
vs. k ≤ 5 nearby bigrams (exact value of k tuned on training data). ‘Novel bigrams’ = bigrams held out from each
analogy model – for humans and LLMs, we can only be sure that zero-frequency bigrams are novel. ‘Privative A’ =
bigrams with “privative” adjectives. * = set k ≤ 5 but tuning chose k = 1. Llama 3 results and baseline from Ross
et al. (2024).

C.3 Significantly Different Distributions

Figure 8 shows 6 of the 10 bigrams where the anal-
ogy model (GloVe, k ≤ 5, with mem) predicts a
significantly different distribution according to the
Kolmogorov-Smirnoff test (with Holm-Bonferroni
adjustment) in Section 4.4.

D Estimate of Analogy Difficulty

D.1 Overview

For our analogical reasoning experiment, we at-
tempt to estimate which bigrams might be difficult
to find analogies for and balance evenly for this.
We suppose that analogy could be difficult for bi-
grams with one or more following qualities:

• the noun has no high-frequency neighbors (be-
low median among the nouns in the dataset)

• there are multiple convergent nearby bigrams
with ratings that conflict

• there are non-convergent nearby bigrams (i.e.
bigrams for which the conclusion is uncertain)

We use WordNet (Miller, 1995) rather than word
embeddings to find neighboring nouns, since Word-
Net is manually annotated by human experts, and
the British National Corpus for noun frequencies
(Leech et al., 2014). We manually define adjective
similarity, since WordNet only provides a hierar-
chical taxonomy – and thus, a similarity metric –
over nouns, described in Section D.3.
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Figure 8: Difference between distributions for 6 of the 10 bigrams which are significantly different between
the analogy model (even with mem) and the original human distributions. In each case, the model predicts more
subsective ratings than humans.

D.2 Results
In fact, we find that these criteria do not predict
how often participants were able to come up with
an analogy.

We fit a logistic mixed effects model in R (Bates
et al., 2015) that predicts whether participants could
find an analogy or not. As fixed effects, we include
the three factors described in Section 5.1, as well
as adjective class (typically privative or subjective)
and specificity of the noun (measured by depth in
the Wordnet taxonomy). We include adjective and
participant as random effects. We also fit a second
model where we replace specificity of noun with
bigram frequency (the two are too correlated to
include in the same model). In fact, we find that
none of these factors are significant (p < 0.05) ex-
cept for the presence of nearby divergent bigrams.
This feature, however, only applies to 6 bigrams in
the experiment, so this may just be spurious. This
non-significance may be the result of many false
negatives in our labeling of these factors, since we
can only test for nearby bigrams among the bigrams
that Ross et al. (2025) studied, not among the total-
ity of nearby bigrams. It may also result from our
participants construing analogy much more broadly
than we did, as discussed in Section 5.2.

D.3 Adjective Similarity Details
We use the following (asymmetric) similarities,
which are approximately scaled to match the Wu-
Palmer similarity metric (which is 0.5 for siblings).

1. artificial → fake, false: 0.75
→ counterfeit, knockoff : 0.5

2. counterfeit → knockoff : 0.9
→ fake, false: 0.75
→ artificial: 0.5

3. fake → artificial, counterfeit, false,
knockoff : 0.75

4. false → fake: 0.9
→ counterfeit, knockoff, artificial: 0.75

5. knockoff → counterfeit: 0.9
→ fake: 0.75

6. former → artificial, counterfeit, fake,
false, knockoff : 0.5

7. homemade → artificial, fake, false: 0.8
→ tiny, multicolored: 0.75
→ useful, illegal,

unimportant: 0.5
8. The remaining 5 subsective adjectives, useful,

tiny, illegal, unimportant and multicolored are
all assigned a similarity of 0.5 to each other
and to homemade.

Note that we provide an unusually privative-
looking set of similarities for homemade since the
examples with homemade in the experiment are
disproportionately chosen to be less subsective and
thus challenging for analogy. Moreover, these sim-
ilarities are adjusted for the fact that these are the
only 12 adjectives available – of course they would
be scaled differently if there were more options.
We do not expect small changes to these similari-
ties to have a noticeable difference on the selected
bigrams.

E Using Human Analogy Bigrams in the
Analogy Model

One bottleneck of our analogy model appears to be
its lack of available bigrams with which to draw
an analogy, i.e. which it has ratings for, compared
to humans. We can try to ameliorate this by ad-
ditionally giving it all the analogies found in the
human analogy experiment, by assuming that the
rating that they provide for the target bigram is the
same as the rating they would assign to the analog-
ical bigram. (This should be true if they are using
the analogy as intended.) We filter the provided
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analogy phrases through WordNet to retain only
two-word phrases whose first word is an adjective
and the second a noun. This adds 340 bigrams
involving 91 adjectives and 260 nouns. (The orig-
inal dataset contained only 12 adjectives and 102
nouns.)

Unfortunately, we do not have full distributions
for these bigrams; only 68 of the 340 bigrams so
found have more than one rating, and only 11 have
more than three. For target bigrams with privative
adjectives, whose distributions are often spread out,
analogy to these new bigrams will thus yield a high
JS divergence simply because the distribution is
too sparse. In line with this, the results in Table 2
show that adding these additional bigrams wors-
ens or does not improve the two best-performing
GloVe models from Table 1, though it does result
in different hyperparameter choices during the grid
search (k ≤ 5).

To compensate for only having single ratings, we
can instead evaluate the analogy models with the
more lenient “accuracy within 1 SD of the human
mean” metric proposed for single ratings by Ross
et al. (2024), which lets the model predict a mean
rating instead of a full distribution. It is then judged
“accurate” (enough) if this rating falls within 1 SD
of the mean of the human rating distribution that
bigram (rounded to the nearest integer), incorrect
otherwise. The problem with this metric, besides
being ad-hoc, is that the simple “majority” base-
line described in Ross et al. (2024), which simply
guesses “Unsure” for all bigrams with privative
adjectives and “Definitely yes” for all those with
subsective adjectives, achieves an accuracy of 0.89
using this metric. Bigrams with privative adjec-
tives generally have such a high SD that this is a
large and easy target to hit. Nonetheless, a random
guessing baseline scores only 0.46 on this metric,
so the metric is still somewhat informative.

If we add the new bigrams provided by the anal-
ogy prompting experiment to the training set and
evaluate with this Within 1 SD metric, we do see
a significant performance increase compared to
using just the original training set, as shown in Ta-
ble 3. Note that optimizing over this metric yields
new values for the parameter k, within the con-
straint k ≤ 5. k = 1 is uniformly chosen during
tuning even when we set k ≤ 5. In contrast to
the JS divergence, where we generally saw lower
(better) values for subsective adjectives and higher
(worse) values for privative ones, this metric yields
the opposite, since the SDs for subsective-adjective

bigrams are much smaller: we see lower (worse)
accuracies for subsective adjectives.

This suggests that if we had full distributions for
these bigrams, adding more training data might
indeed significantly improve the model. What
amount of training data is appropriate for modeling
humans remains an open question.

F Experiment Training Instructions

The instructions provided to participants are shown
in Table 4.
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JS Divergence (lower is better)
Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)

N+A, k = 4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 4, top qt. + exp. 0.45 0.62 0.41 0.39 0.29
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
N+A, k = 4, top 23/A + exp. 0.26 0.26 0.33 0.26 0.17

Table 2: Average JS divergence (best) between analogy models and human rating distributions for the best GloVe
models in Table 1 and their counterparts trained on the additional bigrams from the human analogy experiment.
This additional training data does not improve model performance as measured by JS divergence, because we do not
have full distributions for many of the additional bigrams.

Accuracy within 1 SD of human mean
Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)

“Majority” baseline N/A 0.91 0.78 0.89 N/A
Random guessing baseline N/A 0.46 0.61 0.46 N/A

N+A, top qt. 0.71 0.77 0.72 0.69 0.78
N+A, top qt. + exp. 0.76 0.76 0.69 0.74 0.81
N+A, top 23/A 0.70 0.76 0.71 0.68 0.76
N+A, top 23/A + exp. 0.75 0.79 0.72 0.74 0.80

Table 3: Results for the best GloVe models in Table 1 and their counterparts trained on the additional bigrams from
the human analogy experiment using the more lenient “accuracy within 1 SD of human mean” metric proposed by
(Ross et al., 2024). All models use k = 1 even when tuned with k ≤ 5; this makes sense as averaging is less likely
to improve this metric. Unlike for the JS divergence shown in Table 2, results do improve. However, results must be
interpreted relative to the “majority” baseline provided by (Ross et al., 2024), which highlight the difficulty with
this metric.
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This survey involves questions of the form “Is a toy hippo still large?” We’re interested in whether it’s
possible to solve these kinds of questions by reasoning using a similar phrase that you already know
the answer for (“by analogy”), such as “toy hippo” → “toy elephant” (toy elephants are usually not
large). For the purposes of this survey, the similar phrase / analogy can be another similar thing, or a
class of things (like animals or gadgets). The important part is that you know the answer for the new
phrase without having to think about it.

Let’s start with three examples that demonstrate how the survey works and what we mean by analogy.

Each question consists of two parts. First you will answer whether you can think of a suitable analogy
(yes/no), and type in the similar phrase if you answered yes. The phrase should consist of 1-3 words
and will typically be of the form "[adjective] [noun]". Then you will attempt to answer the original
question (e.g. "Is a toy hippo still large?") using the phrase you chose, or without it if you couldn’t
think of one.

Please pay close attention to the following examples, as we will ask you to follow this style of reasoning
in the rest of the survey.

Is melted plastic still plastic?

Can you think of an analogy to another similar phrase that would help answer this question?

You can think of an analogy from “melted plastic” → “melted wax” or “melted chocolate.” This is
useful because you immediately know the answer to “Is melted wax still wax?” or “Is melted chocolate
still chocolate?” So, you would answer “yes” to this question and type “melted wax” or “melted
chocolate” in the text box below.

Based on the analogy you chose:
Is melted plastic still plastic?

Because melted wax is still wax (or melted chocolate is still chocolate), you conclude that melted
plastic is still plastic, or probably still plastic. So, you would answer “Definitely yes” or “Probably yes”
depending on your interpretation.

Is a hard-boiled egg still runny?

Can you think of an analogy to another phrase that would help answer this question?

You probably find it hard to quickly think of an analogy that can help answer the question. While you
may be able to come up with similar phrases, they don’t immediately provide an obvious answer. So,
you would answer “No” to this question.
[Instructions for second part irrelevant, omitted]

Is a decorative pumpkin still edible?

Can you think of an analogy to another similar phrase that would help answer this question?

As in the previous example, it is hard to quickly think of an analogy that can help answer the question.
While you may be able to come up with similar phrases, they don’t immediately provide an obvious
answer. So, you would answer “No” to this question.
[Instructions for second part irrelevant, omitted]

Table 4: Training instructions and examples shown to participants to demonstrate what we intend by “analogy”.
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Abstract

Feature Inheritance is a prominent theoretical
innovation in minimalist syntax, which takes
it further from the formal framework of mini-
malist grammars, the best understood formal-
ism for reasoning about minimalism. Feature
inheritance involves movement targeting non-
root positions, as well as simultaneous move-
ment steps. This turns out to require a formally
innocuous extension to minimalist grammars,
leaving strong generative capacity and worst-
case parsing complexity unchanged.

1 Introduction

Viewing context-free base rules as structure build-
ing operations (a rule S → NP V P builds an
S out of a NP and a V P ), the transformational
cycle in syntax was a principle that governed the
interleaving of transformational operations with
context-free structure building operations. In par-
ticular, (cyclic) transformational rules were applied
only once certain categories (always S, often NP,
sometimes PP) of expressions were built. In early
minimalism, the transformational rule of move-
ment was interleaved with the structure building
operation of merge. However, movement could
in principle apply at any time, regardless of the
categorial status of its input. A mechanism of fea-
ture inheritance, introduced by Chomsky (2008),
in effect delays transformations until a particular
category is reached. Thus, minimalism with fea-
ture inheritance seems to be a return to the original
conception of the syntactic cycle.

In this paper we provide a formalization of the
mechanism of feature inheritance in the context of
minimalist grammars (MGs), itself a formalization
of Chomsky’s (1995) Minimalist program. The
weak generative capacity and worst-case parsing
complexity of feature inheritance is then compared
to that of vanilla MGs.

2 Feature Inheritance

Minimalist orthodoxy assumes a universal hierar-
chy of functional projections: Complementizers
select Tense which selects Voice which selects
Verbs. Underlying these lay terms are the abstract
heads (categories) ‘C’, ‘T’, ‘v’ (“little-v”), and
‘V’ (“big-V”). A large body of work assumes a
shared property between little-v and C; these two
heads are said to define locality domains in the
syntax (called phases). A basic goal expressed
by Chomsky (1995) is to reduce the stipulations
needed in the theory. As little-v and C share one
non-trivial property already, determining whether
more of their properties can be identified would
potentially reduce the number of independent stip-
ulations needed to describe the lexicon. Feature
Inheritance (FI) is introduced in (Chomsky, 2008)
as a way of reconciling a number of related observa-
tions with theoretical assumptions, and is made use
of by little-v and C, which increases their formal
similarity a great deal.

A main theoretical motivation for FI is to give a
larger role to phases. Phases are said to coincide
with the portion of the syntactic structure that the
interfaces can refer to. In other words, they are the
units that semantic and phonological interpretation
are defined over. Chomsky suggests that both inter-
faces refer to the same units of syntactic structure.
In addition, he suggests that syntactic operations
(like movement and agreement) are not distributed
throughout the nodes making up a phase, but are
rather deferred until the last head in the phase (little-
v or C). This desideratum is problematic from the
perspective of orthodox analytical assumptions, as
the T head is generally considered to trigger move-
ment of and agreement with the surface subject.

One relevant observation is that only finite T
heads trigger movement and agreement. A second
observation is that the distribution of finite vs nonfi-
nite T is related to the choice of C: for example, the
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declarative complementizer that selects for finite
T, whereas for selects for non-finite T.

1. John believes that Mary smiled.

2. ∗John believes that Mary to smile.

3. ∗John hopes for Mary smiled.

4. John hopes for Mary to smile.

Chomsky’s resolution to the problem is to shift
the finite-nonfinite distinction over to C, making
T into an underspecified tense head. Then it is C
which selects for a generic T head, and it must be
C which is responsible for triggering movement
and agreement on T. FI is the mechanism by which
movement triggered by a higher head targets the
projection of a lower head, which allows for the
idea that movement and agreement is deferred until
phase heads are introduced to be realized.

C (and little-v) also permit generic movement
to their edges, for example, to break long distance
movement into phase-sized chunks. Thus C can
trigger movement multiple times, both to its edge,
as well as to the edge of the T head immediately
below it. However, the movements that C now
triggers are typically thought to be of two funda-
mentally different kinds: the movement to T is A-
movement, and that targeting C is A-bar-movement.
These kinds of movements have importantly differ-
ent properties (pronouns can be bound after moving
over them with A-movement, but not with A-bar-
movement, for example), and Chomsky (1995) has
proposed that movement steps between the high-
est A-bar position and the lowest base-merge po-
sition of expressions be invisible to various well-
formedness conditions. Making the A and A-bar
movements which C triggers happen simultane-
ously (as opposed to serially) structures the move-
ment dependencies entered into by DPs as trees (or-
dered by derivational order), rather than sequences.
This then eliminates the need to postulate an in-
dependent operation which deletes intermediate
elements in a sequence of movement dependencies
— these are no longer on a single branch of the tree.

Feature Inheritance thus paves the way for
1. phase heads to be the locus of movement and
agreement triggers, and 2. a novel approach to the
distinction between A and A-bar movements.

3 Formal background

We couch our formalization of feature inheritance
in the formal framework of minimalist grammars

(Stabler, 1997, 2011), an extensible and well-
understood grammar formalism capable of trans-
parently representing minimalist analyses. Min-
imalist grammars are a lexicalized grammar for-
malism, like categorial grammars, with universal
grammatical rules and complex lexical entries. The
categories of lexical entries take the form of lists
of features, written with lower case greek letters,
called feature bundles, where a list is a data struc-
ture where only the first element is directly ac-
cessible. Removing (’checking’) the first element
of a nonempty list α results in the remainder of
the list α′ (so α = a.α′). Features have one of
two polarities (positive and negative), and come
in different kinds, represented as different names
(k, wh, q, d, . . .). Two features +x and -y of op-
posite polarity match iff they are of the same kind
(i.e. x = y).

A syntactic expression is either a pair ⟨w,α⟩
consisting of a string of phonemes w and a feature
bundle α (written w:α), or a term •(t1, t2), where
t1 and t2 are syntactic expressions, and • is either <
or >. The head of a syntactic expression t is t itself,
if a pair, and the head of tH if t = •(t1, t2), where
tH = t1 if • = <, and tH = t2 if • = >.

Given a syntactic expression t, the result of
checking the first feature of its head is written t′.
When t is a term, it represents a tree, and the in-
ternal nodes ‘point’ in the direction of the head. A
trace is a pair of the empty string and the empty
feature bundle, written t.

There are two syntactic operations, Merge and
Move. Merge is binary, and Move unary. They are
both restricted in their application by the feature
bundles present in their arguments. The head of the
first argument of both operations must be a positive
feature. Merge applies to two expressions t and s
just in case the heads of both have matching first
features. Move applies to its single argument just
in case this argument contains a unique leaf whose
first feature matches the first feature of the head.

+x.γ

-x.δ

γ

δ

+ ⇒

<

Figure 1: Merge of a complement
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The output of Merge depends on whether its first
argument is a leaf or a complex term. If a leaf ℓ,
then Merge(ℓ, s) = <(ℓ′, s′), and if a proper term t,
Merge(t, s) = >(t′, s′), as is depicted in figures 1
and 2.

+x.γ -x.δ

δ γ

+ ⇒

>

Figure 2: Merge of a specifier

Move replaces a subterm of the input with a
trace, and so we need a notation which simplifies re-
ferring to subterms. We define maximal projection
contextsC[x] to be either a variable x, or a structure
of one of the two forms: >(C[x], t) or <(t, C[x]).
A maximal projection context C[x] is a term where
x occurs without any arrows pointing to it, and re-
placing the variable x with a term s is written C[s].
Move applies to t iff t = C[s], where s is a term
whose head begins with a negative feature which
matches that of t. Move(C[s]) = >(s′, C[t]′), as
is depicted in figure 3.

+y.γ

-y.δ

γδ t

⇒

>

Figure 3: Movement leaves a trace

Both operations have the effect of removing fea-
tures from feature bundles one at a time, and fea-
tures in feature bundles are checked one at a time
from left to right.

4 Features for Feature Inheritance

Feature inheritance diverges from minimalist gram-
mars as they have been defined above in two ways.
First, movement can target not the top of an ex-
pression, but rather some node embedded inside it.

Second, two features can be checked at the same
time.

To deal with the first difference, we allow posi-
tive features to take a diacritic (written: +x↓) in-
dicating that they should target the sister node
to the head. We can augment the Move opera-
tion so that it can deal with these new feature
types. For example, given a term t the first fea-
ture of the head of which begins with +y↓, whose
complement C[s] contains a unique term s with
matching first feature, write t = D[C[s]]. Then
Move(D[C[s]]) = D[>(s′, C[t])]′. This is shown
in figure 4.

+y↓.γ

-y.δ

γδ t

⇒

>γ

Figure 4: Inherited movement

To allow two features to be checked simultane-
ously, we allow feature bundles to contain not just
individual features, but also pairs of features. Given
a pair of features ⟨+x, +y⟩, it is intended that they
be checked during the same derivational step. This
allows us to write lexical items with the desired
behaviour; Chomsky’s C head would have feature
bundle +T.⟨+k↓, +wh⟩.-C, indicating that it first
merges with a TP, after which it simultaneously
triggers k-movement to TP and wh-movement to
itself, and then is itself a CP. Introducing two new
feature types (+x↓ and ⟨f, g⟩) would allow for lexi-
cal feature bundles of the following forms:

1. +a.+b.+c↓.-d

2. +a.+b↓.+c↓.-d

3. +a.⟨+b, +c⟩.-d

These bundles express sequences of lexically
driven derivational steps which we view as not in
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the spirit of Chomsky (2008), which we summarize
with the following principles:

FIUniq Feature inheritance happens just once

FIEarly Feature inheritance happens immediately
after the complement is merged

FISimul Simultaneous feature checking happens
only in the context of feature inheritance

Feature bundle 1 violates the earliness princi-
ple (FIEarly), which requires feature inheritance
to happen immediately after the complement is
merged. Here, feature inheritance of +c↓ was de-
ferred until after +b was checked. Feature bundle
2 violates both the uniqueness principle (FIUniq),
which requires feature inheritance to occur just
once, and the earliness principle. Here, feature
inheritance occurs both via +b↓ and +c↓, and in ad-
dition +c↓ was deferred until after +b↓ was checked.
Feature bundle 3 violates the simultaneity princi-
ple (FISimul), which requires that simultaneous
feature checking occur in conjunction with feature
inheritance. Here, features +b and +c are checked
simultaneously, neither of which involve feature
inheritance. These principles conspire to enforce
that lexical feature bundles are drawn from the fol-
lowing regular set, where P := {+x | x ∈ F}, D :=
{+x↓ | x ∈ F}, S := {⟨d, p⟩ | d ∈ D ∧ p ∈ P} and
N := {-x | x ∈ F}:

(P(D+ S)?)?P∗N+

That is, an inheritance feature occurs only after
the first positive feature, either on its own or as
part of a simultaneous feature. With respect to the
requirement that exactly one of the pair of simulta-
neous features must be an inheritance feature has
a certain coherence to it. Note that with any other
combination of simultaneous features (i.e. where
both are of the same kind) it would be unclear how
to depict the derived tree which should result af-
ter the simultaneous features are checked: as both
target the same position (either the complement to
the head, or the specifier of the same) one mover
would need to c-command the other, from which
one could reconstruct a checking order, belying the
simultaneity of checking.

5 Implementing Feature Inheritance

A naïve implementation of inherited movement as
in figure 4 is destructive, in the sense that con-
structing the output requires changing immediate

dominance relations which held in the input. (In
particular, the immediate dominance between the
mother ‘<’ of the head of the tree and the root of
its complement.) For reasons discussed in the next
section, this is to be avoided when possible.

Taken together, the constraints on feature bun-
dles presented above allow for an alternative im-
plementation of feature inheritance. As feature
inheritance targets the first merged argument of the
head, and takes place immediately after this argu-
ment is merged, it is simple to deal with feature
inheritance during this very Merge step, where the
top of the second argument is still accessible. This
avoids the problem of destructivity, as the target po-
sition of the inherited movement has not yet been
assigned an immediate dominance relation. Let ℓ
be a lexical item whose feature bundle begins with
the following two features: +x and ⟨+y↓, +z⟩. There
are two cases to consider, depending on whether
one mover matches both features in the pair, or
whether they are matched by different movers. For
the first case, letC[s] be a term with first feature -x,
and where the first two features of s are -y and -z.
Then Merge(ℓ, C[s]) = >(s′′, <(ℓ′′, >(t, C[t]′))),
as is depicted in figure 5. In the other case, let
C[x, y] be a maximal projection context with two
variables, and let C[r, s] be a term whose first fea-
ture is -x, and where the first features of r and s are
-y and -z respectively. Then Merge(ℓ, C[r, s]) =
>(s′, <(ℓ′′, >(r′, C[t, t]′))), as is depicted in fig-
ure 6.

It only really matters that the movement steps
be simultaneous if the same mover is targeted in
both cases. This is because Chomsky analyzes the
twin movements as creating different chains — se-
quential movements of the same item would simply
extend a single chain. If two different movers are
targeted, each is going to extend its own chain, re-
gardless of whether this happens simultaneously or
sequencially.

6 Complexity Analysis

Michaelis (2001) (see also Harkema (2001)) proves
the equivalence between minimalist grammars and
multiple context-free grammars, providing a scaf-
folding for future demonstrations that extensions
do not increase generative capacity. To establish
such an equivalence, we need to present the mod-
ified operations in inference rule format, stated
over finite sequences of strings paired with feature
bundles. As noted by Stanojević (2019), parsers
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+x.⟨+y↓, +z⟩.γ + ⇒

-x.β

-y.-z.δ β t

t

>γ

<

δ

>

Figure 5: Feature inheritance involving a single mover

+x.⟨+y↓, +z⟩.γ + ⇒

-x.δ

-y.α-z.β

δ tt

α

>γ

<

β

>

Figure 6: Feature inheritance involving two different movers
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derived from this inference rule notation can have
their worst-case time complexity read directly off
of the rules themselves. Representing each string
as a span, a pair of integer variables indicating what
portion of the input string that string should cover,
the number of distinct variables in the antecedents
of a rule polynomially bounds its contribution to
worst case complexity. Our revised implemention
of feature inheritance only modifies the Merge
rule (by adding to it two new cases), and so we
present just these in inference rule format (see Sta-
bler and Keenan (2003) for the others). In inference
rule notation, to each term corresponds a sequence
of string-feature bundle pairs. Each pair beyond
the first corresponds to a maximal proper subterm
whose head begins with negative features. The first
pair corresponds to the term minus these moving
pieces.

The inference rules are given in the figures 7–12.
This summation and the associated computational
complexity is indicated next to the names of each
of the rules above. We see that the rules MrgFI1b
and MrgFI2d contribute the most to the worst case
time complexity of the new rules. To put this in
perspective, the worst case time complexity of mini-
malist grammars without feature inheritance is also
O(n2k+3) (Fowlie and Koller, 2017; Stanojević,
2019). Thus minimalist grammars with feature in-
heritance have the same worst case time complexity
as vanilla MGs.

7 Conclusion

We have presented a formalization of Chomsky’s
((2008)) mechanism of feature inheritance, which
has played an important role in minimalist syntactic
theory over the intervening nearly two decades.
It is formally innocuous: it increases neither the
weak generative capacity nor the worst case time
complexity of the MG formalism.

Another route to this result is to simply note that
lexica containing the new lexical items with feature
bundles of the form +x.+y↓.α and +x.⟨+y↓, +z⟩.α
can be transformed into strongly and weakly equiv-
alent lexica containing only standard feature bun-
dles: given a lexical item u:+x.⟨+y↓, +z⟩.α, re-
place it with a lexical item u:+x′.+z.α, where x′

is a fresh feature name, and for every lexical item
v:β.-x.γ add to the lexicon the new lexical item
v:β.+x.-x′.γ. This transformation simply pushes
down the inherited features onto the lexical items
which will ultimately inherit them, and ensures that

they subsequently combine with their benefactors.
Like many proposals in minimalism, the sub-

stance of this one seems to lie in things not so
easily measured, like: 1. providing a formal foun-
dation for the distinction between movement types:
two independent chains branching off of a single
element, one of which c-commands the other, gives
a scaffolding over which different clusters of prop-
erties can be assigned to each, and 2. giving a for-
mal unification of lexical items of a certain type:
∀X.+x.⟨+ϕ↓, +epp⟩.-x′ is the general format for
phasal heads, where epp is a feature permitting
movement, and ϕ are agreement related features
(and we have used object-level quantification over
feature names to express polymorphism, and x′ is
the next category up in the extended projection of
x).
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⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z⟩, ψ⃗
MrgFI1a O(n2k+2)

⟨omn, α⟩, ϕ⃗, ψ⃗
The inference rule MrgFI1a describes the situation where there is a single mover, for whom this is the
last movement step, and therefore is pronounced in its highest position.

Figure 7: MrgFI1a

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.-z.β⟩, ψ⃗
MrgFI1b O(n2k+3)

⟨mn,α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗
The inference rule MrgFI1b describes the situation where the single mover has features left over, and
thus continues moving.

Figure 8: MrgFI1b

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z⟩, χ⃗
MrgFI2a O(n2k+1)

⟨pmon, α⟩, ϕ⃗, ψ⃗, χ⃗
The inference rule MrgFI2a describes the situation where there are two movers, for both of which this is
the last movement step, and therefore are pronounced in their highest positions. In the result, we see that
the phonetic part o of the tucking-in mover is sandwiched between the head m selecting the complement,
and the pronunciation n of this complement.

Figure 9: MrgFI2a

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.β⟩, ψ⃗, ⟨p, -z⟩, χ⃗
MrgFI2b O(n2k+2)

⟨pmn, α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗, χ⃗
The inference rule MrgFI2b describes the situation where there are two movers, but the first one continues
moving.

Figure 10: MrgFI2b

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y⟩, ψ⃗, ⟨p, -z.γ⟩, χ⃗
MrgFI2c O(n2k+2)

⟨mon, α⟩, ϕ⃗, ψ⃗, ⟨p, γ⟩, χ⃗
The inference rule MrgFI2c describes the situation where there are two movers, but the second one
continues moving.

Figure 11: MrgFI2c

⟨m, +x.(+y↓, +z).α⟩ ⟨n, -x⟩, ϕ⃗, ⟨o, -y.β⟩, ψ⃗, ⟨p, -z.γ⟩, χ⃗
MrgFI2d O(n2k+3)

⟨mn,α⟩, ϕ⃗, ⟨o, β⟩, ψ⃗, ⟨p, γ⟩, χ⃗
The inference rule MrgFI2d describes the situation where there are two movers, and both continue
moving.

Figure 12: MrgFI2d
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Abstract

This paper explores two applications of learn-
ing Boolean Monadic Recursive Scheme
(BMRS) feature predicates, leveraging their
analogy to binary Decision Trees. Through two
case studies, the paper demonstrates how these
applications can successfully fit some datasets
and analyze new phonological transformations
in a decision-based approach, while retaining
high transparency and interpretability.

1 Introduction

Phonology has traditionally been guided by frame-
works such as the Sound Pattern of English (SPE)
and Optimality Theory (OT) to understanding trans-
formations and constraint satisfaction (Chomsky
and Halle, 1968; Prince and Smolensky, 2002).
However, there is an increasing interest in more
computationally oriented models that can handle
large datasets and adapt dynamically to new lin-
guistic context. One such model is the Boolean
Monadic Recursive Scheme (BMRS), a decision-
based approach that utilizes recursive functions and
Boolean logic, making it particularly compatible
for extensive phonological analysis (Bhaskar et al.,
2020; Chandlee and Jardine, 2021).

BMRS is structured around “if-then-else” ex-
pressions, which resemble the nodes of a binary
Decision Tree where each decision leads to fur-
ther branches and conditions. This decision-based
structure associates it closely with computational
models used in data science and machine learning
(Quinlan, 1986). While BMRS predicates were
typically defined manually (e.g., Hua et al., 2021;
Oakden, 2021; Zhu, 2023; Jardine and Oakden,
2023), recent work demonstrates that decision tree
learning algorithms can classify and stratify con-

* Research conducted while the author was affiliated with
University College London. The author will begin a PhD
program at University of Massachusetts Amherst in September
2025. This paper is a revised version of his MA dissertation.

trastive phonological features accordingly (Chan-
dlee, 2023), suggesting a potential for these algo-
rithms to automate the learning of BMRS feature
predicates.

This paper employs the Classification and Re-
gression Trees (CART) algorithm as a tool for au-
tomating the generation of BMRS feature predi-
cates (Breiman et al., 1984; Pedregosa et al., 2011;
Geron, 2019). We conceptualize a type of bi-
nary decision trees, termed BMRS-Trees, where
the root and each intermediate node utilize only
one Boolean attribute. Additionally, by connecting
multiple BMRS-Trees in parallel, we can output a
comprehensive phonological feature matrix – this
network-like structure is termed the BMRS-Net.

2 Preliminaries

2.1 Boolean Monadic Recursive Schemes
(BMRS)

BMRS (Bhaskar et al., 2020; Chandlee and Jar-
dine, 2021) can best be conceptualized as an index-
by-index UR-to-SF (Underlying Representation-
to-Surface Form) transducer. It processes each
index individually, starting from index 1 and iter-
ating rightwards. To illustrate, in then mapping
from the input string x1x2 . . . xN to the output
string y1y2 . . . yN , index 1 is the first to be assessed
by BMRS’ feature predicate, returning a Boolean
value True (denoted by⊤ in this paper, or numeric
1 in vectors and matrices) or False (⊥ or 0) that
determines the output y1, then index 2, index 3, un-
til N . Each output character yi is produced based
primarily on its corresponding input character xi,
and the whole input string also provides contextual
information, as well as all the yi’s predecessors in
the output string. Given its index-by-index nature,
BMRS requires its input and output be of the same
length for error-free index iteration.1

1Readers unfamiliar with BMRS transduction may refer to
Appendix A for a running example after finishing 2.1.
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BMRS utilizes two position functions to navi-
gate and manipulate string indices: the predeces-
sor p and successor s, defined for any index i in a
string of length N as:

p(xi) =

{
xi−1 if i > 1

_ if i = 1

s(xi) =

{
xi+1 if i < N

_ if i = N

The underscore _ serves as a boundary symbol at
both ends.2

Recursively nesting position functions allows
access to any preceding and succeeding characters
of any given index, indicated by superscripts, e.g.:

p2(xi) = p(p(xi))

s3(xi) = s(s(s(xi)))

A superscripted asterisk (∗) indicates an arbitrary
number of nestings, e.g.: 3

p∗(xi) = p(xi), p(p(xi)) or p(p(p(. . . (xi))))

Σ denotes the Symbol Set or Alphabet, encom-
passing all characters all possible characters in both
input and output strings; the modified Σ_ incorpo-
rates the boundary symbol _. Feature predicates
for each symbol σ in Σ are defined as:

σ(x) =

{
⊤ if x ⊨ σ

⊥ if x ⊭ σ

These feature predicates assess whether the char-
acter x at the current index “satisfies” or “models”
the symbol σ, returning either ⊤ or ⊥.4 When ap-
plied to output strings, they are subscripted with an
o to differentiate their application context, e.g.:5

σo(xi) =

{
⊤ if yi ⊨ σ

⊥ if yi ⊭ σ

A well-formed BMRS predicate might include:
2The standard implementation uses a left edge (⋊) and

right edge marker (⋉) instead (Bhaskar et al., 2020; Chandlee
and Jardine, 2021), but in this paper use of _ is equivalent.

3The asterisk notation is an ad hoc reader-friendly simpli-
fication. Precise definition will be give in Footnote 6.

4Σ can denote beyond mere “symbols”: when Σ denotes a
set of phonological features (e.g., [front], as in Section 3.2) and
x denotes some segment (e.g., [i]), then saying “[i] satisfies
(or ⊨) [front]” makes more sense.

5σo(xi) is a target feature predicate, see Section 3.1.

1. Symbolic feature predicates, which are sim-
ple checks like σ(x) that directly assess the “match”
of a symbol at the current index;

2. Position-embedded feature predicates,
more complex predicates like σ(p(x)), σ(s2(x))
or σ(p∗(x))6 that evaluate the “match” of symbols
at positions relative to the current index; and

3. Conditional logic, which refers to construc-
tion of “if-then-else” statements upon symbolic fea-
ture predicates, position-embedding feature predi-
cates, and ⊤/⊥, e.g., if σ(x) then ⊤ else σ(p(x)).

2.2 Decision Tree
. . . is a supervised learning model is used for clas-
sification and regression tasks (Quinlan, 1986;
Breiman et al., 1984). It recursively splits the
dataset based on input attributes, forming a tree
where each node represents a decision, and each
branch corresponds to a possible outcome. The leaf
nodes return the predicted output.

This paper focuses on binary classification de-
cision trees, where all attributes (including the tar-
get attribute) are Boolean. The training data is
typically in a table, with each row representing a
data instance and each column an attribute for split-
ting. The last column is by convention the target
attribute, which the Decision Tree aims to predict.
An example table is presented in Table 1:

Attribute 1 Attribute 2 Attribute 3 Target
⊤ ⊤ ⊥ ⊥
⊤ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊥
⊤ ⊥ ⊤ ⊥
⊥ ⊤ ⊥ ⊤
⊥ ⊤ ⊤ ⊤
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊤

Table 1: Example Attribute Table

Our implementation uses the scikit-learn library
(Pedregosa et al., 2011), which defaults to the Clas-
sification and Regression Tree (CART) algorithm
for growing Decision Trees (Breiman et al., 1984).
When applied to the dataset in Table 1, CART gen-
erates the Decision Tree shown in Figure 1:

6Technically, p∗(x) is undefined and not a formal term
used in BMRS. Below, we will first provide a precise definition
of the functions p∗ and s∗:
p∗(σ, xi) = if σ(xi) then ⊤ else ( if _(xi) then ⊥ else p∗(σ, p(x)) )
s∗(σ, xi) = if σ(xi) then ⊤ else ( if _(xi) then ⊥ else s∗(σ, s(x)) )

For simplicity, we will write both functions as σ(p∗(x)) and
σ(s∗(x)) in the rest of the paper.
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Attribute 1

⊥
⊤

Attribute 2

⊤
⊤

Attribute 3

⊤
⊤

⊥
⊥

⊥

⊥

Figure 1: Example Decision Tree

While the Tree-growing algorithm is well-
established (see Appendix B for a detailed expla-
nation of CART), our focus will primarily revolve
around extracting robust attributes (feature predi-
cates in the context of BMRS, see Section 3.1).

3 BMRS-Tree

3.1 Implementation
As BMRS calculates output feature predicates
index-by-index, extracting features for the CART
attribute table also requires index-by-index pro-
cessing. Given Σ and a UR x1x2 . . . xN to SF
y1y2 . . . yN mapping, we propose that at each in-
dex i the following categories of feature predicates
be aggregated:

Symbolic Feature Predicates: These represent
whether an input character xi matches each symbol
σ in Σ, denoted as:

Asymbolic = {σ(xi) | σ ∈ Σ}

Local Feature Predicates: To capture phonolog-
ical dependencies from adjacent symbols, we de-
fine local feature predicates within a length of scan-
ning window L(cf. Hua et al., 2021), with L = 2
by default:

Alocal = {σ(pk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}
∪ {σ(sk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}

Here, _ helps BMRS capture the absolute dis-
tance from the boundary, such as _(p(xi)) denoting
whether x1 is the first character, or _(s2(xi)) de-
noting whether xi is penultimate.7

7Strictly speaking, _(s2(xi)) does not express “current in-
dex i being penultimate” with complete accuracy: supposing
i already being final, then its successor of successor is still
the boundary symbol _. Hence, in this paper, every position-
embedded feature predicate with respect to _ inherently carries
a second check that its predecessor/successor is not the bound-
ary symbol _ (see below). But for simplicity, we still use
_(s2(xi)) to denote penult(xi) in the rest of the paper.

penult(xi) = if _(s2(xi)) then (if _(s(xi)) then ⊥ else ⊤) else ⊥

Global Feature Predicates: These capture long-
distance dependencies by scanning bidirectionally
through the input, without precise index position-
ing:

Aglobal = {σ(p∗(xi)) | σ ∈ Σ}
∪ {σ(s∗(xi)) | σ ∈ Σ}

Output-Dependent Feature Predicates: Based
on Output Strictly-Local (OSL) transformations
identified by (Chandlee, 2014) (see also Chandlee
and Jardine, 2014; Chandlee et al., 2015, 2018),
these predicates focus on the most recent output.
We define two sets, local and global:

AlocalOutput = {σo(pk(xi)) | σ ∈ Σ_, 1 ≤ k ≤ L}
AglobalOutput = {σo(p∗(xi)) | σ ∈ Σ}

It’s worth noting that output-dependent predicates
AlocalOutput and AglobalOutput differ from input-
related Alocal and Aglobal by including only one
position function p, meaning they are restricted to
left-subsequential. Unlike (Oakden, 2021), which
used both left- and right-subsequential OSL func-
tions, this paper prohibits right-subsequential OSL
functions to avoid backtracking, in line with the
no-backtracking mechanism of BMRS. Once an in-
dex returns an output, none of its predecessors can
be reevaluated to adjust earlier outputs. Similar to
Alocal and Aglobal, AlocalOutput and AglobalOutput

embed an accurate memory of a length L scan-
ning window and a vague memory of long-distance
dependencies with respect to the output, essential
for modeling phonological transformations where
previous outputs influence the current index.

Target Feature Predicates: This category con-
tains Boolean representations of the current index’s
output, with each feature predicate within it serv-
ing as the target attribute (the last column of an
attribute table) and represented as a BMRS-Tree,
denoted as:

Atarget = {σo(xi) | σ ∈ Σ}

A visual demonstration of the aggregation of
feature predicates is presented in Figure 2, where
each category is labeled with its number and set
name, with superscripts p or s denoting left- or
right-subsequential categories (cf. Oakden, 2021);
application scopes are indicated by solid lines (ac-
curate memory) or dashed lines (vague memory).
All categories except Atarget (1 to 4) constitute the
set A of “Attributes” in Section 2.2:

A = Asymbolic ∪Alocal ∪Aglobal ∪AlocalOutput ∪AglobalOutput
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1. Asymbolic

2. Ap
local

2. As
local

3. Ap
global

3. As
global

x1 x2 xi−L xi−1 xi xi+1 xi+L xN−1 xN

5. Atarget

4. Ap
localOutput

4. Ap
globalOutput

y1 y2 yi−L yi−1 yi

Figure 2: Aggregation of Feature Predicates at index i

The procedure of aggregating feature predicates
is to arrange all the instances we extract into an
attribute table, as displayed in Table 2, where the
header row contains the names of each attribute
a ∈ A, with each attribute ai being an individual
column. By convention the last header corresponds
to one target attribute atarget ∈ Atarget, the target
BMRS-Tree to be learned from this attribute table.

a1 a2 a3 · · · a|A| atarget
Idx 1 of Data 1 ⊤ ⊤ ⊥ · · · ⊥ ⊤
Idx 2 of Data 1 ⊤ ⊥ ⊥ · · · ⊤ ⊤

...
. . .

...
Idx N of Data 1 ⊥ ⊤ ⊤ · · · ⊥ ⊥
Idx 1 of Data 2 ⊤ ⊥ ⊥ · · · ⊥ ⊤
Idx 2 of Data 2 ⊥ ⊥ ⊥ · · · ⊤ ⊥

...
. . .

...

Table 2: Example Attribute Table for BMRS-Tree

For the table content, every row is filled in with an
instance extracted from one certain index within
a certain piece of data, which represents a compre-
hensive snapshot of the phonological states around
that index position in the string. The attribute table
grows iteratively as we traverse through all possible
indices across every piece of data.

Learning a target BMRS-Tree follows the same
procedure as vanilla Decision Trees, using CART
after arranging the attribute table. However, its
evaluation differs significantly. Traditional Deci-
sion Tree evaluation focuses on cross-validation to
prevent overfitting. In contrast, BMRS-Tree eval-
uation focuses on the purity of leaf nodes. To fit
phonological data, CART minimizes Entropy in
the leaf nodes (Shannon, 1948). In the case of
non-variable mappings, we propose that all leaf
nodes in a well-fitted BMRS-Tree must achieve
zero Entropy, i.e. they are 100% pure. The rea-

sons are as follows:8

1. BMRS-Tree learning aims to reconstruct de-
terministic phonological rules, rather than to gen-
eralize over unseen data (test set). In the two case
studies discussed in Sections 3.2 and 4.2, all possi-
ble data are provided as the training set.9 Thus, the
training data should not be treated as samples from
a larger distribution, but as a complete represen-
tation of the rule-governed system. The learning
task then requires the model to fully capture and
account for all observed patterns.

2. Non-variable mappings require each input to
correspond to exactly one output, i.e., no free varia-
tion or probabilistic choice. If a leaf node contains
multiple output classes, it introduces ambiguity, im-
plying that a single context could trigger more than
one realization. This contradicts the nature of non-
variability and obstructs the derivation of a clear,
well-defined rule. Zero entropy ensures that each
decision path leads to a unique and unambiguous
output—one that is interpretable, consistent, and
faithful to the phonological data.

3. In traditional machine learning, overfitting
refers to a model capturing too many exceptions
or “outliers,” reducing its ability to generalize. In
contrast, exceptions in phonology are integral to
the language and must be explicitly modeled; they
are not noise to be ignored. Thus, requiring all leaf
nodes to be 100% pure doesn’t lead to overgener-
ation; rather, it helps prevent it. BMRS naturally
handles exceptions through structured exception-
filtering logic, represented using a series of em-
bedded “if exception1(x) then path1 else path2”
expressions.

In summary, the BMRS-Tree’s uniqueness lies in
its 100% accurate fit: its goal is to reconstruct the
system rather than generalize from partial data. For
interpretability, the BMRS-Tree can be validated
against real phonological data, deriving rules and
constraints from it (see Section 3.2 for a case study),
which could be compared with already observed
patterns.

3.2 Case Study 1: High Tone Shift in Kibondei

In our toy grammar, which is loosely based on
the high tone shift patterns observed in Kibondei

8We will leave open the question of variability for the
future.

9In Section 3.2, all training data have string lengths ranging
from 1 to 8. However, we propose that the BMRS-Tree learned
from the training set can also successfully generalize to strings
longer than 9, due to the use of Global Feature Predicates,
which are distance-insensitive.
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(Merlevede, 1995; Lamont, 2024), elements can
be high-toned (denoted by H), low-toned (L), or
unspecified for tone (0). For simplicity, it is as-
sumed that no more than one high-toned element is
present in the input. The grammar operates under
the following hypothetical rules:

Rule 1: L in the UR faithfully surfaces (L→ L;
L ↛ H , L ↛ 0).

Rule 2: H shifts to the penultimate element if
possible (e.g., H000→ 00H0). It can only replace
0 and leaves the original position in 0.

Rule 3: H cannot shift across L. If an L inter-
venes between the H and the penultimate element,
then H shifts only up to the L (e.g., H000L000→
000HL000; H000L000 ↛ 0000L0H0).

Rule 4: H cannot surface on the final element.
Underlyingly final H shifts to the penultimate posi-
tion if possible (e.g., 000H → 00H0), and deletes
if the penultimate position is occupied by an L
(e.g., 00LH → 00L0; 00LH ↛ 0HL0).

To demonstrate the learning results of BMRS-
Trees, we generated a dataset of UR-SF pairs, with
each string having a length between 1 and 8, suffi-
cient to capture potential long-distance dependen-
cies in the high tone shift. The algorithm used to
generate the dataset is provided in pseudocode in
Appendix C. Ten representative data samples are
presented in Table 3:

Data UR SF Data UR SF
1 H00L 00HL 6 000H00L 00000HL
2 LH000 L00H0 7 L0000HL L0000HL
3 000L0H 000LH0 8 00H0000L 000000HL
4 LH0L00 L0HL00 9 L0H000L0 L0000HL0
5 LH000L0 L000HL0 10 L0H0000L L00000HL

Table 3: Data Samples of Kibondei High Tone Shift

The first step in attribute aggregation is to enu-
merate each symbol σ ∈ Σ: Σ = {H,L, 0}.

Next, by aggregating feature predicates from
each index within each data (see Section 3.1), we
obtain the attribute table for learning the BMRS-
Tree of the target feature predicate Ho(x). Run-
ning CART on this table (see Section 2.2) with
scikit-learn generates the Tree diagram of Ho(x),
displayed in Figure 3.

The BMRS-Tree begins at the root node L(x),
which checks for the presence of L at the current
index. If L(x) = ⊤, Rule 1 ensures that H cannot
occur at the same index, returning ⊥ for Ho(x).

Continuing down, the BMRS-Tree evaluates
whether the current index is valid to receive H
shift: Rule 3 ensures that an L at the succeeding

L(x)

⊥
⊤

L(s(x))

H(x)

⊤
⊤

H(p(x))

⊤
⊤

H(p∗(x))

Ho(p
∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊥

⊥

⊤
_(s2(x))

Ho(p
∗(x))

⊥
⊤

H(s(x))

⊤
⊤

H(x)

⊤
⊤

H(p∗(x))

⊤
⊤

⊥
⊥

⊥

⊥

⊥

⊤
⊥
⊥

⊥

⊥

Figure 3: BMRS-Tree Ho(x)

index (L(s(x)) = ⊤) blocks this shift, allowing
the current index to be a valid alternative; Rule 2
prefers high tone shifts to the penultimate position,
which is evaluated by _(s2(x)).10

Rule 3 also implicitly ascertains that the clos-
est H can successfully shift to the current index
without encountering an intervening L:

When the immediate successor is L (L(s(x)) =
⊤), then the BMRS-Tree returns ⊤ if an H exists
either at the current index (H(x) = ⊤) or the im-
mediately preceding index (H(p(x)) = ⊤). The
challenge arises when locating H among all prede-
cessors, evaluated by H(p∗(x)). If H(p∗(x)) = ⊤,
it confirms an H at some index to the left but
doesn’t verify if it’s blocked by an L. A common
solution is to recursively test two competing ele-
ments H and L to decide which one appears earlier
when looking ahead backward, using a manually-
formulated function defined as:

Hprec(x) = if H(p(x)) then ⊤ else

if L(p(x)) then ⊥ else Hprec(p(x))

This function finds the closest H or L backward
from the current index, successfully indicating
whether an H can shift without interruption.

By comparison, learned from real dataset, the
BMRS-Tree introduces a refined method by using
an output-dependent feature predicate Ho(p

∗(x)),
which checks if an H has been output among all
predecessors. If H(p∗(x)) = ⊤ and Ho(p

∗(x)) =
⊥, it confirms that this H can shift to the current in-
dex, simplifying the decision-making process with-
out recursive backtracking.

10See Footnote 7 for discussion.
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When the current position is penultimate
(_(s2(x)) = ⊤), the BMRS-Tree also ascertains
that Ho(p

∗(x)) = ⊤ for an uninterrupted H shift,
validating subsequent paths: H(s(x)) follows Rule
4 for final H shifts, and H(x) and H(p∗(x)) check
for H at the current index or among predecessors.

In general, the BMRS-Tree intricately captures
interactions of H and L in an artificial dataset
by integrating output-dependent feature predicates,
simplifying and optimizing the process of locat-
ing valid H shifts. This approach enhances its
capability of handling wider range of phonological
transformations (Oakden, 2021).

4 BMRS-Net

4.1 Implementation
Using phonological features as embeddings allows
parallel processing of multiple BMRS-Trees, form-
ing a complex network-like structure, referred to
as BMRS-Net. This paper proposes a method of
vectorization that treats phonological features as
Boolean values (cf. Prickett, 2021).

Central to this method is the redefinition of each
symbol σ ∈ Σ. Traditionally seen as mere symbols
(characters) in strings, in the BMRS-Net symbols
in Σ are understood as underlying components (i.e.
phonological features) of each segment. Thus, Σ
can be defined as:

Σ = {[F1], [F2], . . . , [Fm]}

where each [Fi] represents a Boolean phonological
feature that returns either ⊤ (1) or ⊥ (0); m equals
|Σ|, the size of the Symbol Set, which signifies the
total count of unique features.

Each segment ω from the vocabulary V (also
referred to as the phoneme inventory) is then rep-
resented as an (m + 1)-dimensional vector. This
vector is constructed by assessing each phonolog-
ical feature [Fi] for ω, plus an extra 0 as the final
element, which represents an additional phonologi-
cal feature specifically for the boundary symbol _.
This boundary feature returns ⊤ only when evalu-
ated on the boundary symbol _. Formally, a char-
acter ω in V can be represented by the vector:

v⃗ = ([F1](ω), [F2](ω), . . . , [Fm](ω), 0)

We introduce the embedding matrix E, a one-
to-one mapping from each segment to its vector
representation, expressed as:

E : ω → v⃗

The notation E(ω) = v⃗ denotes the vector asso-
ciated with a segment ω, and its inverse function
E−1(v⃗) = ω denotes the retrieval of the original
segment from its vector representation.

By definition, BMRS-Net is the parallel connec-
tion of m+ 1 BMRS-Trees, where m = |Σ|.

The embedding matrix E facilitates transforma-
tion of phonological data into a vector format, es-
sential for BMRS-Net processing. It computes the
output vector v⃗o for a given input segment ω. The
input vector v⃗ with respect to the input segment ω
and the corresponding output vector v⃗o are respec-
tively defined as:

v⃗ = E(ω)

v⃗o = ([F1]o(ω), [F2]o(ω), . . . , [Fm]o(ω), 0)

As can be noticed, v⃗o includes the same fea-
tures as v⃗, with an additional zero for the bound-
ary symbol _. Once v⃗o is computed, the inverse
function of E is employed to retrieve the corre-
sponding segment for further analysis or process-
ing. The retrieved segment, denoted as ωo, is ob-
tained through:

ωo = E−1(v⃗o)

Figure 4 visualizes the BMRS-Net transforma-
tion of a given index i (each grey block denotes an
individual target feature predicate):

E(xi) =xi

[F1](xi)

[F2](xi)

[F3](xi)

[Fm](xi)

0

v⃗i

[F1]o(v⃗i)

[F2]o(v⃗i)

[F3]o(v⃗i)

[Fm]o(v⃗i)

[BOUNDARY]o(v⃗i)

0

1

0

1

0

= v⃗io yi = E−1(v⃗io)

Figure 4: BMRS-Net11

4.2 Case Study 2: Rhotacization in Mandarin
This phenomenon refers to the transformation of
a non-rhotic sound into a rhotic one, typically re-
sembling a [õ]-like sound (Chao, 1968; Lu, 1995;
Eckert, 2018). It generally occurs at the syllabic
level, and adding the suffix -@~ induces alternations
within the rhyme.

The dataset, summarized in Table 4, draws from
research by Lin (1989), Duanmu (2007), and Zhu

11For simplification, [F ]o(v⃗) denotes the same as
[F ]o(E

−1(v⃗)).
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(2023). This training set includes only the rhyme
components (nucleus + coda) of stems plus the suf-
fix -@~. Glide components in the onset parts of URs
are also included if they trigger Mid Vowel Alterna-
tion (discussed later in this section); rhotacization
can also alter some segments into glides in SFs.

UR SF UR SF UR SF UR SF
i-@~ j@~ u-@~ u~ @-@~ 7~ @i-@~ @~
in-@~ j@~ un-@~ u~ j@-@~ je~ ai-@~ a~
iN-@~ j@̃~ uN-@~ ũ~ 4@-@~ 4e~ @u-@~ ou~
y-@~ 4@~ a-@~ a~ w@-@~ wo~ au-@~ au~
yn-@~ 4@~ an-@~ a~ @n-@~ @~
yN-@~ 4@̃~ aN-@~ ã~ @N-@~ @̃~ 1-@~12 @~

Table 4: Mandarin Rhotacization Dataset

Observing the dataset, we can make several gen-
eralizations, some consistent with Zhu (2023):

1. Alveolar nasal coda [n] does not nasalize
the surrounding vowel, while velar nasal [N] does.
Both nasal codas are deleted in SFs.

2. The segment undergoing rhotacization in
the SF varies significantly depending on the nuclei
of the stems in URs. When the stem nucleus is:

• High front vowels [i]/[y] (Column 1 Table 4):
[i] and [y] reduce to glides [j] and [4], with
[@~] becoming the nucleus in SF; the suffix
vowel [@~] becomes the nucleus in the SF.

• Back or low vowel [u]/[a] (Column 2 Table
4): [u] and [a] remain as the nucleus and un-
dergo rhotacization; the suffix vowel [@~] then
deletes.

• Mid vowel [@] (Column 3 Table 4): [@] firstly
undergoes Mid Vowel Alternation, summa-
rized in Table 5, then the altered vowel be-
comes the nucleus and undergoes rhotaciza-
tion; the suffix vowel [@~] deletes.

• Diphthong (Column 4 Table 4): The coda
vowel [i] deletes, and the “real” nucleus un-
dergoes rhotacization. The coda vowel [u]
undergoes rhotacization while the preceding
vowel remains unchanged or undergoes Mid
Vowel Alternation (@→ o / __ u). In both sce-
narios, the suffix vowel [@~] deletes.

• High central vowel [1] (the last line of Col-
umn 4 Table 4): [1] is assumed to undergo

12Two syllabic fricatives ([z
"
] and [ü

"
]), also called apical

or fricative vowels, or syllabic approximants (cf. Lee-Kim,
2014) are merged into the high central unrounded vowel [1],
according to (Cheng, 1973) and by convention.

rhotacization but surfaces as [@~], with the suf-
fix vowel [@~] being deleted.

Description Rule
Undergoes [+front] assimilation @→ e / {j, 4} __
Undergoes [+back] assimilation @→ o / {w __, __ u}
Surfaces as [7] in open syllable stems @→ 7 / __ ]σ
Remains unchanged with nasal coda @→ @ / __ {n, N}

Table 5: Mid Vowel Alternations

Given that some segments are deleted in the train-
ing set (Table 4), we propose inserting the symbol
0, representing a zero vector where every output
feature predicate returns ⊥, to indicate deleted ele-
ments in the output.13 This alignment ensures that
each UR-SF pair is of the same length, consistent
with BMRS’ index-by-index nature. The aligned
training set is presented in Table 6:

UR SF UR SF UR SF UR SF
i @~ j @~ u @~ u~ 0 @ @~ 7~ 0 @ i @~ @~ 0 0

i n @~ j 0 @~ u n @~ u~ 0 0 j @ @~ j e~ 0 a i @~ a~ 0 0
i N @~ j 0 @̃~ u N @~ ũ~ 0 0 4 @ @~ 4 e~ 0 @ u @~ o u~ 0
y @~ 4 @~ a @~ a~ 0 w @ @~ w o~ 0 a u @~ a u~ 0

y n @~ 4 0 @~ a n @~ a~ 0 0 @ n @~ @~ 0 0
y N @~ 4 0 @̃~ a N @~ ã~ 0 0 @ N @~ @̃~ 0 0 1 @~ @~ 0

Table 6: Mandarin Rhotacization Data (after alignment)

For Σ, we refer to the Feature Charts from Hayes
(2009) to select relevant phonological features. For
vowels, we include attributes like [high], [low],
[front], [back], and [round]. For the three glides
observed ([j], [4] and [w]), we use [cons] and [syll].
The [nasal] feature covers nasalized vowels and
two nasal codas ([n] and [N]), and additional fea-
tures [COR] and [DOR] help distinguish them.
[rhotic] is specifically used for rhotacized vow-
els.14

Σ contains all the features above plus the
[BOUNDARY] feature; and the Embedding Matrix E
is outlined using this subpart of the Feature Chart
(see Appendix D).

Following the established procedures from Sec-
tions 3.1 and 4.1, we can learn all the target feature
predicates on Σ, provided in Appendix E. Some
representative Tree diagrams will be reproduced in
the following discussion for illustration:

1. Nasal Assimilation is controlled by
[nasal]o(x) (Figure 5a), and is only triggered by a
surrounding [N], represented by [+DOR].

13Similar to early OT methods where unparsed segments
were considered deleted.

14The Hayes (2009) feature for rhotacization is [+COR,
+anterior, +distributed, –strident]. Here for simplicity, we use
the informal feature [rhotic].
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[DOR](s∗(x))

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
[DOR](p∗(x))

[high](p∗(x))

[front](p∗(x))

⊤
⊤

⊥
⊥

⊤
⊥
⊥

⊤
⊥
⊥

⊥

(a) [nasal]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[low](x)

[round](s∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊤
[round](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊤
⊥
⊥

⊥

(b) [rhotic]o(x)

Figure 5

When [DOR](s∗(x)) = ⊤ ([N] appears among
successors), then all the vowels except [+high,
+front] will be nasalized in the SF, reflected in the
data: [uN-@~]→ [ũ~], [aN-@~]→ [ã~], [@N-@~]→ [@̃~].

When [DOR](p∗(x)) = ⊤ ([N] precedes the cur-
rent index), the output segment will be nasalized
only if there is [+high, +front] among its predeces-
sors, reflected in: [iN-@~]→ [j@̃~], [yN-@~]→ [4@̃~].

2. Rhotacization is controlled by [rhotic]o(x)
(Figure 5b), which decides whether the current seg-
ment can undergo rhotacization in the SF (i.e. to
receive the [rhotic] feature).

The root node [rhotic]o(p
∗(x)) checks whether

[+rhotic] has surfaced before the current segment.
As observed from Table 4, [+rhotic] must be
aligned to the final segment and surface at the fi-
nal position, saying that [rhotic]o(p∗(x)) actually
checks whether the output string has reached the
end: if it has ([rhotic]o(p∗(x)) returns ⊤), then ev-
ery segment from the current position will delete.

In the rest of Figure 5b, all leaf nodes return-
ing ⊤ appear when [round](s∗(x)) returns ⊥,
which imposes a constraint-like condition on that a
vowel cannot receive [rhotic] if it’s followed by a
[+round] element (in Mandarin, [u]).15 This is also
coherent to the dataset: if a vowel is succeeded by
a [u], then [u] is always the one to receive [rhotic].

There are only two leaf nodes returning ⊤ (the
blue nodes), which denote respectively:

• [+front, -low]: [a] (the bottom-left ⊤);

• [-front]: [1], [@] and [u] (the bottom-right ⊤).

3. Glide Formation ([j], [4]) in SFs offers
an explanation for why [+high, +front] cannot
be rhotacized. This glide formation is controlled
by [syll]o(x) (Figure 6a). It also starts with
[rhotic]o(p

∗(x)), restricting that the output string
15In Mandarin, [y] never appears in complex nuclei or diph-

thongs.

(SF) has not yet reached the end. And [syll](x) as-
serts that [-syll] segments won’t surface as [+syll].
The rest of the two intermediate nodes [front](x)
and [high](x) denotes respectively two categories
of vowels that remain [+syll] in the SF:

• [-front]: [@] and [u];

• [+front, -high]: [a].

The bottom-left ⊥ leaf node (in orange) denotes
exactly the category that will possibly be altered to
glides (or even deleted): [+front, +high], consis-
tent with the data in Column 1 Table 4).

4. Mid Vowel Alternation is applied to @
in the stem before deciding whether it receives
[rhotic] or not. It is controlled by three predicates:
[front]o(x), [back]o(x), and [round]o(x) (refer to
Table 9). After being applied to the underlying @,
they are reproduced in Figures 6b, 6c and 6d.

All three BMRS-Trees start with [syll](p∗(@)),
checking whether a [+syll] segment (i.e. vowel)
precedes @. This presents a restriction that @ alter-
nates only if it’s the stem’s nucleus or the so-called
“real” nucleus of a diphthong; the @ in the suffix -@~
or as the coda vowel doesn’t alternate (though it
never appears as the coda in Mandarin).

Ascertaining that @ appears as the stem’s nucleus
([syll](p∗(@)) = ⊥, this continues as a prerequisite
in the following discussion), Figure 6b then suc-
cessfully models [+front] assimilation: a [+front]
segment preceding the @ assimilates it into a front
vowel [e] ([front](p∗(@)) = ⊤).

The two upper ⊤ nodes in Figure 6c model
[+back] assimilation: @ is [+back] assimilated
when there exists a [+back] segment before or after
it. Continuing down, [front](p∗(@)) filters out two
front glides ([j] and [4]) that license the [+front]
assimilation; [cons](s∗(@)) filters out two cases
where @ is followed by nasal codas [n] and [N] – the
only two consonants existent in our dataset ([@n-@~]
→ [@~], [@N-@~]→ [@̃~]).
[high](s∗(@)) models another possibility:

pseudo-[+back] assimilation, when followed by a
[+high] segment. This is consistent with the piece
of data: [@-@~]→ [7~], in comparison with [@i-@~]
→ [@~] (the @ followed by [i] doesn’t alternate). In
fact, this is also consistent with Line 3 Table 5
that @ surfaces as 7 in the open syllable stem (cf.
Duanmu, 2007).

Figure 6d is almost identical to the upper part of
6c, both seeking a [+back] environment. To gener-
alize, @ automatically receives [+round] when it re-
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⊤
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⊥
⊤
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⊥
⊤
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⊥
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⊥

⊥

⊥
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[syll](p∗(@))

⊥
⊤

[back](p∗(@))

⊤
⊤

[back](s∗(@))

⊤
⊤

⊥
⊥

⊥

⊥

(d) [round]o(@)

Figure 6

ceives [+back] from its surrounding context, which
is to say, [+back] triggered by “real” [+back]
assimilation innately carries [+round].

All the discussion above serves as an illustra-
tion of complete transparency and interpretability
of BMRS-Trees learned via CART. Collectively,
BMRS-Net successfully fitted the dataset and is
capable of efficiently performing complex string
(vector) transformations.

5 Future Research Directions

First, regarding the class of string functions, the
High Tone Shift in Kibondei can be modeled by
a Subsequential function (Heinz and Lai, 2013;
Heinz, 2018), while the Rhotacization in Mandarin
could be considered Output-Strictly local (Chan-
dlee et al., 2015), at least in this paper, due to its
dependence on the previous output to determine
transformations. However, in our implementation,
all categories of feature predicates (including sym-
bolic, local, global, and output-dependent) were
aggregated to form the attributes used in Deci-
sion Trees for phonological analysis (Section 3.1).
Therefore, it would be beneficial to systematically
analyze which categories of feature predicates are
sufficient to model different string function classes.

Second, the unequal string lengths for Mandarin
Rhotacization (Section 4.2) is handled a little un-
usually in this paper, and the use of zero vector
(0) to indicate deleted segments is obviously not
scalable to inserted one. Thus how to extend the
current implementation to handle both deletion and
epenthesis remains open for further exploration.
According to a suggestion from an anonymous re-
viewer, the use of licensing functions and copy sets,
as discussed in the work of Courcelle and Engel-
friet (2012), offers a promising direction. Besides,
the integration of order-preserving functions (as ex-

plored by Lindell and Chandlee, 2016) could also
enable deriving both deletion and epenthesis.

If the successful categorization of feature predi-
cates for different string function classes is achiev-
able, and handling epenthesis becomes feasible,
then our BMRS implementation could serve as
a versatile tool for analyzing various classes of
string functions and a broader range of phonologi-
cal transformations, with enhanced flexibility and
expressivity.

6 Conclusion

This paper presents the implementation of BMRS-
Trees and BMRS-Net as an automated BMRS pred-
icate learner, requiring only minimal human input,
i.e., symbol (or feature) selection. Their success-
ful application to two non-trivial (yet still limited)
phonological phenomena substantiates their poten-
tial as an automation tool for researching phonolog-
ical transductions, from segmental alternation, dele-
tion to long-distance shifts (with epenthesis left for
future exploration). The results offer a promising
alternative to traditional rule- or constraint-based
approaches, advancing the integration of machine
learning in computational phonology.
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A Modeling Tonal Shift and Spread with
BMRS

Below is a brief example of BMRS transduction on
a tonal system.

Saghala (Breteler, 2017) has a tone system that
contrasts only high-toned elements (denoted by H)
with unspecified ones (0). An underlying H shifts
to the next position and then spreads one position
further to the right (e.g., 00→ 00, H00→ 0HH ,
H000→ 0HH0, 0H00→ 00HH).

Assuming Σ = H, 0, we can define Ho(x) to
check whether the current index outputs H:

Ho(x) = if H(x) then ⊥ else ( if H(p(x)) then ⊤ else H(p2(x)) )

This captures the rightward shift-and-spread be-
havior of H . The tree diagram in Figure 7 also
visualizes this same behavior:

H(x)

⊥
⊤

H(p(x))

⊤
⊤

H(p2(x))

⊤
⊤

⊥
⊥

⊥

⊥

Figure 7: Ho(x)

Table 7 illustrates the index-by-index transduc-
tions on two input-output mappings:

0 1 2 3 4 0 1 2 3 4
input _ H 0 0 0 _ 0 H 0 0

H(x) ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥
H(p(x)) ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
H(p2(x)) ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤
Ho(x) ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤
output _ 0 H H 0 _ 0 0 H H

Table 7: H000→ 0HH0, 0H00→ 00HH

B Classification and Regression Tree
(CART) Algorithm

CART (Breiman et al., 1984) builds binary trees.
When used for classification, CART aims to split
the data into subsets that are as “homogeneous”
(pure) as possible with respect to the target at-
tribute.

Entropy, borrowed from Information Theory
(Shannon, 1948), is a common metric to quantify
the degree of homogeneity or impurity in a dataset,
and is employed as the split criterion in this paper.
For a binary classification task that returns Boolean
values, Entropy H of a dataset D is defined as:

H(D) = −p0 log2(p0)− p1 log2(p1)

where p0 and p1 refer respectively to the propor-
tions of instances returning ⊥ in the dataset and
to that of instances returning ⊤. Entropy H(D)
reaches its maximum when ⊤ instances and ⊥ in-
stances are equally distributed (the dataset D being
the most “heterogeneous” or impure) and its min-
imum (zero) when the dataset contains only one
class (completely pure).

CART grows a Decision Tree in these steps:

1. Calculate Initial Entropy: The algorithm
begins by calculating the Entropy of the entire
dataset H(D), which gives a baseline measure
of impurity.

2. Evaluate Each Attribute and Choose the
Best Split: For each attribute, CART firstly
considers its split and calculates the Entropy
of two resulting subsets. It then computes the
Information Gain, which is the reduction in
Entropy from the initial dataset to the com-
bination of its two subset. The Information
Gain IG from splitting dataset D on attribute
A is defined as:

IG(D,A) = H(D)−
(
|D0|
|D| H(D0) +

|D1|
|D| H(D1)

)

where D0 and D1 denote the subsets formed
by the split on attribute A, and |D0|, |D1|
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and |D| denote respectively the number of
instances in the corresponding set.

The attribute that yields the largest Informa-
tion Gain is selected for that split.

3. Split the Subsets Recursively: The process
of splitting based on Information Gain contin-
ues recursively for each subset, creating deci-
sion nodes and branches, until all instances in
a subset belong to the same class, or no further
information gain can be achieved (because all
the attributes are used up).

4. Assign Leaf Nodes: When no further splits
are possible or necessary, the remaining data
in each terminal node is assigned a label based
on the majority class within that subset, form-
ing a leaf node.

Focusing on reducing uncertainty at each step,
CART constructs Decision Trees that classify the
dataset as accurately as possible, while being rel-
atively easy to interpret and to visualize using the
scikit-learn library.

C Algorithm to Generate the Dataset for
High Tone Shift in Kibondei

Algorithm 1 Generate Input Strings

Require: min_len, max_len
Ensure: A list of input strings consisting of H (at

most 1), L, and 0
1: inputs← [ ]
2: for length← min_len to max_len do
3: strings ← all combinations of L and 0 of

length
4: for all s ∈ strings do
5: Append s to inputs
6: for i← 0 to length(s)− 1 do
7: modified← s with character at posi-

tion i replaced by H
8: Append modified to inputs
9: end for

10: end for
11: end for
12: return inputs

For reference, when min_len = 1 and
max_len = 8, Algorithm 1 returns a list of length
4096, i.e., containing 4096 possible inputs.

Algorithm 2 Map Input to Output

Require: A string input
Ensure: The output string after applying the

BMRS transduction
1: if input ends with 0H then
2: Replace the suffix 0H with H0
3: end if
4: if input ends with LH then
5: Replace the suffix LH with L0
6: end if
7: Replace every substring matching pattern

H(0*)L with:
8: same number of 0’s as in the match, fol-

lowed by HL
9: if input ends with a substring matching pattern

H0+ then
10: Replace it with:
11: one fewer 0 followed by H0
12: end if
13: return input

D Mandarin Feature Chart

Phonological features selected for Section 4.2 are
presented in Table 8.16

[high] [low] [front] [back] [round] [cons] [syll] [nasal] [COR] [DOR] [rhotic] [BOUNDARY]

i 1 0 1 0 0 0 1 0 0 0 0 0
y 1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0 0
u 1 0 0 1 1 0 1 0 0 0 0 0
u~ 1 0 0 1 1 0 1 0 0 0 1 0
ũ~ 1 0 0 1 1 0 1 1 0 0 1 0
e 0 0 1 0 0 0 1 0 0 0 0 0
e~ 0 0 1 0 0 0 1 0 0 0 1 0
@ 0 0 0 0 0 0 1 0 0 0 0 0
@~ 0 0 0 0 0 0 1 0 0 0 1 0
@̃~ 0 0 0 0 0 0 1 1 0 0 1 0
7 0 0 0 1 0 0 1 0 0 0 0 0
7~ 0 0 0 1 0 0 1 0 0 0 1 0
o 0 0 0 1 1 0 1 0 0 0 0 0
o~ 0 0 0 1 1 0 1 0 0 0 1 0
a 0 1 1 0 0 0 1 0 0 0 0 0
a~ 0 1 1 0 0 0 1 0 0 0 1 0
ã~ 0 1 1 0 0 0 1 1 0 0 1 0

j 1 0 1 0 0 0 0 0 0 0 0 0
4 1 0 1 0 1 0 0 0 0 0 0 0
w 1 0 0 1 1 0 0 0 0 0 0 0

n 0 0 0 0 0 1 0 1 1 0 0 0
N 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 0 0 0 1

Table 8: Embedding Matrix

E Mandarin Rhotacization BMRS-Trees

In this appendix, both original Decision Tree dia-
grams generated directly by scikit-learn and their
simplified (remade) versions are presented in Table
9.17

16The feature [BOUNDARY] and the default boundary symbol _
are also included in E, for the sake of completeness.

17As can be noticed from Table 4, all [+cons] segments
(i.e., [n] and [N]) are deleted and don’t surface in the output.
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The original BMRS-Tree diagrams generated
by scikit-learn can appear perplexing due to its
exceedingly detailed node information, and some-
what counter-intuitive as each node tests whether a
feature predicate returns “False”: the node checks
whether the truth value is <= 0.5. Therefore, origi-
nal and remade versions look like horizontal mirror
images of each other. And given the low readabil-
ity, a remade version is reproduced below in Table
9 and used in the main body of this paper for better
visualization.

One prominently essential parameter exclusively
existing here in Column “Original”, Table 9 is En-
tropy: all terminal leaf nodes’ Entropy equals zero,
which is a key indication of 100% accurate fit.

BMRS-Tree Original Reproduced

[high]o(x)

[high](x)

[rhotic]o(p
∗(x))

⊥
⊤

[round](x)

⊤
⊤

[front](x)

⊤
⊤

⊥
⊥

⊥

⊥

⊤
⊥
⊥

[low]o(x)

[low](x)

⊤
⊤

⊥
⊥

[front]o(x)

[front](x)

[syll](p∗(x))

⊥
⊤

⊤
⊥

⊤
[syll](p∗(x))

⊥
⊤

[front](p∗(x))

⊤
⊤

⊥
⊥

⊥

⊥

Continued on the next page

Therefore, [cons]o(x), [COR]o(x) and [DOR]o(x) always
return ⊥ – this is a side effect of only including the rhymes in
the dataset. [+cons] segments will still surface in the onset.
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Table 9, Continued
BMRS-Tree Original Reproduced

[back]o(x)

[back](x)

⊤
⊤

[syll](p∗(x))

⊥
⊤

[front](x)

⊥
⊤

[back](s∗(x))

⊤
⊤

[back](p∗(x))

⊤
⊤

[front](p∗(x))

⊥
⊤

[cons](s∗(x))

⊥
⊤

[high](x)

⊥
⊤

[high](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

[round]o(x)

[round](x)

⊤
⊤

[syll](p∗(x))

⊥
⊤

[back](p∗(x))

⊤
⊤

[back](s∗(x))

[front](x)

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊥

⊥

⊥

[cons]o(x)
⊥

[syll]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
⊥
⊥

⊥

[nasal]o(x)

[DOR](s∗(x))

[front](x)

[high](x)

⊥
⊤

⊤
⊥

⊤
⊤
⊥

⊤
[DOR](p∗(x))

[high](p∗(x))

[front](p∗(x))

⊤
⊤

⊥
⊥

⊤
⊥
⊥

⊤
⊥
⊥

⊥

Continued on the next page
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Table 9, Continued
BMRS-Tree Original Reproduced

[COR]o(x)
⊥

[DOR]o(x)
⊥

[rhotic]o(x)

[rhotic]o(p
∗(x))

⊥
⊤

[syll](x)

[front](x)

[low](x)

[round](s∗(x))

⊥
⊤

⊤
⊥

⊤
⊥
⊥

⊤
[round](s∗(x))

⊥
⊤

⊤
⊥

⊥

⊤
⊥
⊥

⊥

Table 9: BMRS-Tree Diagrams in Mandarin Rhotaciza-
tion
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Abstract

This paper introduces a novel method of lin-
earization, casting it as a model-theoretic in-
terpretation. Within Model Theory, an inter-
pretation is a way of understanding a struc-
ture through the lens of another structure– in
this sense, linearization is an interpretation of
a tree’s string yield through the lens of the tree.
Such a formal characterization allows us to ex-
plicitly codify locality into the post-syntax (in
line with Embick and Noyer (1999)). This
has strong potential implications for the na-
ture of syntax-phonology interaction in terms
of formal complexity and typological predic-
tions of phrasal phonology. Crucially, casting
linearization in this way also opens the door
for a closer unification of how we understand
the computational properties of interfaces be-
tween linguistic modules more generally.

1 Introduction

Model Theory is a subfield within mathematical
logic that is used to formally reason about struc-
tures and the properties they satisfy. There has
been a rich tradition of using Model Theory within
generative semantics. More recently however, re-
search in theoretical computational linguistics has
shown that Model Theory is an extremely use-
ful tool for understanding syntax, phonology, mor-
phology, and phonetics as well. Due to Model The-
ory’s abstract and domain-general nature, there is
a great deal of freedom in the sorts of structures
that can be defined and the mappings between
them, making it well-suited for linguistic theoriz-
ing.

For example, Model Theory has been used in
syntax to formally reason about the computational
properties of Government and Binding Theory
(Rogers and Nordlinger, 1998). More recently,
Model Theory has been used extensively by pho-
nologists to understand both phonological well-
formedness of structures (Strother-Garcia et al.,

2016; Jardine, 2017) as well as mappings between
underlying structures and surface structures (Oak-
den, 2021; Bhaskar et al., 2020). In Nelson (2024),
model-theoretic interpretations are used to model
autosegmental coupling graphs, as well as transfor-
mations between them and string representations,
showing a use case in the phonetics-phonology in-
terface. In (Petrovic, 2023), Model Theory is used
to reason about the computational nature of mor-
phological processes. In terms of complexity, this
type of formalization also allows for a richer un-
derstanding of the tight relationship between learn-
ability and computational simplicity with respect
to typological predictions (Lambert et al., 2021;
Rawski, 2021).

Knowing that model-theoretic representations
have given novel insights to our formal under-
standing of separate linguistic modules, a natural
question arises: How can we use knowledge of
these modules independently to understand their
interaction? Namely, if model-theoretic represen-
tations allow us to understand the formal prop-
erties of semantics, syntax, phonology, morphol-
ogy, phonetics in isolation, and we know that it
is extremely well-suited for understanding the re-
lationships between different structures, then it
should also serve as an invaluable tool for under-
standing the formal properties of their interfaces.
This paper is a step in this direction, showing
that linearization can be understood as an inter-
pretation of linear post-syntactic representations
through the lens of hierarchical syntactic represen-
tations. While this is one particular use case for
the much broader endeavor of using Model The-
ory investigations of the interfaces, this opens up
the door for a great body of research while making
novel observations about the nature of lineariza-
tion.

The paper is organized as follows. Section 2
gives an introduction to Model Theory, discussing
string models and interpretations. In Section 3, we
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discuss linearization and show how it can be for-
mulated as an interpretation from trees to strings
and sketches an approach toward incorporating a
simple case of movement into the analysis. Sec-
tion 4 discusses some broader theoretical implica-
tions for this view of linearization.

2 Model Theory

A signature S is simply a collection of functions,
relations and constants. The discussion here will
be limited to dealing with relations, so we will
stick to signatures that contain only relations, not
functions or constants. A relational model is a pair
⟨D | r1, . . . rn⟩ where D is some domain, and
each ri is a k-ary relation from the signature S
over elements in the domain D. In place of model,
the word structure is also commonly used. Here,
k-ary simply means that the relation ri takes k el-
ements of D as its arguments. For example, p(x)
where x ∈ D would be a unary relation, q(x, y)
where x, y ∈ D would be a binary relation, etc.
The focus of this section is on using these models
to define strings and mappings between them.

2.1 Strings

Consider the string apba. It contains only the seg-
ments {a,b,p} and there are four elements, the first
bearing a, the second bearing p, the third bear-
ing b, and the fourth bearing a. Let the domain
D = {0, 1, 2, 3} represent the indices of the string
and the alphabet (set of symbols) Σ = {a, b, p}
represent the labels each index can bear. For each
of these symbols, define a unary relation that in-
dicates whether or not an index x of the string
bears that symbol: so there are three unary rela-
tions a(x), b(x), p(x). For our string apba, it is the
case that a(0), p(1), b(2), and a(3) are all true, and
any of these relations for other domain elements
will be false. Each index bears a label, but there
must be some way to tell what precedes what in
our string. This can be done by relating the indices
through a binary precedence relation. Strict prece-
dence �(x, y) states that x comes before y with
nothing else in between. A string model for apba
using strict precedence �(x, y) is shown below:

0

a

1

p

2

b

3

a

� � �

Figure 1: String Model with Strict Precedence

Alternatively, one could use general precedence
< (x, y) where x comes before y at any point in
the string. Whether a structure is defined using
general precedence or strict precedence directly
affects the sorts of generalizations one can make.
For example, using strict precedence it is natural to
ban immediately adjacent segments like a ban on
any obstruent immediately following a nasal (say,
a *NT constraint), whereas using general prece-
dence it is natural to ban sequences of segments
like long distance sibilant harmony that bans an S
following an s anywhere in the string (say, a *s
. . . S constraint). For a broader picture of how rep-
resentations and the nature of constraints relate to
one another in phonology, see Heinz (2018). This
difference will have important implications for the
motivation of the view of linearization argued for
here.

2.2 Interpretations
Informally, a logical interpretation is a mapping
that takes an input structure Σ in a signature S and
uses logical expressions to recast it as an output
structure Γ in a signature G, shown abstractly in
Figure 2. One way to imagine this is interpreting
an output structure Γ through the lens of an input
structure Σ. It is also convenient to imagine this as
a transformation, where an input structure is trans-
formed into an output structure. Here, the term
logical transduction is used.

Σ Γ

S-structures G-structures

Input Output

Figure 2: General Sketch of a Logical Transduction

Let G be our output signature with relations
r
′
1, . . . , r

′
n. For each relation r

′
i in the output sig-

nature G, there must be a definition which is de-
fined using only relations ri from the input sig-
nature S or more complex helper predicates con-
structed from them. There is also a copyset C =
{1, . . . ,m} that copies pieces of the input struc-
ture to be (potentially) used by the output structure.
Essentially for each node x in the input structure
Σ, depending on the size of the copyset, a corre-
sponding copy is used: there can be an x0 copy, x1

2
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copy, x2 copy, and so on up to m, meaning that the
input structure will grow linearly depending on the
size of the copyset.

Consider the input signature S (from the string
model for abpa in Figure 1) and the output signa-
ture G, containing precedence relations that medi-
ate precedence between copies:

S = {a(x), b(x), p(x),�(x, y)}
G = {a0(x), p0(x), b0(x), a1(x), p1(x), b1(x),
�0,0 (x, y),�0,1(x, y),�1,0(x, y),�1,1(x, y)}

In the output signature G, the relations σ0(x) mean
that x’s 0-th copy is labeled with the symbol σ and
σ1(x) mean that x’s 1-st copy is labeled with the
symbol σ. The relations �i,j(x, y) mediate strict
precedence between different copies in the output.
In other words, �i,j(x, y) means that x’s i-th copy
strictly precedes y’s j-th copy in the output. This
is made clear in the example that follows.

Using these two signatures, we will construct an
input S-structure Σ, an output G-structure Γ, and
an interpretation will be constructed between them
that epenthesizes a’s between a p followed by a
b. This can be written as a standard rewrite rule
∅ → a/p_b. Note that a copyset of C = {0, 1}
is needed because the string will grow in length
by one node any time there is a ‘pb’ substring.
We proceed by defining each relation in the output
signature using relations from the input signature.
The interpretation is shown pictorially in Figure 3.

For the labeling relations, every node in the 0-th
copy is going to remain faithful to the input. Noth-
ing is deleted, there are only things to add and so
this copy remains the same. In the 1-st copy, only
nodes labelled with an a will ever appear since that
is the only segment we wish to add (since b’s or p’s
will never be epenthesized). For the precedence
relations, strict precedence will hold between two
nodes in the 0-th copy if they aren’t a p strictly
followed by a b. The only time a 0-th copy will
strictly precede a 1-st copy is when there is an a be-
ing inserted, namely between a p strictly followed
by a b. The only time a 1-st copy will precede a 0-
th copy is when it is the b in the configuration just
described. There will never be strict precedence
between elements both in the 1-st copy, since this
would correspond to adding two a’s in a row.

In Figure 3, the dashed nodes represent copies
of nodes that are not used in the interpretation.
When the copyset is constructed, all copies have
the potential to be used, but the actual definitions

of the labeling and precedence relations determine
which are actually used. In this mapping, an in-
put string apba will map to apaba, since the a was
epenthesized between the p and b, whereas an in-
put string abapa would simply map to abapa since
there are no ‘pb’ substrings.

0

a

1

p

2

b

3

a

00

a

10

p

20

b

30

a

01 11

a

21 31

� �� �

�0,0

�0,1 �1,0

�0,0

input

output

c = 0

c = 1

Figure 3: a-epenthesis between p and b

Thinking more generally, this is an example of
how an output string has a particular form based
on specified conditions on its corresponding input
string. Thus, we are interpreting the output string
through the lens of the input string. Shifting fo-
cus to linearization, an output string structure has
a particular form based on specified conditions on
its corresponding input tree structure. To under-
stand this more clearly, tree models must first be
defined.

3 Linearization as an Interpretation

3.1 Tree Models

It is standard practice within model-theoretic syn-
tax to define trees with respect to a domain D ⊊
N of nodes, a binary general dominance rela-
tion �∗(x, y) and a left-of/precedence relation ≺
(x, y) as in Rogers and Nordlinger (1998). There
are many theoretical reasons to suggest that they
should instead be defined over something more
closely resembling syntactic selection instead of
a precedence relation, but in order to keep the dis-
cussion more tractable, this convention serves as a
suitable starting point. Some ways that this can be
embellished for a more well-rounded account will
be discussed in later sections.

Note that the domain ranges over the natural
numbers N, but the order that they appear doesn’t
matter so long as the relations are consistently de-
fined. For convenience, the convention here re-
flects the order that they are introduced to the
derivation, assuming a bottom up derivation.1

1One could also choose to use Gorn addresses as in Lam-
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There must also be labels for the nodes of our
tree, so let Σsyn be an input alphabet of labels for
nodes of our tree. Since our nodes can bear a wide
range of different syntactic properties, this alpha-
bet can be partitioned into the following sets of
lexical labels, categories, features, and movement-
licensing features:

• L = {THE, MAN, LOVES, CAKE, . . . }

• C = {V, V, C, D, N, PERF, . . . }

• F = {SG, PL, 1, . . . }

• LIC = {+wh, -wh, +nom, -nom, . . . }

Thus, Σsyn = L ∪ C ∪ F ∪ LIC, and each
σ ∈ Σsyn has a corresponding unary relation
σ(x) specifying some piece of syntactic informa-
tion. This is one particular choice of how to en-
code this information relationally, inspired by Min-
imalist Grammars (Stabler, 1996), but many other
options are available. While this is not strictly
necessarily, a labelless syntax is assumed (Collins,
2002), such that non-terminal nodes without lexi-
cal labels (bearing no σ ∈ L) represent instantia-
tions of Merge.2

We will start with a simplified, abstract example
for clarity and it will be expanded when movement
is discussed. Consider the input signature:

Σ = {�∗(x, y),≺ (x, y), σi(x)}

where:

• �∗(x, y) is the binary general dominance re-
lation

• ≺ (x, y) is the binary, asymmetric prece-
dence relation

• σi(x) are unary relations for every σi ∈ Σsyn

To keep the discussion tractable while introduc-
ing the main properties of linearization, only lexi-
cal labels are encoded in this structure, but the gen-
eral points about how labels carry over to the out-
put structure hold for the other category and fea-
ture labels. A simplified example of an S-structure

bert et al. (2021), where domain elements are strings in
{0, 1}∗ where a 0 indicates a left child and a 1 indicates a
right child.

2A series of well-formedness conditions can be defined
that more accurately reflect standard syntactic assumptions
(the nodes that select project, encoding feature percolation,
etc.), some of which will be explored later with respect to
movement.

in the signature Σ is shown in Figure 4 over the
arbitrary, abstract alphabet Σsyn = {THE, MAN,
LOVES, THE, CAKE}.

8

7 4

�∗ �∗

≺

6

THE

5

MAN

�∗ �∗

≺ 3

LOVES

2

�∗ �∗

≺

1

THE

0

CAKE

�∗ �∗

≺

Figure 4: Linearization Toy Example

Considering this example, setting aside the is-
sue of movement for later, the linearization intu-
itively yields the string “THE MAN LOVES THE

CAKE”. However, this is a nontrivial task since
branches can be of arbitrary finite length. The next
section lays out an interpretation using First-Order
Logic to yield a string defined using strict prece-
dence.

3.2 Remarks on Linearization
The main contribution of this work is to show that
linearization can be concisely understood as an in-
terpretation between trees and strings. In order to
formalize this, it is crucial to first establish some
theoretical assumptions of both input trees and out-
put strings.

There is a rich body of work debating the status
of linearity and recursion and their presence in syn-
tax and phonology (Scheer, 2012, 2023; Idsardi
and Raimy, 2013; Idsardi, 2018; Elfner, 2015; Ito
and Mester, 2012; Cheng and Downing, 2021;
Miller and Sande, 2021). This paper adheres to the
view that (i) narrow syntax contains recursion but
lacks linearity and (ii) phonology contains linear-
ity but lacks recursion. To understand this, look-
ing at work by Idsardi and Raimy (2013) is help-
ful. They outline three types of linearization, one
of which, immobilization, plays a key role here.
Immobilization transforms hierarchical structures
built via Merge into ordered structures by intro-
ducing adjacency relations. There is a subtle but
crucial point here with respect to the status of lin-
earity in the computation of narrow syntax. The
structure building taking place during narrow syn-
tactic computation is blind to linearity, but linear-
ity is a necessary reflex of externalization given
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the temporal nature of the speech stream. So there
must be a stage after syntactic structures are built
which imposes linearity, and this is precisely the
function of immobilization. The finer details of
immobilization are beyond the scope of this paper,
but similar model-theoretic tools are well-suited to
formalize it. In this framework, we assume that
“flattening” occurs after adjacency relations are es-
tablished. Thus, the input trees of our linearization
are the recursive hierarchical trees built by the nar-
row syntax once they have been embellished with
adjacency information, hence the use of the prece-
dence relation ≺ (x, y).

In what follows, we define this mapping using
First-Order Logic, ensuring that the process re-
mains sufficiently restrictive from a computational
perspective. This formulation allows linearization
to be expressed in a purely declarative manner
rather than as a derivational process. It also fun-
damentally codifies the notion of locality into the
representation, which is known to be important for
the post-syntax (Embick and Noyer, 1999).

3.3 Tree-Flattening as an Interpretation
Consider an input S-structure, a tree denoted Σ,
and an output string G-structure, a string denoted
Γ, representing the concatenation of Σ’s leaves in
the correct order. Recall that the relations of our
output string must be defined in terms of those
input relations (namely, �∗,≺, σi or helper pred-
icates built using these) and this is precisely the
sense in which the output string is being inter-
preted in terms of the input tree.

As before, two pieces are necessary: (i) which
nodes from the input are relevant for the out-
put and (ii) how they are ordered with respect to
each other. The ordering will be a relation called
lin(x, y) to indicate that x and y in the input tree
meet the conditions for x to strictly precede y in
the linearized output string. Intuitively, only the
leaves will be contained in the output structure,
but the ordering between them may not be read-
ily clear at first glance. Taking the tree in Figure 4,
its intended linearization shown pictorially below
in Figure 5. The example will proceed by reason-
ing why the ordering is the way it is, which will
lead to the formal definition.

60

THE

50

MAN

30

LOVES

10

THE

00

CAKE

lin lin lin lin

Figure 5: Output of Linearization Toy Example

We only want to include leaf nodes in our out-
put string, and because the input will not grow
in the output, we only need a single copy set
C = {0}. In fact, this interpretation can be seen
as a mapping that “forgets” the hierarchical infor-
mation and “connects” the leaves in the correct
order via linear precedence. We define a predi-
cate leaf(x) := ¬∃y[�∗(x, y)] that says a node
x is a leaf node iff there is no node y that it dom-
inates. Thus, the labeling relations will take the
following form for each item in the input alphabet
σi ∈ Σsyn:

THE0(x) := THE(x) ∧ leaf(x)

MAN0(x) := MAN(x) ∧ leaf(x)

...

To better understand why the output string has the
linear order it does, some more helper predicates
are defined. A left-leaf is a leaf that has noth-
ing preceding it, and a right-leaf is a leaf that
precedes nothing. Formally,

left-leaf(x) := leaf(x) ∧ ¬∃y[≺ (y, x)]

right-leaf(x) := leaf(x) ∧ ¬∃y[≺ (x, y)]

Using these, we can define predicates to indicate
whether a given node is the left-most leaf of a
particular node, and another to indicate if a given
node is the right-most leaf of a particular node.
For a given node, whichever node is the (unique!)
leaf below it such that nothing is further left is its
left-most leaf and whichever node is the (unique!)
leaf below it such nothing is further right is its
right-most leaf.

The relevance of these becomes clear when
thinking about where lin(x, y) holds true in the
tree in Figure 4. Let’s observe each case: First,
lin(6, 5) because both 6 and 5 are leaves and
≺ (6, 5). Next, lin(5, 3) because there is a node
whose right-most leaf is 5 and it precedes a node
whose left-most leaf is 3, so no other leaves can be
in between them. Next, lin(3, 1) because 3 pre-
cedes a node whose left-most leaf is 1. Finally,
lin(1, 0) for the same reason lin(6, 5), namely
both are leaves and ≺ (1, 0).

Thus, in all of these scenarios, expressing strict
precedence in the output requires reference to left-
most and right-most leafhood. Every node has a
left-most and right-most leaf, and every leaf node
is its own right-most and left-most leaf (since dom-
inance is taken to be reflexive). Defining one more
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helper predicates aids in readability. The follow-
ing predicate indicates that a node y is dominated
by x and dominates z and so we say that y is be-
tween x and z in the tree:

between(x, y, z) := �∗(x, y) ∧�∗(y, z)

Now having seen the importance of these config-
urational relationships to linearization, the formal
definitions for right-most and left-most leafhood
are as follows:

• A node x is the left-most leaf of a node y iff
for all the left-leaf nodes z that y dominates,
the only one with nothing further left is x:

lml(x, y) := ∀z[(�∗(y, z) ∧ left-leaf(z)

∧ ∀s[between(y, s, z)
∧ ¬∃t[≺ (t, s)]]) ↔ z = x]

• A node x is the right-most leaf of a node y iff
for all the right-leaf nodes z that y dominates,
the only one with nothing further right is x:

rml(x, y) := ∀z[(�∗(y, z) ∧ right-leaf(z)

∧ ∀s[between(y, s, z)
∧ ¬∃t[≺ (s, t)]]) ↔ z = x]

Now that these have been given, note that each
of the cases above made some mention of x and y
being the left-most or right-most leaf of two higher
nodes where one precedes the other, we can call
these t and s.3 Any of these configurations leading
to x strictly preceding y in the output string can
be condensed into the following single condition,
also shown pictorially in Figure 6:

lin(x, y) := ∃t∃s[≺ (t, s)∧rml(t, x)∧lml(s, y)]

t s

x y

≺

rml(x, t) lml(y, s)

Figure 6: Conditions for Strict Precedence in Output

3Since any leaf is its own left-most leaf and right-most, it
can be true that either t = x or s = y or both.

What we have done is reduced precedence be-
tween any two nodes in the output string to a sin-
gle declarative condition between nodes the input
tree: the node x will strictly precede y iff this con-
dition holds. One of the primary strengths of this
result is that it doesn’t cast linearization in terms
of a procedure, but rather it reduces it to under-
lying knowledge about the structural relationship
between linguistic elements. Another critical prop-
erty of this method of linearization is that it is de-
finable using First-Order Logic, which is desirable
from a formal complexity standpoint. This is be-
cause it limits its use of quantification to individual
elements as opposed to sets of elements as would
be the case in Monadic Second Order Logic. This
is a nice result with respect to computational com-
plexity, since it is subregular.

There is an important question regarding the
choice of strict precedence in the output string. Re-
call from the earlier discussion of strings that the
choice of representation (strict or general prece-
dence) affects the available generalizations one
can define. Using strict precedence it is natural
to ban immediately adjacent segments like a ban
on any obstruent immediately following a nasal
(say, a *NT constraint). For example, with an
alphabet of Σ = {V,N,T,D}, such a constraint
would accept the string VNDV but reject the string
*VNTV. In fact, this is a strictly local constraint
since it depends only on a window of two ele-
ments (Chandlee, 2014). In contrast, using gen-
eral precedence it is natural to ban sequences of
segments like long distance sibilant harmony that
bans an S following an s anywhere in the string
(say, a *s . . . S constraint). For example, with
an alphabet of Σ = {S,s,v,c}, such a constraint
would accept the string ScvcvS but reject the string
*scvcvS. This is not strictly local because it con-
tains a dependency between elements that can oc-
cur arbitrarily far away from one another. 4 The
choice of strict precedence in the definition of lin-
earization here formally hard-codes locality into
our post-syntactic representations. The output of
our linearization is a string of nodes labeled with
morphosyntactic information and if they are re-
lated via strict precedence, this prunes out arbi-
trary, word-level parallels of these long distance
generalizations. Thus, post-syntactic operations at

4However, it is possible to define Tier-Based Input or Out-
put Strictly Local functions that have a relativized form of ad-
jacency via a particular feature or category, thus naturally con-
straining the ability to make long-distance generalizations.
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this level of representation can be modeled using
ISL functions.

This simplified example did not contain any
feautural information, but this will become rele-
vant when sketching a potential analysis imple-
menting movement. As a start, encoding stan-
dard syntactic mechanisms like selectional require-
ments and feature percolation can be stated as
well-formedness conditions on our input trees. As
an example, suppose we had a well-formedness
condition in our trees that said a non-terminal node
only bears a category label, for example D, iff it
has two children x, y where x shares the category
D and ≺ (x, y), which enforces that the selecting
node will project its features to its parent. Another
example, suppose we define a well-formedness
condition for movement features f which states
that if a leaf node bears a -f feature, this -f fea-
ture must percolate upward to its maximal projec-
tion. These are some ways to understand how this
method of linearization could be expanded going
forward for a more all-encompassing account.

3.4 Incorporating Movement

There are many ways one could imagine incorpo-
rating movement to this analysis. One potential
way is to assume that we have a tree-to-tree map-
ping, where the input tree is a pre-movement tree
and the output is a post-movement tree. While
this does split the division of labor, a notable draw-
back of this approach is that it would require two
separate interpretations: one solely for completing
movement and another for linearization. There is
also the question of how to encode movers. This
could be done by embellishing the alphabet with
movement traces, where our trees would instead
have trace labels at the launching sites and lexical
labels at their landing sites. This would drastically
increase the length of the alphabet since this would
presumably require a trace corresponding to each
label already in L.

Another potential alternative would entail alter-
ing some of our representational assumptions for
input trees. Our input trees could be modified to
include a separate relation to encode movement.
For example, suppose we had a relation M(x, y)
where x is the the highest node of a mover and y
is a node immediately dominating a movement at-
tracting head. This could then be used to define
a structural input condition to determine the place-
ment of x’s children in the output string.

The alternative sketched here assumes move-
ment takes place concurrently with linearization,
sketched using an example in Figure 7. While an
analysis in which trees are built with a syntactic se-
lection relation as opposed to precedence may re-
flect the nature of syntactic computation more ac-
curately, this would be beyond the scope of this pa-
per. Incorporating the exhaustive well-formedness
conditions, movement configurations, successive
cyclic movement or enforcing relativized minimal-
ity in all generality would be considerably much
more involved than is possible here, but such an
analysis is left for further work. Given the fact that
most work in model-theoretic syntax has assumed
the sorts of representations used here, this is suffi-
cient for the central points regarding linearization.

In the tree in Figure 7, substructures that con-
sist of movers are darkened for clarity. In the out-
put string, the string yield of the movers is out-
lined with a dashed box to clarify that these are
the leaves of an entire substructure with relevant
properties from the input. There are two moving
substructures in this tree. One is the substructure
with the root 9, the phrase “THE MAN”, driven
by a nom feature and the other is the substructure
with the root 2, the phrase “WHICH CAKE”, driven
by a wh feature. In the output string, the moved
phrase driven by nom appears to the left of the at-
tracting head T bearing a +nom feature. Similarly,
the moved phrase driven by wh appears to the left
of the attracting head C bearing a +wh feature bear-
ing a -wh feature.

14

C
+wh

13

DID

C
+wh

12

T
+nom

�∗ �∗

≺

11

T
PAST

+nom

10

V

�∗ �∗

≺

9

D
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V

�∗ �∗
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�∗ �∗
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1

WHICH
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-wh

0

CAKE

N

�∗ �∗
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↓
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WHICH

D
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00
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N

00

CAKE
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130
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C
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80
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D
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N
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110

T
PAST

+nom

5

V

3

EAT

V

lin lin lin lin lin lin lin

Figure 7: Linearization Toy Example with Movement
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What is true about each of these moving sub-
structures with respect to these heads? Each of
them are rooted with a node that bears a -f feature
for some movement-driving feature f, as per the
well-formedness condition posited earlier. Thus,
the yield of this substructure should occur before
the f-movement driving head in the output string,
meaning precisely that the rml of the moving sub-
structure will strictly precede this +f head. In the
case of the nom movement, the output string struc-
ture will have 7 (the MAN-bearing node) strictly
preceding 11 (the +nom-bearing T node). Simi-
larly, in the case of the wh movement, the out-
put string structure will have 0 (the CAKE-bearing
node) strictly preceding 13 (the +wh-bearing C
node). Together with the lin(x, y) condition, this
covers the movers themselves and their relation-
ship to the movement-driving heads.

There are two remaining tasks: we must deter-
mine what precedes the mover once it lands and
the nodes around its launching site. Firstly, it must
be ensured that the mover’s lml comes before
the unique node which would have met lin(x, y)
in the input (where y is the movement attract-
ing head). For example, C will strictly precede
the nom-mover’s lml bearing THE. Similarly, the
node bearing WHICH will be the first node in the
string since there is nothing higher than the attract-
ing head. Secondly, it must be ensured that the
nodes surrounding the mover, if they exist, are con-
nected via strict precedence. In other words, the
next highest node that would have met lin(x, y)
where y is the lml of the mover should strictly
precede the next lowest node that would have met
lin(x, y) where x is the rml of the mover. For ex-
ample, the node bearing T will strictly precede the
node bearing V since they “surround” the launch-
ing site. Similarly, the node bearing EAT will be
the final node in the string since there is nothing
lower than the mover in the input tree.

This is only sketched out as an example, but
the entirety of the mapping just described is defin-
able by making modifications to the lin(x, y) con-
dition within First-Order Logic. This is because
in what was just described, it only requires quan-
tification of individual nodes, not arbitrary sub-
sets of nodes, leaving the definition within First-
Order Logic. Even though this substructure can
be arbitrarily large, the only relevant nodes of the
mover to be picked out are its root, rml and lml
and nodes in between are covered by lin(x, y).

An anonymous reviewer points out that the scope
here is limited to a relatively simple case of move-
ment, but further work could provide a more struc-
tured analysis of more complex cases (e.g. multi-
ple movers attracting to a single head, smuggling,
remnant movement, mixed-headedness, etc.) us-
ing these tools and examine whether they remain
within First-Order Logic.

4 Discussion

This novel view of linearization comes with many
theoretical advantages. Firstly, it was shown
(albeit through automata-theoretic as opposed to
model-theoretic means) that Recursive Prosody is
non finite state and thus requires more computa-
tional power (Dolatian et al., 2021). This declar-
ative linearization-as-flattening approach has the
benefit that it only uses First-Order Logic, which
is notably less computationally expensive than
Monadic Second-Order Logic, which is required
for mappings that are finite state or more power-
ful.

This approach may have interesting implica-
tions for our view of the syntax-phonology inter-
face regarding the status of recursion in phonol-
ogy. For a recent view on the debate of the
status of recursive prosodic approaches and pro-
cedural approaches, see Lee and Selkirk (2022);
Newell and Sailor (in press). It is well-known
that there are often mismatches between syntac-
tic and phonological domains (Cheng and Down-
ing, 2016); however, these mismatches often ap-
pear to occur at or very near to Spell-out bound-
aries. Accommodating this notion of “at or very
near to” is extremely amenable to this type of anal-
ysis given its inherent locality properties. If string
yields are embellished with boundary information
(either by means of boundary symbol like ⋊ or
⋉, respectively or relations that hold of a node
φinit(x) or φfin(x), respectively), then it may be
expected that the range of syntax-phonology mis-
matches are accounted for through by employing
Input Strictly Local (ISL) restructuring functions
(Chandlee, 2014), which are very computationally
restrictive. Dobashi (2003, 2019) has work de-
tailing phonological domain restructuring and its
typological implications. These approaches are
nicely compatible and would serve as a fruitful in-
tegration of theoretical and computational results
at the syntax-phonology interface, creating a new
avenue for more formal analyses in this domain.
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There are other computational characterizations
of linearization that exist currently; for example,
(Graf, 2022a,b) gives an elegant formal characteri-
zation which is ISL, a strikingly desirable property
with respect to computational complexity; how-
ever, this does require abiding by quite strong rep-
resentational assumptions about the nature of trees
that are undoubtedly formally well-founded and
rigorous, but have not received a wider adoption
in more general syntactic literature. The analy-
sis makes use of dependency trees, which are rel-
atively uncommon outside of the space of com-
putational syntax. While Graf defines a straight-
forward mapping between more standard phrase
structure trees and dependency trees, the analysis
proposed here takes a view where linearization oc-
curs straight from more standard syntactic repre-
sentations dispensing with the need for such in-
termediate mappings. This also adds to a recent
body of work that has begun to bridge the gap be-
tween theoretical work on the interface and sepa-
rate computational work in phonology and syntax
(Dolatian et al., 2021; Yu, 2021; Vu et al., 2022;
Stabler and Yu, 2023), despite some of the differ-
ing theoretical assumptions regarding the status of
recursion.

5 Conclusion

This paper has presented a novel method of lin-
earization, casting it as a model-theoretic interpre-
tation between strings and trees. It is both compu-
tationally restrictive and hard-codes locality into
the output string representations, all while express-
ing ordering between nodes as a single declara-
tive condition. A potential expansion incorporat-
ing movement was explored through a motivating
example, showing that the tools are amenable to
further modifications. The most central advantage
to this analysis is the fact that it is a step toward
computationally unifying how we think about lin-
guistic modules and their interaction, despite some
of their representational differences.
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Abstract

Adjunction is intuitively a local operation, yet
its subregular complexity is dependent on both
the geometry of the syntactic representation
as well as the specific model of adjunction
assumed. Here, I propose a model of adjunction
which is strictly local (SL) over Minimalist
Grammar (MG) dependency trees, and which
incorporates the core properties of optionality,
iteration, invisibility to selection, and adjunct
ordering restrictions. Non-locality is avoided in
cases of recursive adjunction, and an interesting
treatment of several other formal properties of
adjunction is made possible.

1 Introduction

In the last several years, a two-level classification
of the computational complexity of syntax has
emerged: local dependencies such as selection are
strictly local (SL) over trees, while non-local de-
pendencies such as movement, agreement, and case
assignment are tier-based strictly local (TSL), a
straightforward generalization of SL in which a sub-
set of non-salient elements are ignored (Graf, 2018,
2022b; Hanson, 2023b, 2025; Vu et al., 2019). This
closely matches past results on local and non-local
phonological dependencies, which are predomi-
nantly SL and TSL over strings, respectively (Heinz,
2018), providing evidence of cognitive parallelism
across linguistic domains (Graf, 2022a).

The placement of adjunction within this scheme,
however, has remained unclear, as formal models
of adjunction vary in their subregular complexity
(Graf, 2014). Furthermore, the complexity of ad-
junction interacts with that of selection: in the
derivation tree language for a Minimalist Grammar
(MG) with recursive adjunction, the complexity of
selection is increased to TSL (Graf, 2018). This is
not a terrible state of affairs, as it would mean that
the overall complexity of much of syntax is quite
low, and uniform across operations. At the same

time, selection is typically considered to be highly
local. For example, a verb may select the category
of its complement, but not the complement of its
complement, let alone more distant items, yet this is
exactly what we would predict if selection was TSL.
Similarly, most of the key properties of adjunction
require only a SL grammar (Hanson, 2023a). We
therefore ask: can the non-locality of adjunction,
and by extension selection, be eliminated?

The answer is affirmative. With minor adjust-
ments, the MG dependency tree model defined in
Graf and Kostyszyn (2021) can easily accommodate
a linguistically satisfactory SL model of adjunction,
which includes the core properties of optionality,
iteration, invisibility to selection, and ordering re-
strictions among adjuncts. The primary change re-
quired is to generalize the model to unranked trees,
which have no maximum branching factor. This is
highly natural from a mathematical perspective, and
brings several added benefits. Selection remains
SL, as does the combined grammar for selection
and adjunction, even allowing for a degree of varia-
tion in the position of adjunction. The model also
provides an interesting perspective on the distinc-
tion between left and right adjuncts which suggests
doubling down on separation between dependency
structure and constituency structure, relegating the
latter to the post-syntactic map.

The remainder of this paper proceeds as follows.
First, I introduce the necessary background on
adjunction, MG dependency trees, and strictly local
string and tree languages (§2). Next, I implement
a strictly local grammar for MG dependency trees
which includes selection as well as adjunction in
the style of Frey and Gärtner (2002) (§3). From
there, I refine the system to incorporate recursive
adjunction (§4) and adjunct ordering restrictions
(§5), building on insights from Graf (2018) and
Fowlie (2013). Finally, I address some alternatives
and potential complications for the proposed model,
and directions for future research (§6).
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did :: T+ wh+ C−

𝜀 :: V+ epp+ T−

speak :: P+ D+ V−

she :: D− epp− to :: D+ P−

which :: N+ D− wh−

reporter :: N−
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Figure 1: MG dependency tree (left) and phrase structure tree (right) for Which reporter did she speak to?

2 Background and model

This section briefly describes the properties of ad-
junction that we aim to capture, the MG dependency
tree model, and SL grammars over strings, ranked
trees, and unranked trees. More complex formal
languages play no role in the core analysis, though
several TSL and M[ulti]TSL string languages ap-
pear in §6; see Appendix A for a brief overview
and example grammars.

2.1 Properties of adjunction
We are concerned primarily with the following
properties of adjunction:

1. Optionality – an adjunct may be added or
removed without affecting wellformedness

2. Iteration – if one adjunct may be added in
some context, then any number may be added

3. Ordering restrictions – when two or more
phrases adjoin to the same head, there may be
restrictions on their order

4. Invisibility for selection – the properties of a
phrase are determined by the those of its head,
not those of any adjunct

Some simple examples of adjectival modification
are provided below. (1a) demonstrates optional-
ity and iteration: any combination of adjectives
denoting size, color, and material can be used, as
long as they occur in that order. The remaining
examples show that other logically possible orders
are degraded.

(1) a. a (big) (blue) (wooden) house
b. ?? a blue big house
c. ?? a wooden big house
d. ?? a wooden blue house

Property #4 is more subtle. Empirically, it means
that every phrase represented by (1a) has the same
external distribution. Theoretically, it means that
the features of the noun ‘house’ project, not those
of the adjectives. This is easily lost in models of
adjunction in which the adjective selects the noun,
and can interfere with the locality of selection.

There are other properties of adjunction that we
might also want to treat, but these four will be
our focus, since they are directly related to the
subregular complexity of adjunction. In §6.3, we
will briefly touch on another structural property:
the c-command paradox for right adjuncts.

2.2 MG dependency trees
Here, we briefly outline the MG (Minimalist Gram-
mar) dependency tree model as defined in Graf and
Kostyszyn (2021).1

In MG (Stabler, 1997, 2011), lexical items pair a
phonetic exponent with a string of features which
control how they may combine in a syntactic deriva-
tion. Standard MGs have two types of binary fea-
tures, controlling the operations Merge and Move.
For Merge, we have selector features (F+) and cat-
egory features (F−). For example, the determiner
the has features N+ D− . For Move we have licensor
features (f+), marking the landing site of movement,
and licensee features, marking the head of the mover
(f−). For wh-movement, the landing site bears wh+
and the mover bears wh−. Additional operations
require adding further feature types; we will do this
for adjunction momentarily.

MGs generate a language of derivation trees,
which encode the sequence of operations of
Merge/Move/etc. Several variants exist; here we
use dependency trees, in which all nodes are lexical

1The model first appears in Graf and Shafiei (2019). A
nearly identical framework can also be found in Kobele (2012).
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items (traditional derivation trees will be revisited
in §4). Figure 1 shows a dependency tree for a
simple sentence with wh-movement along with the
corresponding phrase structure tree. The daughters
of each node are its arguments, ordered by asymmet-
ric c-command (that is, reverse order of selection).
Movement is represented only via features; arrows
are provided for visual convenience only.

When we say that selection is SL, we mean that
licit and illicit arrangements of selector and cate-
gory features can be distinguished using a SL tree
grammar. Importantly, the complexity of selection
itself could change if other operations are included
in the tree language. We show that this does not
occur in the dependency tree model: not only does
adding movement not matter (as is well established)
but adjunction can safely be added as well.

2.3 SL languages and grammars
SL string languages and grammars are defined in
terms of 𝑘-factors, which are substrings of a string
augmented with edge markers. For example, the
3-factors of the string abc are:

{⋊⋊a, ⋊ab, abc, bc⋉, c⋉⋉}
A positive SL-𝑘 grammar is a set of permitted

𝑘-factors, while a negative SL-𝑘 grammar is a set of
forbidden 𝑘-factors. Here, we make use of positive
grammars (interconversion is always possible). For
example, a positive SL-3 grammar consisting of
just the above factors would generate the string abc
and no others. If we add the factors {cab, bca},
then we can also generate abcabc, abcabcabc, etc.
By further adding {abb, bbc}, we can optionally
double the b to produce abbc, abcabbc, etc.

A string language is strictly 𝑘-local (SL-𝑘) iff it
can be described using a positive or negative SL-𝑘
grammar. As a regular expression, the language of
the above example is (𝑎𝑏(𝑏)𝑐)+. See Rogers et al.
(2013) for a formal definition and further context.

SL languages/grammars are easily extended to
ranked trees, which have a fixed maximum branch-
ing factor. They can be further extended to un-
ranked trees, which have no such restriction, by
associating each node with an SL string language
that constrains its string of daughters.2 We consider
each of these cases in turn.

2Such a tree language cannot be implemented with a
standard bottom-up deterministic tree automaton (BDTA).
Instead, the states of the daughters are processed by a finite
state string automaton, and final state of the string automaton
is combined with the mother node’s label to determine its state.
See Comon et al. (2008) for details.

2.4 Ranked trees, selection
Traditionally, regular and subregular tree languages
are defined over ranked trees, in which each element
has a fixed number of daughters, known as its
rank. The maximum branching factor of a tree is
therefore bounded by the highest ranked element it
contains. For such trees, a SL-𝑘 tree grammar is
just a set of permitted/forbidden subtrees of height 𝑘
(Rogers, 1997). For the grammar which generated
the example in Figure 1, these include the following,
among others:

(2) Some permitted subtrees of height 2
𝜀 :: V+ epp+ T−

speak :: P+ D+ V−

speak :: P+ D+ V−

she :: D− epp− to :: D+ P−

to :: D+ P−

which :: N+ D− wh−

which :: N+ D− wh−

reporter :: N−

Of course, this can and should be condensed into
a format which encodes the relevant generalizations,
e.g., every verb with the selector features P+ D+

should have exactly two daughters, bearing D− and
P− , in that order. We will do this in the next section.
For now, we note that because the largest portion of
the tree we need to examine is of height 2 and the
number of possible subtrees is finite, we can list all
licit/illicit subtrees, so selection is SL-2.

2.5 Unranked trees, adjunction
We base our system on the work of Frey and Gärt-
ner (2002), who treat adjunction as asymmetric
feature checking. We add a new class of adjunction
features, notated F≈. Modifying adjectives, for
example, bear N≈, since they adjoin to NPs. Ad-
junction features must be checked against a match-
ing category feature, but the category feature of
the head remains unchecked. This contrasts with
Merge and Move, whose positive features must be
checked against negative features in a one-to-one
manner. Adjunction is therefore optional, and may
also iterate.

In the MG dependency tree model, it is extremely
natural to treat adjuncts as dependents of their heads,
preceding all specifiers and complements. This
is implicitly assumed by Shafiei and Graf (2020)
in their model of adjunct islands, and I do the
same in Hanson (2023a) to handle adjunct ordering.
However, neither work formalizes this, nor do they
treat recursive adjunction. Below are dependency
trees for DPs with 0, 1, 2, and 3 NP adjuncts,
respectively.
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(3) Adjuncts as dependents of the head

the wolf the big wolf the big bad wolf
the :: N+ D−

wolf :: N−

the :: N+ D−

wolf :: N−

big :: N≈

the :: N+ D−

wolf :: N−

big :: N≈ bad :: N≈

the big bad scary wolf
the :: N+ D−

wolf :: N−

big :: N≈ bad :: N≈ scary :: N≈

There are two key things to notice here. First,
the noun and its selector remain adjacent, as does
the string of adjuncts and their head. This means
that adjunction to XP is invisible to selection of
XP by another head Y, as desired. Second, there
is no finite bound on the number of daughters of
a node. We therefore require unranked trees, in
which the daughters of a node no longer form a
tuple, but a string. Rather than exhaustively listing
licit subtrees, the label of each node is mapped to a
daughter string language, which may be infinite;
many examples are given in the following sections.
As for the formal implementation, the definition
of an MG dependency tree language needs to be
adjusted slightly, though we do not do this here.3

In the next section, we construct a generalized
SL grammar for unranked trees which handles both
selection and adjunction, and show that it works for
the above structures, among others. In the following
sections, we make some minor adjustments in order
to incorporate recursive adjunction and adjunct
ordering hierarchies.

2.6 Classes of tree grammars
The computational complexity of a tree language
need not be uniform in both the vertical and horizon-
tal dimensions. Adapting the terminology of Graf
and Kostyszyn (2021), a SL-𝑖[SL- 𝑗] tree grammar
has a window of 𝑖 in the vertical dimension and 𝑗 in
the horizontal dimension, the latter corresponding
to the daughter string languages. It is also possible
to use more a more powerful mechanism in one
or both dimensions. For example, the analysis of

3The first order constraints in Graf and Kostyszyn (2021)
are meant to be combined with an appropriate axiomatization
for the class of ranked finite trees; our modified version should
be instead be combined with the class of unranked trees.
Backofen et al. (1995) provide first-order theories of both
ranked and unranked trees which are minimally different and
have the desired properties, though infinite trees are not ruled
out, as this requires at least monadic second order logic.

movement in Graf (2022b) is TSL with a window
of 2 in both dimensions, making it TSL-2[TSL-2],
while the analysis of case in Hanson (2023b) is
MTSL-2[TSL-2], as it involves multiple tree tiers.
For present purposes, the window in the vertical
dimension will never vary (it is not obvious how
a window larger than size 2 would even work),
but the window of the daughter string languages
may vary depending on the number of arguments.
When the window in the horizontal varies by daugh-
ter string language, we take the upper bound as
representative.

3 Adjunction without non-locality
We begin by constructing a SL grammar which
covers selection and adjunction for unranked trees,
implementing the system from the previous section.
We then augment the system to include recursive
adjunction and adjunct ordering restrictions. The
approach is closely mirrors the use of TSL tree
grammars in Graf (2018) and subsequent work
except that the tier projection step, needed only for
long-distance dependencies, is omitted.

For now, we make no distinction between left and
right adjuncts: their position in the dependency tree
represents only their structural (=scopal) position.
We present a potential problem with this assumption,
as well as a solution, in §6.3.

3.1 Selection
First, consider the case where a node has only
arguments or adjuncts among its daughters, but
not both. The rules for selection and adjunction in
isolation are exceedingly simple, being finite and
SL, respectively. We begin with selection.

(4) Select: If a node bears the sequence of selector
features X1

+, . . . , Xn
+, then its 𝑖th daughter

from the right must bear category feature Xi
− ,

for all 1 ≤ 𝑖 ≤ 𝑛.4

For example, devour is an obligatorily transitive
verb, with selector features D+ D+. Therefore, its
daughter string language consists of all strings of
length two in which the category of each item is D− .
There is a finite number of selector features on any
given lexical item, and the lexicon itself is finite,
so the daughter string language of each node is
finite, and therefore also strictly local. Specifically,
if the number of arguments is 𝑛, the daughter string
language is SL-(𝑛+1). In the case of devour:

4Recall that the arguments of a node appear in reverse
merge order.
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(5) Selection grammar for devour (SL-3)
𝐺+ = {⋊⋊D−, ⋊D−D−, D−D−⋉, D−⋉⋉}

The complete grammar is a map from the label
of the mother to the grammar for its daughter string,
based only on its selector features. If the maximum
number of selector features is 𝑛, then in the classi-
fication introduced in §2.6, the complexity of the
tree grammar is SL-2[SL-(𝑛+1)], since we make
use of a window which is of height 2 and width
(𝑛+1).

3.2 Adjunction
Next, we introduce our adjunction rule.

(6) Adjoin: If a node bears category X−, then it
may bear zero or more daughters bearing X≈.
No other daughters with adjunction features
are allowed.

For example, wolf bears N−, so it may have
zero or more daughters bearing N≈. If we map the
label of each node to just its adjunction feature, the
daughter string language for each category X can
be described with the positive grammar {⋊⋉, ⋊X≈,
X≈X≈, X≈⋉}, and is therefore SL-2. Since devour
and most other verbs have at least one argument,
we provide a concrete example for wolf instead:

(7) Adjunction grammar for wolf (SL-2)
𝐺+ = {⋊⋉, ⋊N≈, N≈N≈, N≈⋉}

As stated, neither of the above rules works for
nodes with both arguments and adjuncts among its
daughters. Now we combine the two cases.

3.3 Combining the constraints
Recall that we assume all adjuncts to precede all ar-
guments. Therefore, the combined daughter string
language template is the concatenation of the two.

(8) Select + Adjoin: If a node bears the sequence
of selector features X1

+, . . . , Xn
+ and category

feature Y− , then its daughter string consists of
zero or more daughters bearing Y≈ followed
by n daughters bearing category feature Xi

−,
from right to left, for all 1 ≤ 𝑖 ≤ 𝑛.

SL languages are not in general closed under
concatenation, so we must show that concatenation
is possible in this case. Specifically, we show
that the combined daughter string language schema
has a factor width equal to the higher of the two
source grammars: if 𝑛 is the maximum number of
selector features, then the combined grammar is
SL-2[SL-𝑘], where 𝑘 is the greater of {2, (𝑛+1)}.

The construction is as follows. First, we convert
the SL-2 adjunction grammar to SL-(𝑛+ 1) by
padding its factors, and also remove any factors
that allow a string to end without any arguments.
Second, we add these to the factors of the selection
grammar. Finally, we add any factors needed to
transition from an adjunct to the highest argument.

A concrete example for devour is shown below.
As before, we map each node label to just its ad-
junction or category feature for brevity.

(9) Combined grammar for devour (SL-3)
𝐺+ = {⋊⋊D−, ⋊D−D−, D−D−⋉, D−⋉⋉,
⋊⋊V≈, ⋊V≈V≈, V≈V≈V≈, ⋊V≈D−, V≈V≈D−,
V≈D−D−}

Let us apply this grammar to the node devour
in the dependency tree for the sentence The big
bad wolf quickly devoured the little pig, shown
below. For simplicity, we truncate the tree at the
VP level and omit movement features. The reader
may confirm that all 3-factors of the daughters of
devour are licit. To ensure that the entire tree is
licit, we repeat this procedure for every node.

(10) a. Dependency tree:
devour :: D+ D+ V−

quickly :: V≈ the :: N+ D−

wolf :: N−

big :: N≈ bad :: N≈

the :: N+ D−

pig :: N−

little :: N≈

b. DS of devour: V≈ D− D−

c. 3-factors of DS: {⋊⋊V≈, ⋊V≈D−,
V≈D−D−, D−D−⋉, D−⋉⋉}

The construction is essentially identical for items
with three or more arguments. For those with just
one, the selection grammar is already SL-2, so
no padding of the adjunction factors is required.
For items with no arguments (including the verb
rain and many nouns), we are back to the plain
adjunction grammar, which remains SL-2.

To briefly review, we achieved a combined SL
model of selection and adjunction over unranked
trees, whose grammar is a mapping from node labels
to daughter string languages, each of which is SL,
for a combined complexity of SL-2[SL-𝑘], with
𝑘 ≥ 2. Now, we introduce recursive adjunction.

4 Recursive adjunction
We follow the lead of Graf (2018) by reintroducing
category features on adjuncts. For example, mod-
ifying adjectives carry A− N≈, and adverbs carry
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either Adv− A≈ or Adv− V≈. Below is an example
adverbial modification of adjectives, which in turn
modify a noun.

(11) the very big very bad wolf

the :: N+ D−

wolf :: N−

big :: A− N≈

very :: Adv− A≈

bad :: A− N≈

very :: Adv− A≈

Locality is clearly preserved in the dependency
tree model, since adding an adverb under an ad-
jective does not interrupt adjacency between the
adjective and the head noun, just as adding an adjec-
tive below a noun does not affect the relation with
the selecting determiner. Furthermore, although
some category features are no longer checked with
a corresponding selector feature, this can be deter-
mined just from the label of the node in question, so
we do not even need to change the SL tree grammar.
We continue to distinguish items with and without
a final adjunction feature, just as before.

At this point, I should briefly describe the prob-
lem that occurs with recursive adjunction in tradi-
tional MG derivation trees. In this system, internal
nodes represent the Merge/Move/Adjoin operations,
and all leaves are lexical items. The derivation tree
for the current example is shown below.

(12) the very big very bad wolf
Merge

the :: N+ D− Adjoin

Adjoin

very :: Adv− A≈ big :: A− N≈

Adjoin

Adjoin

very :: Adv− A≈ bad :: A− N≈

wolf :: N−

Here, an adjunct and its head are not necessarily
adjacent, and the distance grows without bound
if the adjunct itself serves an an adjunction site.
As a consequence, adjunction is not SL for any
window size. Furthermore, selection is not SL
either, since the distance between the D head and
the N head grows without bound as adjuncts are
added. If not for recursive adjunction, strict locality
of selection could be rescued via a chain analysis
(e.g. D licenses A, which licenses A, which licenses
N). But with recursive adjunction, the intervening
A heads themselves are not guaranteed to lie within
any finite window.

According to Graf (2018), Merge and Move are
structure-sensitive TSL (SS-TSL) over derivation
trees (see De Santo and Graf 2019 for the string
case); the complexity of Adjoin is left open, though
it is clearly not SL. Several phonological phenom-
ena are SS-TSL over strings (Graf and Mayer, 2018;
Mayer and Major, 2018), so this is not a catastro-
phe. Additionally, as Graf notes, it would mean
that Merge and Move are extremely closely related
in formal terms, mirroring the view in Chomsky
(2004). However, as the evidence accumulates that
SL and TSL are sufficient for most syntactic phe-
nomena under the dependency tree model (Graf,
2022b; Hanson, 2023b, 2025), one gets the impres-
sion that the need for SS-TSL is an artifact of the
derivation tree representation.

This requires elaboration since, as a reviewer
remarks, there is an inherent trade-off between rep-
resentational and computational complexity, such
that one can often be reduced by increasing the other.
In this case, the information in each representation
is comparable, with sister order in the dependency
replacing the extra nodes of the derivation tree,
but the computational complexity of the former is
lower. Furthermore, the range of patterns which
SL/TSL can produce have wide empirical support,
while SS-TSL serves primarily to factor out the
extra nodes of the derivation tree. An exception
can be found in Principle B of the binding theory,
which seems to require SS-TSL (Graf and Shafiei,
2019), mirroring the occasional SS-TSL pattern in
phonology, but this does not seem to be needed for
most operations. In summary, the dependency tree
model allows us to minimize the overall complexity
of the system while also providing the best fit to the
known typology.

5 Adjunct ordering restrictions

The adjustment we made for recursive adjunction
also lays the groundwork for encoding adjunct
ordering restrictions. The basic insight by Fowlie
(2013) is that a principled treatment of adjunction
ordering requires a pair of features rather than a
single adjunction feature. By tracking both the
position in the hierarchy and the adjunction target
simultaneously, we can avoid resorting to low level
tricks such as adding unmotivated empty categories
or exploding the lexicon.

Rather than implementing her exact system, we
make use of the pairing of category and adjunc-
tion features already in play. Specifically, we split
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our adjunction features by adding an index corre-
sponding to the position the item must take in the
relevant ordering hierarchy. The primary difference
between our approach and Fowlie’s is that while she
uses paired features primarily to label adjunction
nodes in the derivation tree, we label the adjuncts
themselves. Consider again the example from (1),
repeated below with its dependency tree.

(13) a big blue wooden house
a :: N+ D−

house :: N−

big :: A− N1
≈ blue :: A− N2

≈ wooden :: A− N3
≈

In this case, we included only three indices, but
we can include as many as we need as long as the
number of positions is finite. In the style of the
preceding examples, the rule is as follows:

(14) Ordered adjunction: If a node bears cat-
egory feature X which has 𝑛 positions in
its adjunction hierarchy, then any pair of
daughters di, dj bearing Xi

≈ and Xj
≈, where

1 ≤ 𝑖 < 𝑗 ≤ 𝑛, must be ordered such that di
precedes dj.

As discussed by Hanson (2023a), ordered ad-
junction is SL-2, just like simple adjunction, even
allowing for iteration, e.g. the big big big blue house.
Viewed as a finite state automaton, the daughter
string language is just the reflexive transitive closure
of the order of adjunction categories. Rather than
clutter the above definition, we proceed directly to
the template which covers all cases:

(15) Adjunction grammar for category N (SL-2)
𝐺+ = {⋊⋉, ⋊N1

≈, ⋊N2
≈, ⋊N3

≈, N1
≈N2

≈,
N2

≈N3
≈, N1

≈N1
≈, N2

≈N2
≈, N3

≈N3
≈, N1

≈⋉,
N2

≈⋉, N3
≈⋉}

This grammar can then be combined with the
selection grammar as before.

It is natural to ask whether it might be better to
split the category feature of the adjunct rather than
the adjunction feature. This would also presumably
work, and would in fact be more faithful to Fowlie’s
system. One small downside is that increases the
size of the lexicon somewhat. For example, if we
split category A into S(ize)/C(olor)/M(aterial)/etc.
then predicational use of adjectives will require
duplicate lexical entries for all selecting heads (be,
seem, etc.). The same is true of adjective modifiers
such as very. While Fowlie presents some poten-
tial solutions, the present approach sidesteps these

problems altogether, as the effects of the split are
isolated to just the context where they are desired.
We further discuss this alternative in Section 6.4.

6 Extensions and alternatives

At this point, we have achieved what we set out
to do: we have constructed a simple SL model of
adjunction which handles all of the properties spec-
ified at the outset, and which avoids non-locality
in cases of recursive adjunction. Now, we address
some other issues which have not been our focus,
some possible extensions of the current system,
and how some other systems compare. For brevity,
some of the string languages in this section are de-
fined using regular expressions, with the grammars
relegated to Appendix A.

6.1 Ordered and unordered adjuncts
So far, we have mostly ignored adjuncts without
ordering hierarchies, which traditionally include
PPs. To a certain degree, there is not much to say
about them since, if they are indeed unordered with
respect to each other, then the simple adjunction
grammar from Section 3 will do the job. The fact
that they are linearized to the right in English can
be seen as a part of the mapping to the surface,
independent of the dependency tree.

However, there is potential danger to the SL anal-
ysis when we consider both ordered and unordered
adjuncts together. Suppose for the sake of argument
that PPs can be interspersed among adjectives or
adverbs (as determined by scope), and that they can
also iterate in each position. This would yield a
daughter string language along the following lines:

(16) Ordered APs and unordered PPs
𝑃∗ · 𝐴∗

1 · 𝑃∗ · 𝐴∗
2 · 𝑃∗ · 𝐴∗

3 · 𝑃∗

Such a language is not SL, since we need adjacent
items in the adjective hierarchy to appear in the
same window yet there is no limit to the number
of P heads which may intervene. It is uncertain
whether this scenario is actually realistic, but if
so, then the daughter string languages for selection
and each type of adjunction become TSL, and the
combined language would be Multi-TSL (MTSL;
see De Santo and Graf 2019), since the tiers for
each would be different. Even if such constructions
exist, it could be that left and right adjuncts are
not actually interspersed in the dependency tree, in
which the daughter string language remains SL-2.
We consider this possibility in Section 6.3.
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6.2 The position of adjunction
In the above analysis, we assumed that all adjuncts
precede all arguments in the derivation tree, which
is equivalent to the assumption that all adjunction
occurs at the XP level. It is also conceivable
that adjuncts could occur in other positions. For
example, Frey and Gärtner (2002) assume that
manner adverbs attach to the verb before the object
does in their analysis of German.

We should therefore consider the possibility that
the position of adjunction features within the MG
feature string may vary. Indeed, one could make the
argument that the SL model predicts such variation.
In the example just cited, all manner adverbs follow
the complement, which is an easy change. We might
also ask whether there exist any systems which
are not SL. For example, consider a hypothetical
language in which PP adjuncts can be inserted freely
in any position, similar to (16):

(17) Hypothetical non-SL version of devour
𝑃∗ · 𝐷 · 𝑃∗ · 𝐷 · 𝑃∗

This particular example would again be MTSL.
If adjunction is SL, then such adjunction paradigms
should not exist, even if some other variants do.

6.3 Left vs. right adjuncts
Right adjuncts in English are unordered, with con-
stituency and scope diagnostics suggesting that the
outer adjuncts are higher, but c-command diagnos-
tics such as NPI licensing go the other way.

(18) a. John saw [no one] [anywhere].
b. * John saw [anyone] [nowhere].

(Ernst, 1994)
In previous work (Graf and Shafiei, 2019;

Hanson, 2025), a relation called d[erivational]-
command, which combines the dominance and
left-sister relations of the dependency tree, serves
as the analog of c-command in the phrase structure
tree. The NPI data can therefore be accommodated
if we assume that right adjuncts appear after all
arguments in the dependency tree.

(19) Abbreviated dependency tree for (18a), show-
ing d-command relations

𝜀 :: V+ T−

saw :: D+ D+ V−

John :: D− no one :: D− anywhere :: Adv− V≈

In doing so, we affirm the idea that sister order
encodes command at the expense of losing a direct

correspondence to constituency and scope. These
would instead need to be introduced in the mapping
from the dependency tree to the corresponding
phrase structure tree. Such an approach would be
reminiscent of the dual model of ‘cascade syntax’
and ‘layered syntax’ in Pesetsky (1996). I leave the
exploration of this possibility to future work.

6.4 Adjunct subcategories
As mentioned in Section 5, the closest alternative
to the proposed approach to adjunct ordering—
splitting the category rather than the adjunction
feature—introduces some lexical redundancy in-
dependent of that introduced by the inclusion of
adjunction features. But perhaps we could do
away with adjunction features entirely and rely
on the local context to identify adjunction, as in
Fowlie (2013). The structure of the daughter string
language would be essentially identical, just with
N1

≈/N2
≈/N3

≈ substituted by S−/C−/M−, and so on.
This has been done for example (15) below:

(20) Adjunction grammar for category N (SL-2)
𝐺+ = {⋊⋉, ⋊S− , ⋊C− , ⋊M− , S−C− , C−M− ,
S−S−, C−C−, M−M−, S−⋉, C−⋉, M−⋉}

Aside from creating some lexical redundancy in
the selectors of S/C/M/etc., a major disadvantage of
such a model from a subregular perspective is that
arguments and adjuncts of the same category can
no longer be easily distinguished for long-distance
operations such as movement, as sisterhood in the
dependency tree is not preserved by projection to
a tree tier. Arguments and adjuncts are usually
thought to differ in their behavior with respect to
movement (both as movers and as containers for
movers), casting doubt on the viability of such an
approach, though see §6.6 for a counterargument.

6.5 Selectional approaches
As noted by Fowlie (2013), models that attempt to
reduce adjunction to selection suffer from various
formal and linguistic shortcomings, particularly in
accounting for ordering hierarchies. For example,
we could implement a functional sequence, e.g. D
< S < C < M < N, by including empty elements
to fill the unused slots. Each modifier needs a
single lexical entry, but the empty items have no
independent morphological or semantic motivation
and are therefore “nothing more than a trick to hold
the syntax together” (Fowlie, 2013, p. 16).
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(21) Functional sequence
wooden :: N+ M− 𝜀 :: N+ M−

blue :: M+ C− 𝜀 :: M+ C−

big :: C+ S− 𝜀 :: C+ S−

the :: S+ D−

Conversely, we can avoid empty heads by means
of lexical homophony, but the lexical redundancy
factor is far worse than other alternatives, on the
order of 𝑛2 (ibid.). Even if we dismiss the increased
memory burden, the pattern feels particularly acci-
dental when analyzed in this way, as there is nothing
which prevents items of the same category from
selecting a different set of ‘next’ elements.

(22) Massive homophony
wooden → N+ M−

blue → N+ C− / M+ C−

big → N+ S− / M+ S− / C+ S−

the → N+ D− / M+ D− / C+ D− / S+ D−

A third alternative, not considered by Fowlie,
utilizes ‘adjunctizer’ heads which introduce the
adjunct itself as a specifier. This contains the scope
of redundancy to a small subset of the lexicon, but
then we are back to the problem of unmotivated
empty elements.

(23) Adjunctizer heads
m-adj → N+ M+ M−

c-adj → N+ C+ C− / M+ C+ C−

s-adj → N+ S+ S− / M+ S+ S− / C+ S+ S−

the → N+ D− / M+ D− / C+ D− / S+ D−

In each case, the difficulty of distinguishing ar-
guments and adjuncts which we noted earlier still
applies. Overall, it seems to be preferable to keep
adjunction as a distinct operation, and factor out
ordering restrictions into the SL grammar.

6.6 Additional puzzles
Throughout this paper, I have assumed that the given
generalizations about adjunction are actually cor-
rect, but various exceptions have long been known.
For example, as a reviewer notes, violations of
the adjective order in cases of recursive adjunction
seem less bad compared to simple adjunction.

(24) a. a big blue house
b. ?? a blue big house

(25) a. a very big very blue house
b. ? a very blue very big house

As discussed by Hanson (2023a), there are var-
ious ways in which adjunct orders are more fluid

than is often supposed; in languages such as Ger-
man, they seem not to exist (Thomas Graf, p.c.).
It is therefore not clear that they should even be
modeled in the syntactic grammar. For present
purposes, the crucial point is that if we decide to
do so, they remain within the power of SL.

Similarly, I have taken for granted that the
argument-adjunct distinction exists and must be
accounted for. This might also not be so clear cut:
a reviewer cites McInnerney (2022), who argues
that the distinction is not well-supported on syntac-
tic or semantic grounds. This seems compatible
with the central claim of this paper, since selection
and adjunction are SL both in isolation and in com-
bination. It would be only a small step to eliminate
the distinction entirely, with the caveats discussed
in §6.5. That said, given that the study by McIn-
nerney focuses almost exclusively on PPs, further
investigation is needed to determine whether the
same arguments apply to adjectives and adverbs.

7 Conclusion

I have shown that a linguistically appealing model
of adjunction based on a pairing of category and
adjunction features is SL over MG dependency
trees, inclusive of formal challenges such as recur-
sive adjunction and adjunct ordering restrictions.
Selection and adjunction can be combined into a
single SL daughter string language, and beyond
this, certain variants such as low manner adverb
attachment and the distinction between left and
right adjuncts may be accommodated.

Overall, these results support the classification
of adjunction as a local phenomenon. If it is
determined that the interspersing of ordered and
unordered adjuncts in the dependency tree cannot be
avoided, then the combined complexity of selection
and adjunction increases to SL-2[MTSL-𝑘]. Now
that most major syntactic operations (selection,
adjunction, movement, case, agreement, binding)
have been studied in isolation, the next step is to
determine to what extent the interactions between
them can be handled within the bounds of the
(M)TSL tree languages.
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A Additional adjunction grammars

Section 6 provided examples of daughter string lan-
guages for several hypothetical adjunction patterns,
not all of which are SL. Very briefly, a TSL lan-
guage is one in which certain elements are ignored,
forming a tier projection. Which elements appear
on the tier is determined completely by their labels,
and those that do are treated as if adjacent, subject
to a SL grammar. See Heinz et al. (2011); Lambert
and Rogers (2020) for details. An MTSL grammar
is just the intersection of several TSL grammars
(De Santo and Graf, 2019).

A.1 Ordered and unordered adjuncts
First, the hypothetical language from §6.1, which
freely intersperses ordered AP adjuncts and un-
ordered PP adjuncts, is repeated below. The con-
straints of the grammars are unchanged from our
earlier SL grammars. The only difference is that tier
projection is used to ignore adjuncts of the opposite
type. For simplicity, I use mnemonic labels rather
than MG feature specifications.

(26) Ordered APs and unordered PPs (MTSL-2)
a. Language:

𝑃∗ · 𝐴∗
1 · 𝑃∗ · 𝐴∗

2 · 𝑃∗ · 𝐴∗
3 · 𝑃∗

b. AP adjunction grammar (TSL-2)
𝑇 = {𝐴1, 𝐴2, 𝐴3}

𝐺+=




⋊⋉,⋊𝐴1, ⋊𝐴2, ⋊𝐴3,
𝐴1𝐴2, 𝐴2𝐴3,

𝐴1𝐴1, 𝐴2𝐴2, 𝐴3𝐴3,
𝐴1⋉, 𝐴2⋉, 𝐴3⋉




c. PP adjunction grammar (TSL-2)
𝑇 = {𝑃}
𝐺+= {⋊⋉,⋊𝑃, 𝑃𝑃, 𝑃⋉}

A.2 Unordered adjunction everywhere
If unordered adjuncts can be freely interspersed
with arguments, the result is MTSL, similar to
free mixing of ordered and unordered adjuncts. In
Section §6.2, I predicted that this should not occur.

(27) Unordered adjunction + selection (MTSL-3)
a. Language:

𝑃∗ · 𝐷 · 𝑃∗ · 𝐷 · 𝑃∗

b. Selection grammar (TSL-3)
𝑇 = {𝐷}
𝐺+= {⋊⋊𝐷,⋊𝐷𝐷, 𝐷𝐷⋉, 𝐷⋉⋉}

c. Adjunction grammar (TSL-2)
𝑇 = {𝑃}
𝐺+= {⋊⋉,⋊𝑃, 𝑃𝑃, 𝑃⋉}

A.3 Low adjunction
The proposed daughter string language and gram-
mar proposed for low manner adverbs as described
in §6.2 is given below. Unlike the previous gram-
mars, this one remains SL.
(28) Low adjunction equivalent of devour (SL-3)

a. Language:
𝐷 · 𝐷 · 𝐴𝑑𝑣∗

b. Grammar:

𝐺+ =




⋊⋊𝐷, ⋊𝐷𝐷, 𝐷𝐷⋉,
𝐷⋉⋉, 𝐷 𝐷 Adv, 𝐷 Adv Adv,

Adv Adv Adv, 𝐷 Adv⋉,
Adv Adv⋉, Adv⋉⋉




This could be further generalized to allow differ-
ent types of adjuncts in different positions as long
as they can be distinguished from one another, as
shown below.

A.4 Left and right adjuncts
I noted in §6.3 that a grammar with left adjuncts at
the beginning and right adjuncts at the end would
be SL, as long as distinct indices are used. In this
case, we can safely allow ordered adverbs on the
left and unordered adverbs and PPs on the right.

For simplicity, I assume a single index R for
right adjuncts, and I do not pad the 2-factors to
3-factors as is technically required (such a factor
should be interpreted as standing in for any 3-factor
that contains it as a substring). Effectively, we
combine the grammars from (9) and (28).
(29) Left and right adjunction (SL-3)

a. Language:
𝐴𝑑𝑣∗1 · 𝐴𝑑𝑣∗2 · 𝐴𝑑𝑣∗2 · 𝐷 · 𝐷 · 𝐴𝑑𝑣∗𝑅

b. Grammar:

𝐺+ =




⋊⋉, ⋊𝐴1, ⋊𝐴2, ⋊𝐴3,
𝐴1𝐴2, 𝐴2𝐴3,

𝐴1𝐴1, 𝐴2𝐴2, 𝐴3𝐴3,
𝐴1𝐷, 𝐴2𝐷, 𝐴3𝐷,

⋊⋊𝐷, ⋊𝐷𝐷, 𝐷𝐷⋉, 𝐷⋉⋉,
𝐷𝐴𝑅, 𝐴𝑅𝐴𝑅, 𝐴𝑅⋉



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Abstract

Should phonotactic knowledge be modeled as
categorical or gradient? In this paper, I present
new data from a Turkish acceptability judgment
study that addresses some limitations of previ-
ous work on this question. This study shows
that gradient models account for the variability
in acceptability ratings better than categorical
ones. However, I suggest that the distinction be-
tween gradient and categorical models is some-
what superficial when we think of models in a
mathematically general way. I propose on this
basis that both categorical and gradient models
have a role to play in linguistic research.

1 Is phonotactics gradient or categorical?

Phonotactics is the restrictions that languages place
on how sounds can be sequenced into words. Dif-
ferent languages impose different phonotactic re-
strictions. For example, although English and Span-
ish both contain the sounds {k, p, s, i}, a word like
/skip/ ‘skeep’ is only possible in English. Spanish
has more restrictive phonotactics, prohibiting /s/-
initial complex onsets. For similar reasons, a word
like /fstSONs/ is a perfectly fine Polish word (wstrząs
‘shock’), but would not be a suitable English word
because of English’s more restrictive onset phono-
tactics. It is generally accepted that phonotactic
knowledge is learned by generalizing across forms
in the lexicon (e.g. Chomsky and Halle, 1968; Bai-
ley and Hahn, 2001; Edwards et al., 2004).

One common method of probing phonotactic
knowledge is phonotactic acceptability judgments,
where participants are asked to rate the acceptabil-
ity of novel words as possible words in their lan-
guage. A longstanding empirical observation is
that phonotactic acceptability judgments are gradi-
ent. That is, participants do not simply treat words
as acceptable or not, but rather ascribe varying de-
grees of acceptability to them. A classic example
from Chomsky and Halle (1968) is the three nonce
words /blIk/, /bnIk/, and /bnzk/. Despite all three

being unattested in English, English speakers (or
at least Chomsky and Halle) rank them in terms of
acceptability such that /bnzk/ ≪ /bnIk/ ≪ /blIk/.
That is, speakers judge /bnIk/ to be a more accept-
able word than /bnzk/, but a less acceptable word
than /blIk/. Similar results have been found in a
wide range of studies (e.g. Coleman and Pierrehum-
bert, 1997; Scholes, 1966; Hayes, 2000; Bailey and
Hahn, 2001; Hayes and Wilson, 2008; Albright,
2009; Daland et al., 2011, a.o.).

Two question that naturally arise from these re-
sults are where this gradience comes from and how
we should represent it in our models of language.
There have been two broad theoretical approaches,
which we will cover in the following sections (see
Schütze, 1996, for a discussion of these perspec-
tives in linguistics more broadly).

1.1 Gradient models of phonotactics

The first approach proposes that we see gradience
in these studies because the phonotactic grammar is
itself gradient, or that a gradient measure of accept-
ability can be derived from the grammar. Chomsky
and Halle (1968) write that “a real solution to the
problem of ‘admissibility’ will not simply define
a tripartite categorization of occurring, accidental
gap, and inadmissible, but will define the ‘degree
of admissibility’ of each potential lexical matrix in
such a way as to distinguish /blIk/ from /bnIk/ and
/bnIk/ from /bnzk/, and to make numerous other
distinctions of this sort” (pp. 416–417). They
operationalize this ‘degree of admissibility’ as a
quantity derived from the phonological grammar
and the lexicon: the minimum number of featural
changes required to convert a word into an existing
word in the language. Chomsky and Halle also
note that this gradience exists within the lexicon
itself (p. 418). In English, for example, there are
semi-admissible words like /sfINks/ ‘Sphinx’ that
constitute exceptions to otherwise strong phonotac-
tic restrictions on onset formation.
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Chomsky and Halle do not do away with the con-
cept of grammaticality: there are still forms that
can be produced by the grammar and forms that
cannot. Rather, they suggest that a gradient accept-
ability score can be derived from the grammar by
some additional mechanism. Subsequent propos-
als have gone further, claiming that the grammar
itself generates both categorical and gradient out-
comes: whether we get one or the other depends
primarily on the amount of variability in the learn-
ing data. It’s beyond the scope of this paper to
cover these approaches in detail, but many have
been expressed within the context of Optimality
Theory (Prince and Smolensky, 1993/2004) and
typically either vary constraint rankings in order
to generate gradient outcomes (e.g. Hayes, 2000)
or derive probabilities from weighted constraints
(e.g. Hayes and Wilson, 2008; Dai et al., 2023).
Gradient models of phonotactics have also been
proposed in the context of formal language theory
(Mayer, 2021). Under these approaches, gradience
emerges from an interaction between the grammar
and the learning data, not a bespoke mechanism.

This perspective is supported outside the world
of generative linguistics, where phonotactic knowl-
edge is typically treated as gradient, and is often
represented by simple probabilistic n-gram models
(Markov, 1913; Shannon, 1948). Gradient knowl-
edge of phonotactics has been claimed to play an
important role in areas such as speech perception
(e.g. Norris and McQueen, 2008; Dupoux et al.,
2011; Chodroff and Wilson, 2014; Steffman and
Sundara, 2023), speech production (e.g. Edwards
et al., 2004), word segmentation and learning (e.g.
Mattys et al., 1999; McQueen, 1998; Mersad and
Nazzi, 2011; Vitevitch and Luce, 1999; Storkel,
2001), and speech errors (e.g. Goldrick and Larson,
2008; Taylor and Houghton, 2005; Warker, 2013;
Warker and Dell, 2006, 2015), among others.1

1.2 Categorical models of phonotactics

The second theoretical approach to gradience pro-
poses that the phonotactic grammar is fundamen-
tally categorical (that is, it really does judge words
to be acceptable or not) and that gradience in ac-
ceptability judgments is solely the result of extra-
grammatical factors such as task effects or mis-

1We do not consider neighborhood density here, another
important property that influences wordlikeness judgments.
For discussion of the relationship between neighborhood den-
sity and phonotactic probability, see e.g. Bailey and Hahn
(2001); Steffman and Sundara (2024).

perception (e.g. Gorman, 2013; Durvasula, 2020;
Kostyszyn and Heinz, 2022; Dai, 2025). There are
two main sources of evidence for this view.

The first is that extra-grammatical performance
factors have indeed been shown to influence phono-
tactic judgments. A convincing demonstration of
this comes from Kahng and Durvasula (2023), who
show that some variability in nonce word judg-
ments by Korean speakers is the result of misper-
ception of certain consonant clusters.

The second source of evidence is several stud-
ies suggesting that categorical models do as well
as or better than gradient models in predicting ac-
ceptability judgments. As Gorman (2013) puts it,
“simple baselines better account for gradient well-
formedness judgements than current computational
models of phonotactic knowledge, suggesting that
the gradience observed in these tasks [does] not de-
rive from known grammatical mechanisms” (p. 17).
Specifically, categorical models have been claimed
to better predict English onset acceptability (Gor-
man, 2013; Durvasula, 2020; Dai, 2025), Polish on-
set acceptability (Kostyszyn and Heinz, 2022; Dai,
2025), Turkish vowel harmony (Gorman, 2013;
Dai, 2025) and English medial consonant cluster
distributions (Gorman, 2013).

We will focus on the second type of evidence
here. With regards to the first, note that propo-
nents of gradient models do not suggest that extra-
grammatical factors have no role at all in the gra-
dience exhibited in acceptability judgment tasks.
Rather, the claim is that a substantial part of the
gradience can be predicted by grammatical factors.
Hayes (2000) puts it as follows:

[P]atterns of gradient well-formedness
often seem to be driven by the very
same principles that govern absolute
well-formedness [. . . ] I conclude that
the proposed attribution of gradient
well-formedness judgments to perfor-
mance mechanisms would be uninsight-
ful. Whatever “performance” mecha-
nisms we adopted would look startlingly
like the grammatical mechanisms that ac-
count for non-gradient judgments (p. 90).

In other words, gradience in acceptability stud-
ies is often predictable from “soft” versions of the
same constraints that govern more categorical pat-
terns like phonological alternations.
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1.3 Limitations of past work

There are three important limitations to previous
work comparing categorical and gradient models
of phonotactics. First, these papers have used a
relatively small number of data sets, almost all
focusing on consonant clusters. This makes it dif-
ficult to evaluate how generally these results hold
across different types of phonotactic dependencies.

The second limitation is that the authors of these
papers do not all subscribe to the same definition
of categorical. In some cases the grammar truly is
categorical, assigning words either grammatical or
ungrammatical status (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). In other cases, simi-
lar to Chomsky and Halle (1968), some secondary
gradient measure of admissibility is derived from a
categorical grammar (Durvasula, 2020; Kostyszyn
and Heinz, 2022). We will treat these two defini-
tions of categorical as separate models below.

The third limitation is that the gradient model
typically used is the UCLA Phonotactic Learner
(Hayes and Wilson, 2008), an influential phonotac-
tic learning model implemented in the maximum
entropy Optimality Theory framework (Goldwater
and Johnson, 2003; Mayer et al., 2024). Although
it does implement a gradient model of phonotac-
tics, it has the additional task of inducing the con-
straints themselves from the data. The categorical
models in these papers are typically provided with
predefined constraints (though cf. Dai, 2025). It
is unclear whether the poor performance of the
UCLA learner is due to the fact that it is gradient
or to some aspect of the constraint induction pro-
cess. The UCLA learner is also sensitive to how
it is parameterized, and it is not typical for these
studies to compare performance under a range of
hyperparameters.

1.4 The remainder of the paper

While this paper will by no means resolve this de-
bate, I will try to achieve two more modest goals.
First, I will present new data from a phonotactic
acceptability judgment study of Turkish that ad-
dresses some of the limitations expressed above.
This study will show that gradient models are bet-
ter able to predict participant judgments. Second,
I will try to convince you that the distinction be-
tween categorical and gradient grammars is in fact
a somewhat superficial one when we consider the
matter from a mathematical perspective, and that
both conceptualizations of the grammar have a role

to play in linguistic research and theory-building.

2 Defining our grammars

We will consider three classes of models in the
rest of the paper. Boolean models, cost models,
and probability models. Abstracting away from the
internal details for a moment, we can think of each
of these models as defining a score function that
assigns some value to a string:

score : Σ∗ → T

where Σ is a set of symbols, Σ∗ is the set of all
possible strings generated from this set, and T is
some set of values. The three models differ in what
type of value the score function assigns.

2.1 Boolean models
We will use boolean models to correspond to the
theoretical position that the phonotactic grammar
is categorical, with gradience stemming from non-
grammatical factors (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). The score function
for these models assigns boolean values to strings:

score : Σ∗ → {0, 1}

Such models cannot represent a situation where
the acceptability of /bnzk/ ≪ /bnIk/ ≪ /blIk/. If
we take /bnzk/ to be ungrammatical and /blIk/ to
be grammatical, the model must place the interme-
diate form /bnIk/ into one of these two categories.

2.2 Cost models
Cost models will correspond to the theoretical po-
sition that a gradient measure of acceptability is
derived from a categorical grammar. There are
many ways such a proposal could be implemented,
but we will follow Durvasula (2020) and Kostyszyn
and Heinz (2022), who derive such a gradient mea-
sure by counting the number of (categorical) con-
straints that a form violates. The score function
for cost models assigns non-negative integer val-
ues to strings, with larger integers corresponding
to lower phonotactic acceptability:

score : Σ∗ → {0, 1, 2, . . . }

In this model, acceptability is bounded on one
side by 0, which corresponds to a “perfectly accept-
able” form that violates no constraints. The other
end of the scale is unbounded, since a form can vi-
olate arbitrarily many constraints. This means that,
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unlike the other two model types, we expect ac-
ceptability to decrease as the score increases. Such
models can represent the case where the acceptabil-
ity of /bnzk/ ≪ /bnIk/ ≪ /blIk/ by assigning the
forms successively decreasing integer values.

2.3 Probability models
Probability models will correspond to the theo-
retical claim that gradience in acceptability cor-
responds directly to gradience in the grammar. Gra-
dient grammars do not necessarily have to generate
probabilities, but we will assume that is the case
here. The score function for probability models is:

score : Σ∗ → [0, 1]

Such models can also represent the case where
/bnzk/ ≪ /bnIk/ ≪ /blIk/ by assigning the forms
successively increasing probabilities.

3 Turkish study

We will compare these three classes of models
against new data from a large, online acceptabil-
ity judgment study of Turkish nonce words.2 This
study expands on a previous acceptability judgment
study on Turkish (Zimmer, 1969) by including a
much larger number of stimuli and participants
and using a slider task rather than a binary forced
choice task. We will focus on backness harmony
and rounding harmony, which are common in Tur-
kic languages. Backness harmony requires vow-
els to agree in backness with the preceding vowel,
while rounding harmony requires high vowels to
agree in roundness with the preceding vowel (see
Table 1). We can implement these restrictions us-
ing the following bigram constraints over vowel
sequences:

• *[αback] [−αback]: a vowel must agree in
backness with the preceding vowel.

• *[αround] [−αround, +high]: high vowels
must agree in roundness with the preceding
vowel.

These constraints govern suffix allomorphy: e.g.,
the plural form of /kedi/ ‘cat’ is [kedi-ler] ‘cat-PL’,
while the plural of /kuS/ ‘bird’ is [kuS-lar] ‘bird-
PL’. Vowel harmony is is also evident as a strong
tendency across the lexicon (though many dishar-
monic words exist, particularly loanwords) and in
acceptability judgment tasks (Zimmer, 1969).

2The data and code for this paper can be found
at https://github.com/connormayer/turkish_
phonotactics

[−back] [+back]
[−round] [+round] [−round] [+round]

[+high] i y W u
[−high] e ø a o

Table 1: The vowel system of Turkish

3.1 Methodology

The stimuli consisted of 576 wug words with
CVCVC shape. A Python script was used to gener-
ate every possible Turkish CVCVC word. Attested
words found in the Turkish Electronic Living Lexi-
con (TELL; Inkelas et al., 2000) were automatically
removed. Subsequent manual filtering was done by
two native Turkish speakers. The remaining words
were scored for unigram and Laplace-smoothed
bigram probability using the UCI Phonotactic Cal-
culator (Mayer et al., under revision) based on fre-
quencies from citation forms in TELL. For each
unique pair of vowels (8×8 total pairs), nine words
were sampled such that they were distributed in a
roughly uniform way across the unigram-bigram
probability space. As a result, the mean probability
of the tokens for each vowel pair was roughly the
same (Fig. 1). The 576 tokens were synthesized to
speech using Google Cloud. The recordings were
vetted by the same two native Turkish speakers for
naturalness and clarity.

The experiment was administered using Gorilla
(www.gorilla.sc Anwyl-Irvine et al., 2020).
All materials were presented in Turkish. After
providing consent, participants completed a short
demographic questionnaire. Participants then com-
pleted two screening tasks. The first was an audio
check that asked them to identify a word presented
to them acoustically. The second was a training run
of the main experimental task, where participants
were instructed to make a specific selection at the
end as an attention check. Failure in either of these
tasks led to exclusion from the experiment.

Finally, in the main experimental task, partic-
ipants were asked to provide acceptability judg-
ments of the stimuli based on their suitability as
words in Turkish using a sliding, unnumbered scale.
The right side of the scale corresponded to higher
acceptability, and high-, mid-, and low-probability
words were provided as landmarks (Fig. 2). Stim-
uli were presented with simultaneous audio and
orthographic representation. Slider responses were
represented on a numeric scale between 0 and 100,
with 100 being the most acceptable.
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Figure 1: The distribution of unigram and bigram prob-
abilities of the stimuli within each vowel group.

115 native speakers of Turkish were recruited
using Prolific (www.prolific.com). 25 partic-
ipants were excluded because they failed to provide
consent or failed one of the two screening tasks.
An additional 5 participants were excluded because
they indicated in the demographic questionnaire
that they had hearing impairment or that Turkish
was not their native language. This left a total of 85
participants (38F; mostly age 25–35). Each partic-
ipant rated 192 tokens after training and attention
checks, leading to a total of 16,320 token ratings
(about 28 ratings per word). Raw slider responses
were normalized to z-scores within participant to
control for idiosyncratic differences in mean and
spread between participants.

3.2 Results

Fig. 3 shows participant responses broken down
by harmonic class. Participants’ responses reflect
sensitivity to both backness and rounding harmony.

4 Modeling the Turkish data

In this section, we’ll compare how well the differ-
ent models described above predict the acceptabil-
ity judgment data from the Turkish study. Crucially,
each of these models employs the same set of pos-
sible constraints, differing only in the values they

Figure 2: The experimental interface.

Figure 3: Normalized, mean participant responses bro-
ken down by harmonic category. Participants are sensi-
tive to both backness and rounding harmony.

assign to each. This allows the effect of different
value choices to be compared more directly.

Because our interest is primarily in vowel har-
mony, we will use tier-based strictly local models
with bigram constraints on the vowel tier (a TSL-2
model). It is beyond the scope of this paper to pro-
vide a full definition of TSL (see Heinz et al., 2011),
but informally it means that we ignore consonants
completely and assign scores based only on vowel
bigrams. Bigrams can also reference word bound-
aries (#). This means the models are sensitive not
only to which pairs of vowels occur in a word, but
also which vowels begin and end the word.

Each model type has a ∆ function that assigns
a value to a bigram. These bigram values are then
aggregated into the value returned by the score
function discussed above.

4.1 Boolean models
Under a boolean model, the ∆ function is:

∆b : Σ
2 → {0, 1}

where Σ2 is the set of all possible bigrams, in-
cluding the word boundary symbol . The boolean
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values assigned to each bigram in a string are ag-
gregated into a single boolean by conjoining them:

scoreb(x1, . . . , xn) =
n−1∧

i=1

∆b(xi, xi+1)

Legal and illegal bigrams receive scores of 1 and
0 respectively. The score for a string is 1 iff it
contains only legal bigrams and 0 otherwise.

4.2 Cost models

Under a cost model, the ∆ function is:

∆c : Σ
2 → {0, 1, 2 . . . }

The integers assigned to each bigram are aggre-
gated into a single integer score by summing them.

scorec(x1, . . . , xn) =
n−1∑

i=1

∆c(xi, xi+1)

We will interpret the integer cost assigned to
a bigram as the number of bigram constraints it
violates. For example, a vowel bigram like /oi/
that violates both backness and rounding harmony
might be assigned a cost of 2, while a bigram like
/oy/ that violates only backness harmony might be
assigned a cost of 1. Although these models could
in principle represent varying constraint strengths
by assigning different integer costs to each con-
straint, we will assume following previous work
that all constraint violations are equally penalized
(Durvasula, 2020; Kostyszyn and Heinz, 2022).

4.3 Probability model

Under a probability model, the ∆ function is:

∆p : Σ
2 → [0, 1]

The probabilities for each bigram are aggregated
into a single probability by taking their product:

scorep(x1, . . . , xn) =
n−1∏

i=1

∆p(xi, xi+1)

The individual probabilities assigned to bigrams
typically reflect their frequency (though this need
not be the case). The probability assigned to a
string reflects the probabilities of the bigram se-
quences it contains.

4.4 An example calculation

Consider again the vowel bigram /oi/. In Turkish,
this may be dispreferred because it violates both
backness and rounding harmony. Below I show
how the score for this sequence can be calculated
under each of the three types of models described
above (we will discuss where the values assigned to
each bigram come from in the following section).

scoreb(/oi/) = ∆b(#o) ∧∆b(oi) ∧∆b(i#)

= 1 ∧ 0 ∧ 1

= 0

scorec(/oi/) = ∆c(#o) + ∆c(oi) + ∆c(i#)

= 0 + 2 + 0

= 2

scorep(/oi/) = ∆p(#o)×∆p(oi)×∆p(i#)

= 0.08× 0.107× 0.458

= 0.0004

4.5 Defining ∆

A question that remains is how to actually define ∆
for each model: that is, what specific values do we
assign to each bigram? We will test several variants
that differ in how ∆ is defined.

4.6 ∆ in the probability model

In the probability model, ∆p(x, y) is defined to be
P (y|x), the conditional probability of the second
sound in the bigram given the first. These proba-
bilities were estimated using add-one smoothing
(Chen and Goodman, 1999) from 18,472 citation
forms in the TELL database (Inkelas et al., 2000)
using the UCI Phonotactic Calculator (Mayer et al.,
in press). The conditional probabilities assigned to
each bigram are shown in Fig. 4. Note that both
backness harmony and rounding harmony are re-
flected in these probabilities: for the most part,
harmonic sequences have higher probabilities than
disharmonic ones (though other constraints are also
apparent, such as a strong dispreference for /ø/ and
/o/ in non-initial position).

The UCI Phonotactic Calculator returns log prob-
abilities to avoid numerical underflow. The results
in Section 4.7 use these log probabilities rather than
the standard probabilities shown in Fig. 4.

4.6.1 ∆ in the boolean model
We will test three variants of the boolean model.
The first we will call the harmony model, based on
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Figure 4: The probability model

Figure 5: The boolean harmony model

Gorman (2013). Under this model, any bigram that
violates either rounding or backness harmony (or
both) receives a value of 0 and all other bigrams
receive a value of 1. This model is shown in Fig. 5.

The second variant we will call the exception fil-
tering model. This is a categorical Turkish phono-
tactic grammar from Dai (2025), which was learned
by a statistical exception filtering process. For rea-
sons of space I will not described the filtering pro-
cess here, but it results in a more restrictive boolean
model that still reflects backness and rounding har-
mony. This model is shown in Fig. 6.

The third variant we will call the threshold
model. Under this model, a bigram is legal only
if its conditional probability (as defined in the pre-
vious section) is above the 40th percentile of all
the conditional bigram probabilities. The 40th
percentile was opportunistically chosen because
it maximized the performance of the model against
this data. This is similar to the exception filtering
model in that it is derived from frequencies in the
lexicon, but it is generally more permissive. The
values assigned by this model are shown in Fig. 7.

Gorman (2013) and Kostyszyn and Heinz (2022)
also explore models where bigrams are only gram-
matical if they are attested. Unfortunately, all
vowel bigrams are attested in TELL, which means
such a model makes no predictions in this case.

Figure 6: The boolean exception filtering model

Figure 7: The boolean threshold model

4.6.2 ∆ in the cost model

We consider only a single variant of the cost model,
which uses the same bigram constraints as the har-
mony model but assigns them integer values in-
stead. Bigrams that violate both backness and
rounding harmony have a cost of 2; bigrams that
violate one or the other have a cost of 1; and all
other bigrams have a cost of 0. The values assigned
to bigrams by this model are shown in Fig. 8.

4.7 Results

Each of the five models was used to score the 576
words from the acceptability judgment study. The
model scores were correlated against the mean of
the normalized acceptability scores for each word
collected in the study. Table 2 reports Pearson,
Kendall and Spearman correlations (See Albright,
2009, for some discussion of differences between
these metrics in the context of phonotactics).

Value type Constraints r τ ρ

Probability Cond. probs 0.54 0.36 0.50
Boolean Threshold 0.46 0.37 0.45
Cost Harmony 0.38 0.30 0.38
Boolean Harmony 0.38 0.30 0.37
Boolean Exception 0.36 0.27 0.33

Table 2: Correlations between model scores and mean
acceptability judgments.
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Figure 8: The cost harmony model

These results generally support the probabilistic
model as the best approximation of human accept-
ability judgments. The boolean threshold model
comes the closest to matching its performance (and
modestly surpasses it according to Kendall’s τ ). It
is important to consider, however, that this model is
derived from the conditional probability model: in
other words, the best performing categorical model
was produced by attending to gradience in the learn-
ing data. This is exactly the kind of model argued
against by Chomsky (1957), where we “sharpen the
blurred edges in the full statistical picture” (p. 17)
by designating high probability forms as grammati-
cal and low probability forms as ungrammatical.

Chomsky’s objections aside, two natural ques-
tions the threshold model must deal with are (a)
why the learner should track variability during ac-
quisition only to discard it once the grammar is
formed; and (b) how the threshold separating gram-
matical and ungrammatical structures is set. The
learning algorithm in Dai (2025) uses a similar
thresholding parameter to determine whether a bi-
gram is exceptional or not. However, Dai finds that
the best values of this threshold differ across data
sets, and provides no principled way to derive it
from the data. In contrast, the conditional bigram
model is fit using maximum likelihood estimation,
a robust and well-understood learning procedure.

These results favor the use of gradient models for
modeling phonotactics. However, in the remain-
der of the paper I hope to convince you that the
similarities between these models outweigh their
differences.

5 Reconciling gradient and categorical
models

Although these three model types differ in the val-
ues they assign to strings, there are many similari-
ties in their basic structure. The boolean, cost, and
probability models all assign some value to each

segmental bigram (booleans, integers, or probabili-
ties respectively) and aggregate them to get a single
value for a string using some binary operation (con-
junction, addition, or multiplication respectively).
Approaching the models from this perspective, we
can abstract away from the specific values and ag-
gregation methods and express them in more math-
ematically general terms.
∆ maps bigrams to some set of values T :

∆: Σ2 −→ T
Our score function aggregates these values us-

ing some binary operator ⃝∧ over T :

score(x1 . . . xn) =
n−1

⃝∧
i=1

∆(xi, xi+1)

The boolean, cost, and probability models de-
scribed above can be instantiated from this more
abstract model by specifying particular values of
T and ⃝∧ .

If ⃝∧ is associative and there is an identity ele-
ment ⊤ in T such that a⃝∧ ⊤ = ⊤⃝∧ a = a, which
is the case for each of the set-operation pairs consid-
ered here, then (T ,⃝∧ ) forms a mathematical ob-
ject called a monoid. Thinking in monoid-general
terms allows us to take the same abstract model and
parameterize it with different monoids. This means
the same underlying model can compute different
quantities, unifying models that appear to do vastly
different things on the surface (Goodman, 1999;
Eisner, 2003; Chandlee and Heinz, 2017). In other
words, we can separate the structure of the model
from the values it computes.

In addition to the monoids discussed above, our
humble bigram model can actually compute a range
of other useful quantities, such as constraint viola-
tion profiles using the monoid (Nk,+), where Nk

is the set of vectors of natural numbers of length k
(e.g. Riggle, 2009), or even input SL-2 string trans-
duction (e.g. Chandlee, 2014) using the monoid
(Σ∗, ·), where · is a string concatenation operator.

Most of the models we work with in formal lan-
guage theory, such as subregular models (Heinz,
2018), finite-state automata, context-free gram-
mars, and so on, can be expressed in these general
terms. Although non-deterministic models require
an additional operator to combine multiple parses
of the same string, a more complex mathematical
structure called a semiring can be used analogously
to monoids for such models.3

3The probability monoid/semiring is usually defined to
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5.1 Monoids in phonology

Why is the idea of monoids useful for us as pho-
nologists? An example comes from the domain
of semantics: Giorgolo and Asudeh (2014) apply
different semirings to the same underlying seman-
tic model to capture differences between heuristic
and mathematical reasoning. They suggest that the
underlying structure of both reasoning processes is
the same, but that these processes can generate dif-
ferent types of outcomes depending on the context
(in this case, how important it is to be precise).

There’s perhaps an analogy to be made here with
our categorical and gradient models of Turkish. It is
clear from the results above and past work on Turk-
ish that vowel harmony is centrally important for
both suffix allomorphy and phonotactics (it is strik-
ing how much of the variation in participants’ re-
sponses above can be captured by only attending to
the vowels in each word). However, these sensitivi-
ties manifest in different ways in each domain. Har-
mony constraints are essentially categorical when
determining suffix allomorphy (it’s always [kedi-
ler] and never *[kedi-lar]), but these constraints
provide only a gradient preference when determin-
ing word acceptability.

Even if we choose to treat alternations as es-
sentially categorical and phonotactics as essen-
tially gradient, our categorical and gradient mod-
els have more in common than might be evident
at first glance. Each of the models we discussed
in this paper are TSL-2 grammars: they employ
the same types of representations (segments, con-
straints, etc.); they operate on the vowel tier; they
are sensitive only to constraints between adjacent
vowels; and they disprefer the same types of struc-
tures. The fact that these same representations and
dependencies appear to be necessary for modeling
both gradient and categorical phenomena suggest
that both are governed at least in part by the same
underlying linguistic system (Hayes, 2000), and
past work has claimed that there is a close con-
nection between the acqusition of alternations and
phonotactics (e.g. Hayes, 2004; Chong, 2021; Jun
et al., 2025)

assign values from R, with the additional implicit restriction
that the assigned values must form a valid probability distribu-
tion. There are non-trivial issues that arise in choosing exactly
which particular values (or weights, to use the more technical
term) our model should assign, such as normalization in prob-
abilistic models, whether the order of the values is total and
monotonic, etc. These considerations are not the focus of this
paper.

6 Conclusion

Durvasula (2020) implores us to prioritize categori-
cal models of phonotactics so that we can “focus on
what’s a possible constraint or rule” and “commit to
a specific set of representations.” I contend that this
is a false dichotomy: constraints and representa-
tions in the grammar can be studied independently
of the values the grammar assigns. This flexibility
allows us to engage with a broader range of empir-
ical phenomena for which categorical or gradient
models provide better approximations while still
relating these phenomena to the same core linguis-
tic knowledge (Hayes, 2000). Although the results
of this study support the position that phonotactic
knowledge is best captured using gradient models,
we can gain insight into the representations and
dependencies in the linguistic grammar by consid-
ering both types of models.
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Abstract
When considering the acquisition of un-
derlying representations (URs), two com-
mon challenges are often levied against
the inclusion of abstract URs in phonolog-
ical theory: (1) permitting abstract URs
causes the search space of potential URs
to grow to a computationally intractable
degree, and (2) learners have no recourse
through which to prefer minimally ab-
stract URs over increasingly abstract alter-
natives when both types of URs model the
data with equal success. This paper di-
rectly addresses the second issue by imple-
menting aMaxEnt learner equipped with a
bias that penalizes disparities between UR
inputs and their corresponding outputs.
By favoring mappings with minimal diver-
gence, the bias generates a preference for
minimally abstract URs when competing
candidates perform equally well in model-
ing the data. In addition, the paper pro-
poses a conceptual framework for address-
ing the first issue, in which the space of
potential URs is organized so that candi-
dates are considered serially, beginning
with those that exhibit the fewest dispar-
ities. This method offers a potential strat-
egy for avoiding the added compute time
introduced by permitting UR abstraction.

1 Introduction
A subject of significant debate since the ad-
vent of generative phonology concerns the
level of abstraction that underlying represen-
tations (URs) are permitted to assume (Ken-
stowicz and Kisseberth, 1979). Classic gener-
ative phonology holds the rather strong posi-
tion that a UR can be completely covert in rela-
tion to all of its allomorphs, never showing its
true identity in surface forms. However, from
a learning perspective, permitting this level of
abstraction poses serious challenges. One of

the most compelling objections is that covert
URs render the learning problem intractable.
Two key difficulties arise. First, the space of
potential URs that a learner must consider be-
comes prohibitively large. When highly ab-
stract URs are allowed, the search space ex-
pands dramatically, exceeding what can feasi-
bly be explored in its entirety by a learner (Al-
bright, 2002; Jarosz, 2015, 2019; Wang and
Hayes, 2025).
Most models attempt to solve this issue by

curtailing the level of abstraction URs can
take, in essence shrinking the search space to
a manageable size. For instance, Wang and
Hayes (2025) constrain the search space by
restricting the abstractness of candidate URs
using a hierarchy of representational abstrac-
tion defined in Kenstowicz and Kisseberth
(1977, ch.1). Themodel is impressive and suc-
cessfully accounts for analyses at various lev-
els of abstraction, but it fails to account for
datasets requiring covert URs, like the Pun-
jabi nasality pattern considered in this paper.
The second issue that arises when learning

covert URs is that the learner has no means
through which to prefer a less abstract UR
over a highly abstract UR if both representa-
tions succeed in modeling the data. One par-
ticularly promising approach aimed at allevi-
ating this computational burden is outlined in
O'Hara (2017) with the use of a Maximum
Entropy (MaxEnt) grammar called MaxLex.
O'Hara provides compelling evidence from
Klamath showing that a stem-final [i]-[ø] al-
ternation in words like [ʔeːw-a] 'is deep' ∼
[ʔeːwitkʰ] 'deep' cannot be captured by either
epenthesis or deletion but instead requires a
covert UR, /e/, that deletes when not in the
initial syllable, unless deletion would produce
an illicit consonant cluster, in which case /e/
is raised to [i]. Importantly, /e/ is covert in
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the stem-final position of stems like /ʔeːwe/
because it never surfaces in any allomorph.
Moreover, O'Hara demonstrates that MaxLex
has an emergent preference for minimally ab-
stract URs, driven by an L2 Gaussian Prior
that attempts to minimize increases in the
weights of faithfulness constraints.
In this paper, I primarily address how the

learner might come to prefer minimal UR ab-
straction. I first show that MaxLex fails to
prefer minimally abstract URs over increas-
ingly abstract alternatives for a set of non-
alternating pre-nasal vowels in Pakistani Pun-
jabi (Paramore, 2023). This failure arises be-
cause both the minimally abstract UR and
more abstract alternatives provide equally ac-
curate accounts of the data and require identi-
cal changes in faithfulness constraint weights
to do so. As a solution, I propose an updated
MaxLex learner equipped with a disparity bias
that penalizes changes in UR→SR mappings.
The effect of this bias is that, if two URs model
a set of data equally well and do not differ in
the minimization of the MaxLex L2 prior, the
learner selects the UR that generates the min-
imum number of disparities. In addition to
creating a preference for minimal UR abstrac-
tion, this disparity bias has potential to pro-
vide a mechanism through which the learner
can efficiently search the space of potential
URs without needing to stipulate its contents,
as discussed in section 6.

2 MaxLex
The basic learning procedure taken by
MaxLex is similar to other MaxEnt learning
models (e.g. Hayes and Wilson, 2008; Pater
et al., 2012; Wang and Hayes, 2025). Two
general stages characterize the process. In
the first stage, the learner is oblivious to mor-
phological alternations and paradigmatic re-
lations, and, as a consequence, the identity
of underlying forms and mappings from those
underlying forms to surface realizations is not
considered. Instead, the learner has been
confronted with a wealth of linguistic data
and focuses on acquiring fluency in language-
specific phonotactics, an aspect of the gram-
mar that remains unchanged regardless of
what the underlying forms turn out to be.
In computational terms, at the outset of

the phonotactic stage, MaxLex is fed a batch
of data, a set of constraints with intermedi-
ate weights (e.g., 50), and the parameters
for what constitutes a violation. Equipped
with this information, the learner uses gradi-
ent descent optimization to minimize an ob-
jective function (in this case, the negative log-
likelihood of the data) by adjusting the con-
straint weights appropriately until it arrives
at the minimum possible value. A grammar
with a 100% probability of producing the ob-
served data will have an objective function
value of zero, but a grammar with only a 50%
probability of producing the observed data
will result in a much higher objective function
value.
In the second stage of learning, MaxLex

becomes morphologically aware, understand-
ing that words are constructed from mor-
phemes, and those morphemes sometimes
appear in phonologically distinct ways, de-
pending on the context. For instance, dur-
ing the phonotactic stage, the learner ignores
the morphological relationship between the
Punjabi words [sɑɑ] 'breath' and [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃]
'breaths', focusing only on phonotactic well-
formedness. In the morphologically aware
stage, however, the learner has discovered
that the same morpheme for 'breath' occurs
in both words and seeks to assign a single UR
that can map to both of the observed forms.
As such, the learner is confronted with a more
complex learning problem in which it must
work to determine what combination of con-
straint weights and underlying form probabili-
ties maximizes the likelihood of observing the
data to which it has been exposed (Jarosz,
2006a,b).
A crucial aspect of the morphologically

aware learning stage that MaxLex capitalizes
on is the way in which abstraction is miti-
gated in the choice of potential URs. Specif-
ically, the objective function in MaxLex is
constructed from the negative log-likelihood
of the data plus the value of an L2 Gaus-
sian Prior that prefers to use constraints ac-
tive elsewhere in the grammar to account for
abstract phonological patterns rather than al-
tering the weight of novel constraints to ac-
complish the same task.1 The negative log-

1Both Pater et al. (2012, p.66) and Wang and Hayes
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likelihood (NLL) of a dataset, given in equa-
tion 1, is calculated by determining the combi-
nation of constraint weight (w) and UR proba-
bility (π) values that maximize the likelihood
(thereby minimizing the NLL) of observing a
set of observed words (Oi - On).

NLL = − ln

[
n∏

i=1

(P[Oi | (w, π)])
]

(1)

To increase grammar restrictivity, the L2
Gaussian prior shown in equation 2 inherently
favors markedness constraints with maximum
weights of 100 and faithfulness constraints
with minimum weights of zero. This bias is
implemented by taking the squared difference
of actual weight values (wi) from their ideal
weight (ci).2 If, however, the language data
confronted by the learner indicates that dif-
ferent constraint weights would improve the
success of the grammar in modeling the data
(i.e., sufficiently lowering the NLL), these bi-
ases can be overcome. Thus, if a faithful-
ness constraint is given a non-zero weight to
model some phonotactic pattern in the first
stage of language learning, that same con-
straint will be preferred over a novel con-
straint with a zero weight to model another
pattern concerning underlying forms, assum-
ing both constraints can account for the ob-
served data equally well. This preference to
use the already-active faithfulness constraint
falls out from the fact that the MaxLex prior
seeks to minimize deviations in constraint
weights from their optimal values. Because
of this, O'Hara argues that a segment's UR is
naturally restricted in its potential for abstrac-
tion by this bias.

OLex(w, π) = NLL +
∑

wi∈w

(wi − ci)
2

σ2
i︸ ︷︷ ︸

L2 Gaussian Prior

(2)

The success of MaxLex in learning covert
URs is demonstrated by examining a stem-
final [i]∼[ø] alternation in a set of Klamath
(2025, p.17, 34-35) incorporate similar biases favoring
markedness constraints over faithfulness constraints.

2ci is set to 100 for markedness constraints and zero
for faithfulness constraints. O’Hara (2017) uses σ2

i as a
plasticity constant (which he sets at 20 for markedness
constraints and 25 for faithfulness constraints) to mod-
ulate how much deviations from ideal weights impact
the value of the objective function.

verbs, which, as O'Hara (2017) shows, capital-
izes on a faithfulness constraint that is active
in another area of the grammar to account for
the alternation. As O'Hara delineates in de-
tail in his computational proof, Maxlex takes
advantage of these faithfulness constraint
weight differences when deciding upon the
optimal covert UR. However, that same learn-
ing process used to constrain UR abstraction
in the Klamath [i]∼[ø] alternation is unavail-
able for the URs of non-alternating pre-N vow-
els in Punjabi.

3 Pakistani Punjabi

Pakistani Punjabi is an Indo-Aryan language
spoken by about 78 million people, primar-
ily in the Punjab province of Pakistan (Bashir
and Conners, 2019). Long vowels in Punjabi
contrast in nasality, but this contrast is neu-
tralized before nasal consonants (e.g., [tɑɑ]
'warmth' vs. [tɑ̃ɑ̃] 'that' but [tɑ̃ɑ̃n] 'melody' vs.
*[tɑɑn]). Additionally, Punjabi exhibits a pro-
cess of nasal harmony, in which contrastive
/ṼṼ/ vowels trigger the leftward spread of
nasalization, with glides and vowels partici-
pating and other consonants acting as block-
ers, as shown in Table 1i. Pre-N vowels, on
the other hand, surface as categorically nasal-
ized and phonetically identical to contrastive
/ṼṼ/ vowels, but they do not trigger nasal
harmony (Table 1ii) (Paramore, 2023).
To account for the phonetic indistinguisha-

bility of /VVN/ and contrastive /ṼṼ/ vowels
in terms of their nasality coupled with the
fact that only contrastive /ṼṼ/ vowels trig-
ger nasal harmony in Punjabi, /VVN/ vow-
els must be analyzed as underlyingly [-nas]
without ever surfacing as such. In this view,
the nasal harmony pattern in Punjabi serves
as a straightforward example of counterfeed-
ing opacity, in which underlyingly oral pre-N
vowels undergo a predictable process of nasal-
ization. Nevertheless, only underlying /ṼṼ/
vowels trigger nasal harmony. Harmony in
Punjabi is thus sensitive to whether a vowel
is underlyingly oral or nasal – even for vow-
els that are always phonetically nasal. This
implies that /VVN/ vowels have abstract oral
URs that are consistently distinct from their
phonetic forms.
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i. /sɑɑ-ʋɑ̃ɑ̃/ → [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'breath-PL'
ii. /tɑɑʋɑɑn/ → [tɑɑʋɑ̃ɑ̃n] 'penalty'

Table 1: Nasal Harmony in Punjabi.

i. [sɑɑ] 'breath' ii. [sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'breaths'
iii. [ʊʃɑɑ] 'morning' iv. [ʊʃɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'mornings'
v. [gɑ̃ɑ̃] 'cow' vi. [gɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'cows'

vii. [tʃʰɑ̃ɑ̃] 'shade' viii. [tʃʰɑ̃ɑ̃ʋ̃ɑ̃ɑ̃] 'shades'
ix. [tɑɑʋɑ̃ɑ̃n] 'penalty' x. [prəʋɑ̃ɑ̃n] 'accepted'

Table 2: Punjabi surface forms fed to MaxLex

4 MaxLex and Punjabi pre-N vowels
In attempting to learn the opaque nasaliza-
tion patterns in Punjabi, MaxLex begins with
an initial phonotactic learning stage. The ob-
served data fed to the learner is given in Ta-
ble 2. Forms 2i-iv show that underlyingly
oral vowels are nasalized via nasal harmony
when the appropriate suffix is attached (in
this case, the plural marker). The forms in
2v-viii show the learner that a nasality con-
trast exists for vowels; otherwise, the learner
may choose to analyze the vowels in 2i-ii as
underlyingly nasal to explain the nasal har-
mony distinctions found between /VVN/ and
contrastive /ṼṼ/ vowels. Finally, the forms in
2ix-x provide the learner with examples of the
underapplication of nasal harmony for non-
alternating /VVN/ vowels.
Individual Python scripts were developed

for the phonotactic learning stage and mor-
phologically aware learning stage to carry out
the computational optimizations. The con-
straints used in the learner are provided in Ta-
ble 3 with the initial weights set at 50, along
with the weights acquired in the phonotactic
learning stage in the rightmost column. Most
of these constraints are straightforward, but
a few merit further explanation.3 First, as is
well known, the standard parallel evaluation
architecture of MaxEnt learners presents diffi-
culty for the successful acquisition of opaque
processes like nasal harmony in Punjabi (Mc-
Carthy, 2000, 2007). To handle this, I choose
to analyze the nasality patterns using con-
textual faithfulness constraints (Hauser and
Hughto, 2020), but other approaches capable
of handling counterfeeding opacity in a paral-
lel framework are equally viable. At its root,

3See 5 in the appendix for a full set of constraint
definitions.

the contextual faithfulness constraint schema
penalizes changes to a specified feature for
a segment that occurs in a specified context
in the input. The contextual faithfulness con-
straint relevant to the Punjabi nasalization
data, ID[nas]/_V, penalizes changes in nasal-
ity to a segment occurring before a vowel that
is oral in the input. When high-ranked, this
constraint precludes underlying oral vowels
− as /VVN/ vowels are proposed to be here −
from continuing the transmission of nasal har-
mony to its immediately preceding segment.
Another important note is the inclusion of

ID[rd] and *LOWRD in the constraint set. For
reasons that will become clearer when dis-
cussing the updated learning algorithm in sec-
tion 5, I provide the learner with two po-
tential covert URs to choose between. The
restrictedly abstract and intuitively most ap-
pealing covert UR for a /VVN/ vowel like
[ɑ̃ɑ̃] in [tɑɑʋɑ̃ɑ̃n] is /ɑɑ/. /ɑɑ/ possesses an
identical feature set to [ɑ̃ɑ̃] except for one
disparity: nasality. Because nasality is the
key underlying feature that results in distinct
harmony patterns for /VVN/ and contrastive
/ṼṼ/ vowels, it makes sense for nasality to
be the only feature that changes between the
UR and SR of /VVN/ vowels. With that said,
MaxLex does not contain an inherent mech-
anism to act upon this sensible conclusion.
Instead, the learner is free to choose any
covert UR that models the data and minimizes
changes in constraint weights from their bi-
ases, regardless of whether there are one or
fifty feature disparities in the UR→SR map-
ping.
To focus on the learner's preference for min-

imally abstract URs, I provide MaxLex with
one additional potential covert UR, /ɒɒ/. Just
like its unrounded counterpart /ɑɑ/, the low
round back vowel /ɒɒ/ is quite similar to
its corresponding SR, [ɑ̃ɑ̃], except it contains
two disparities rather than one: nasality and
roundedness. Importantly, any increasingly
abstract UR (e.g., diacritics) would suffice in
the following discussion, but /ɒɒ/ is an espe-
cially good candidate because it is more ab-
stract than /ɑɑ/ (/ɒɒ/ never surfaces in Pun-
jabi and has more disparities in the input-
output mapping) but only minimally so. Thus,
/ɒɒ/ serves as a stand-in for any overly ab-
stract covert UR that needs to be ruled out,
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Constraint Type initial w final w
ID[nas] faith. 50.00 51.37

IDFIN[nas] faith. 50.00 44.83
SPRD-L[nas] mark. 50.00 92.83
*NASOBS mark. 50.00 100.00
*NASG mark. 50.00 99.48

ID[nas]/_V contfaith. 50.00 100.00
*VVN mark. 50.00 100.00
ID[rd] faith. 50.00 0.00

*LOWRD mark. 50.00 100.00

Table 3: Constraint weights after phonotactic
learning with MaxLex.

and if /ɒɒ/ is ruled out, potential URs with
greater disparities will also be ruled out.4
The weights acquired in the phonotactic

learning stage of MaxLex demonstrate three
phonotactic restrictions in Punjabi that must
hold regardless of the particular UR chosen
for /VVN/ vowels. First, low round vowels
never surface in Punjabi, so *LOWRD is un-
dominated and ID[rd] is inactive and set to
zero. As shown in (1), this weighting relation-
ship appropriately unrounds all inputs con-
taining /ɒɒ/ with a probability of 1.0.
(1) Low Round vowels never surface

/sɒɒ/ *LOWRD
100.00

ID[rd]
0.00 H P̃

a. + sɑɑ -1 0 1.0

b. sɒɒ -1 -100 4e−44

Another phonotactic restriction MaxLex ac-
quires is the absolute ban on nasal obstruents
in Punjabi. To accomplish this, *NASOBSmust
outweigh SPRD-L, as in (2).

(2) Obstruents never nasalized
/sɑɑʋɑ̃ɑ̃/ *NASOBS

100.00
SPRD-L
92.83 H P̃

a. + sɑ̃ɑ̃ʋ̃ɑ̃ɑ̃ -1 -92.83 0.999

b. sɑ̃̃ɑ̃ʋ̃ɑ̃ɑ̃ -1 -100 8e−4

Finally, in order for /VVN/ vowels to sur-
face consistently as nasal vowels, either *VVN
or SPRD-L must outweigh ID[nas]. In fact,
both constraints end up outweighing ID[nas],

4Note that a covert UR like the nasalized low back
round vowel /ɒ̃ɒ̃/ only has a single disparity in its map-
ping to [ɑ̃ɑ̃] (roundedness), so it would tie /ɑɑ/ in its
performance on the disparity component of the objec-
tive function. However, just like the concrete UR /ɑ̃ɑ̃/
fails to model the lack of harmony triggered by /VVN/
vowels in Punjabi, any other nasal vowel would run into
the same issue.

Constraint Type initial w final w
ID[nas] faith. 51.37 3.36

IDFIN[nas] faith. 44.83 99.96
SPRD-L mark. 92.83 5.65

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.19

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑ̃ɑ̃n/ 1.0

Table 4: Constraint weights and UR probabilities
with concrete URs only

resulting in /VVN/ vowels always surfacing
as nasal, as in (3).

(3) /VVN/ vowels always nasalized
/siin/ *VVN

100.00
ID[nas]
51.37

SPRD-L
92.83 H P̃

a. + sĩĩn -1 -1 -144.2 1.0
b. siin -1 -2 -285.66 3e−62

Once the morphologically aware learning
stage begins, MaxLex recognizes that surface
alternations such as [sɑɑ] and [sɑ̃ɑ̃] belong
to the same underlying morpheme. We will
first consider the use of concrete URs to
model the data. For our purposes, the im-
portant morphemes are those containing non-
alternating pre-N vowels like [tɑɑʋɑ̃ɑ̃n]. Be-
cause [tɑɑʋɑ̃ɑ̃n] only exhibits a single surface
form, only one concrete UR is available to
MaxLex, and using it prevents MaxLex from
accurately modeling the data. The results for
constraint weights and UR probabilities with
only concrete URs are given in Table 4. Again,
because [tɑɑʋɑ̃ɑ̃n] does not exhibit morpho-
logical alternations, there is only one poten-
tial UR, and it receives all of the probability
as the correct UR for modeling the data.
However, using only concrete URs results in

the model's inability to successfully learn the
appropriate constraint weights and an almost
zero probability of learning the correct nasal-
ization pattern of forms with /VVN/ vowels.
This is exemplified by the tableau in (4). Be-
cause the URs for both /VVN/ and contrastive
/ṼṼ/ vowels are identical, MaxLex cannot
correctly learn the pattern. When presented
with /tɑɑʋɑ̃ɑ̃n/, the learner incorrectly as-
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signs almost all the probability to the candi-
date that exhibits nasal harmony.

(4) Failure of Concrete URs to model Pun-
jabi nasalization

/tɑɑʋɑ̃ɑ̃n/ *VVN
100.00

SPRD-L
5.65

*NASG
0.19

ID[nas]
3.36 H P̃

a. tɑɑʋɑ̃ɑ̃n -3 -16.95 0.012

b. tɑɑʋɑɑn -1 -4 -1 -125.96 6e−50

c. tɑ̃ɑ̃ʋ̃ɑ̃ɑ̃n -1 -1 -2 -12.56 0.988

Up to this point, the learning process
has followed the same general pattern as
the Klamath [i]-[ø] alternation discussed in
O'Hara (2017). The phonotactic patterns
were learned, and using a concrete UR for
/VVN/ vowels resulted in a failure to accu-
rately predict the observed data. Now, just as
for Klamath, MaxLex is provided two covert
URs to consider when modeling the data. The
results of the morphologically aware learning
stage with /ɑ̃ɑ̃/, /ɑɑ/, and /ɒɒ/ included as
potential URs are provided in Table 5. Here,
the final constraint weights are quite simi-
lar to the weights when concrete URs were
the only potential option, but the inclusion
of the covert representations as potential URs
for forms with /VVN/ vowels allows MaxLex
to accurately model the data, with a .98 to-
tal probability of observing the correct sur-
face forms for all words fed to the learner.
However, while MaxLex is successful in mod-
eling the data with the inclusion of these
two covert URs, it is unsuccessful in discrim-
inating between them, instead assigning an
equal 0.5 probability to both covert URs. In
other words, the MaxLex prior cannot distin-
guish between a restrictedly abstract UR like
/ɑɑ/ and an unnecessarily abstract UR like
/ɒɒ/. The reason for this is that changes
in constraint weights from the phonotactic
to the morphologically-aware learning stage
are identical regardless of which covert UR is
used. To permit the nasal harmony pattern in
forms with contrastive /ṼṼ/ vowels, ID[nas]
and *NASG need to lower so that their com-
bined sum is less than SPRD-L. This change
holds regardless of whether the UR for the
/VVN/ vowel in [tɑɑʋɑ̃ɑ̃n] is /ɑɑ/ or /ɒɒ/.
Additionally, ID[rd] − the faithfulness con-
straint associated with the increasingly ab-
stract UR, /ɒɒ/− remains at zero without any
pressure to increase. This is because no al-

Constraints Type initial w final w
ID[nas] faith. 51.37 0.07

IDFIN[nas] faith. 44.83 100.00
SPRD-L mark. 92.83 5.42

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.02

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑɑn/ 0.5
/tɑɑʋɒɒn/ 0.5
/tɑɑʋɑ̃ɑ̃n/ 0.0

Table 5: Constraint weights and UR probabilities
with abstract URs included

ternation exists for /VVN/ vowels, so faithful-
ness constraints are not driving their surface
realization. In cases like Punjabi, then, when
an alternation does not exist but a covert UR
is still needed, the MaxLex prior fails to re-
strict abstraction because minimally abstract
URs like /ɑɑ/ and increasingly abstract URs
like /ɒɒ/ do not rely on distinct constraint
weights to accurately model the data.
5 Learning via Disparity

Minimization
In this section, I propose an update to the
MaxLex learner that generates a preference
for minimally abstract URs over increasingly
abstract alternatives, even when the mini-
mally abstract UR does not outperform the in-
creasingly abstract UR in either its accuracy in
modeling the data or its deviation from a prior
on constraint weights. Specifically, if the dis-
parity component in equation (3) is added to
the objective function, assigning probability
to URs that introduce disparities increases the
loss. Consequently, abstraction will only be
preferred if doing so sufficiently increases the
likelihood of observing the data.

D(IOj) =

kj∑

i=1


1{sIij⊕sOij=∅} +

∑

f∈F
1{sIfij ̸=sOfij}



2

(3)
As shown in the equation, the disparity

value for the jth input-output mapping is com-
puted by summing squared segment-level dis-
parity terms across all kj aligned segments.
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Each term within the summation compares
the ith input segment (sIij) with the corre-
sponding output segment (sOij). Two indica-
tor functions contribute to segment-level dis-
parities: the first returns 1 if exactly one of
the two segments is null (i.e., an insertion
or deletion has occurred); the second iterates
over all features f in the feature set F , re-
turning 1 whenever the corresponding input-
output segments differ on that feature. When
either sIij or sOij are null, the second term con-
tributes 0 vacuously, since the null segment
has no features over which to compare. In
effect, incentivizing the minimization of the
disparity bias encourages the learner to ac-
quire input-output mappings with as few dif-
ferences as possible between corresponding
segments. Squaring segment-level disparities
before aggregating them results in a quadratic
increase of the disparity bias as the number
of disparities for a given segment increases,
thereby enacting harsher penalties for under-
lying segments that are increasingly divorced
from their realization.
The inclusion of a disparity bias in the

learner is motivated by both theoretical as-
sumptions and empirical observations about
how underlying representations are selected.
From a modeling perspective, the updated
learner satisfies Occam’s Razor: among com-
peting hypotheses that account equally well
for the data, the disparity bias favors the
simplest one. In the context of UR selec-
tion, increasingly abstract URs introduce addi-
tional complexity by requiring more transfor-
mations between the underlying and surface
forms. In the absence of independent moti-
vation, positing such abstract forms results in
unnecessary representational complexity.
Indeed, linguists often assume that URs re-

flect SRs faithfully unless motivated other-
wise (Kiparsky, 1982; Baković et al., 2022).
This assumption is formalized in Tesar
(2014, p.1) through the principle of surface-
orientedness, whereby “disparities between
input and output are introduced only to
the extent necessary” to satisfy indepen-
dent grammatical restrictions. Similarly,
Prince and Smolensky (1993/2004, p.225–
226) propose the Lexicon Optimization Prin-
ciple, which holds that learners should select

URs that result in the most harmonic output,
minimizing violations unless a more abstract
UR yields a demonstrable advantage. Finally,
empirical evidence supports the notion that
language learners disprefer abstract URs. As
shown by Kiparsky (1973), covert URs are of-
ten reanalyzed over time as surface-true by
successive generations of learners, suggesting
a robust bias in favor of minimizing dispari-
ties.
What follows demonstrates the computa-

tional success of incorporating the disparity
bias into the MaxLex learner. The procedure
begins in the same way as MaxLex, with an
initial stage of phonotactic learning followed
by a morphologically-aware learning stage.
Here, as in the previous section, the algorithm
is provided with two potential covert URs to
consider, /ɑɑ/ and /ɒɒ/. Importantly, these
are the only two URs that need to be con-
sidered under the present analysis to demon-
strate that the model prefers minimal abstrac-
tion. That is, if /ɒɒ/ can be ruled out by
the disparity bias, any other covert UR with
a superset of the disparities of /ɑɑ/ can also
be ruled out. In this case, the UR of /VVN/
vowels must be oral to appropriately model
the data, and /ɑɑ/ only differs from the sur-
face form [ɑ̃ɑ̃] in its nasality value. As such,
any other potential UR that could effectively
model the observed Punjabi forms with a suf-
ficiently high likelihood necessarily possesses
a superset of the disparities of /ɑɑ/ and will,
therefore, be dispreferred by the disparity
bias.
The results of the simulation with the up-

dated learner are provided in Table 6. The
weights the learner arrives at are almost iden-
tical to the weights learned by the original
MaxLex learner. The key difference here
is the probability given to the three poten-
tial URs considered for [tɑɑʋɑ̃ɑ̃n]. Whereas
MaxLex assigned equal probability to both
covert URs because they model the grammar
equally well and minimize the prior to the
same degree, the updated learner assigns es-
sentially all of the probability to the mini-
mally abstract covert UR, /tɑɑʋɑɑn/.
In sum, O'Hara (2017) demonstrated that

MaxLex effectively constrains UR abstrac-
tion in cases where surface alternations are
present and potential covert URs do not dif-
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Constraints Type initial w final w
ID[nas] faith. 51.37 0.00

IDFIN[nas] faith. 44.83 100.00
SPRD-L mark. 92.83 4.61

*NASOBS mark. 100.00 100.00
*NASG mark. 99.48 0.00

ID[nas]/_V contfaith. 100.00 100.00
*VVN mark. 100.00 100.00
ID[rd] faith. 0.00 0.00

*LOWRD mark. 100.00 100.00

UR P
/tɑɑʋɑɑn/ 1.00
/tɑɑʋɒɒn/ 9e−15

/tɑɑʋɑ̃ɑ̃n/ 2e−15

Table 6: Constraint weights and UR probabilities
with abstract URs and the DISPARITY bias.

fer in their disparity count (as in Klamath).
Incorporating an explicit disparity bias into
MaxLex extends its utility by enabling it to
constrain unnecessary abstraction in forms
that lack alternations but still require a covert
UR for an adequate analysis.
6 Traversing the Search Space
The proposed disparity bias in equation (3) is
intimately connected to output-driven maps
defined in Tesar (2014, 2016). Tesar’s frame-
work shows how disparities between underly-
ing and surface forms can be used to organize
the space of potential URs in a way that allows
the learner to search efficiently and avoid un-
necessary computations.
Output-driven phonology imposes entail-

ment relationships on UR-SR mappings based
on their disparity profiles. If a UR maps to
a given surface form with n disparities, then
any UR that maps to that same surface form
with a proper subset of those n disparities
must also be grammatical. For instance, if
the mapping /tɑ/ → [tu] is grammatical, then
/to/→ [tu] must also be grammatical because
/to/ → [tu] possesses a proper subset of /tɑ/
→ [tu]’s disparities. However, this relation-
ship does not hold between URs that have
non-nested disparity sets; for example, /ti/
differs from [tu] in two features (e.g., [front],
[round]), but /to/ differs in only one ([high]).
Because the disparities in /ti/ → [tu] are not
a superset of those in /to/ → [tu], no en-
tailment of grammaticality follows between
these mappings.

These entailment relationships allow the
learner to organize the space of potential URs
for a given surface form into a structured lat-
tice (Figure 1), with the fully faithful UR at
the top and increasingly abstract URs further
down. Each node represents a potential UR,
and edges lead to forms lower down in the
lattice that differ by one additional disparity.
If a UR at some level of the lattice fails to gen-
erate the observed SR, then all URs that in-
clude a superset of that UR’s disparities (i.e.,
nodes further down the lattice) can be imme-
diately ruled out. This structure allows the
learner to efficiently eliminate broad swaths
of the search space.
Importantly, the use of output-driven

phonology by Tesar (2014, 2016) to structure
the space of potential URs is primarily nega-
tive: it is designed to rule out more abstract
URs based on the failure of a less abstract UR
− one higher in the lattice − to map success-
fully to the surface form. It does not address
how a learner might efficiently traverse the re-
maining space of successful URs that can gen-
erate the correct SR but differ in the number
of disparities they require. Consider again the
example lattice in Figure 1. If a learner con-
siders /to/ as a potential UR for [tu] and finds
that it is successful in modeling the data, no
mechanism exists to prevent it from also need-
ing to consider /tɑ/, /tɒ/, /tõ/, or any other
potential UR that contains a proper superset
of disparities in its /UR/→[SR] mapping to
[tu].
I propose extending output-driven phonol-

ogy in precisely this direction. A learner
equipped with the disparity bias outlined in
the previous section and a likelihood thresh-
old at which success in modeling the data is
'good enough' can use the lattice structure not
only to eliminate chains of incompatible URs,
but also to stop searching the space once this
likelihood threshold has been reached and fur-
ther levels of abstraction only trivially im-
prove the likelihood of observing the data.
More precisely, the search for the optimal

UR could be conducted serially rather than
initializing UR optimization with the full set
of potential URs in contention simultaneously.
A learner would begin by considering URs
with 0 disparities and then move on to gener-
ate and consider URs with successively more
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tu

to

tɒ

tɑ

tõ

tɯ

tɨ

ti

Figure 1: Example lattice for the output form [tu]
(c.f. Tesar, 2016)

disparities as needed. As a result, the size of
the search space would be irrelevant because
the learner does not need to cover the entire
space (or even most of it) to decide on the op-
timal UR.
In sum, the disparity bias does more than

minimize abstraction: it also provides a
principled way to structure and efficiently
search an otherwise infinite space of poten-
tial URs. By combining the lattice structure
from output-driven phonology with a dispar-
ity bias and principled likelihood threshold of
acceptability, the framework not only curtails
unnecessary abstraction but also offers a com-
putationally efficient method for identifying
the optimal UR.

7 Conclusion
This paper introduced a disparity bias as an
addition to the MaxLex learner from O'Hara
(2017) to improve its preference for min-
imally abstract underlying representations
when multiple URs generate the same sur-
face data with similar likelihood. By penal-
izing input-output disparities, the model fa-
vors URs that more closely resemble their sur-
face realizations, thus curtailing unnecessary
abstraction.
In addition to implementing this disparity

bias, the paper outlined a blueprint for ad-
dressing a second major challenge posed by
abstract URs. Specifically, permitting abstrac-
tion causes the space of potential URs to grow
beyond a size that is computationally fea-
sible to search. Drawing on insights from
output-driven phonology, I proposed organiz-
ing the UR space into a lattice structured by
disparity count and conducting a serial search
through this space. By incorporating a likeli-
hood threshold that defines when a UR ade-

quately models the data, the learner can stop
the search once candidates with additional
disparities fail to meaningfully improve the
likelihood of observing data.
While the paper provided a computational

implementation of the disparity bias, the pro-
posed method for structuring and traversing
the UR space remains conceptual. Future
work is required to develop this proposal com-
putationally. This is a non-trivial task. Al-
though concrete URs can be easily identified,
generating the set of potential URs for the
learner to consider at each increasing dis-
parity level poses a combinatorial challenge.
That is, as the number of disparities grows,
the number of combined ways in which a seg-
ment could be altered to achieve that number
of disparities explodes. The matter only wors-
ens when considering multiple segments in a
UR. Thus, additional work is needed to deter-
mine principled ways to constrain the set of
potential URs at each disparity level consid-
ered by the learner.
A second open question concerns the like-

lihood threshold. Although I suggested a
threshold as a stopping point, future re-
search must investigate how this value can be
grounded empirically. It may be that no sin-
gle threshold is appropriate across a popula-
tion of learners, and that the stopping crite-
rion must be calibrated on a speaker-specific
basis.
In addition, future work should explore

how the disparity bias interacts with the
MaxLex prior introduced in O'Hara (2017).
This paper has shown that the MaxLex prior
alone is insufficient for limiting abstraction in
the case of Punjabi pre-N vowels. However,
the prior remains crucial in cases like Kla-
math, where multiple URs generate the same
surface form with equivalent disparity counts.
Thus, it should be examined whether the dis-
parity component and the MaxLex prior ever
conflict, and if so, how such conflicts would
be resolved in the learning process.
Finally, the disparity bias was implemented

on data from Punjabi, but its application to
phonological patterns from other languages
that require varying degrees of abstraction is
necessary. The cases discussed in Wang and
Hayes (2025) would be an interesting set of
case studies to begin with in this regard.
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A Appendix
(5) Constraints used in Modeling Punjabi

i. SPRD-L[nas] (cf. Walker, 2003, 47)
For every occurrence of a [+nas] feature
in a prosodic word, if that [+nas] feature
is dominated by some segment, assign a
violation for every segment to the left of
that segment in the prosodic word that
does not dominate the [+nas] feature.

ii. *NASOBS (Walker, 2003, 51)
Assign a violation for every obstruent
that dominates a [+nas] feature.

iii. *NASG (Walker, 2003, 51))
Assign a violation for every glide that
dominates a [+nas] feature.

iv. ID[nas]
For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A.
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v. IDFIN[nas]
For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A in the final syllable of a prosodic word.

vi. *VVN
Assign a violation for every vowel that
dominates a [-nas] feature when directly
preceding a nasal consonant.

vii. ID[nas]/__V
Let A be a segment that occurs before an
oral vowel, __V, in the input. Assign one
violation if the output correspondent of
A does not have the same specifications
for [nas] as A.

viii. ID[rd]
For every segment, A, assign a violation
if the output value for the [rd] feature
dominated by A does not match the input
value for the [rd] feature dominated by
A.

ix. *LOWRD
Assign a violation for every vowel that
dominates a [rd] feature and a [low] fea-
ture simultaneously.
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Abstract 

How we answer questions is often affected by 

whether our response conforms with the bias, 

or tilt, encoded in the question. For example, 

if we have a ‘yes’ answer to a negatively-tilted 

question like You aren’t eating, right?, we 

may delay, hedge and explain our answer. We 

examine these phenomena at scale through 

the Switchboard Corpus: We determine 

which aspects of answer design tend to appear 

together and how this relates to question tilt 

through latent class analysis. We find three 

groups of design features that, respectively, 

challenge assumptions of the question-answer 

sequence, expand on the answer, and delay 

presentation of the answer. We also find that 

answers contradicting the question’s tilt are 

much closer in design to tilt-conforming 

answers than responses without polarity, 

though they do disfavour answers that have 

none of the three classes of features. Results 

support a gradient and multi-dimensional 

conception of conversational preference.1 

1 Introduction 

Questions are often designed to be biased, or tilted, 

towards certain types of responses (Bolinger 1957, 

Heritage & C Raymond 2021). For example, This is 

true, isn’t it? is tilted towards ‘yes’, and This isn’t true, 

is it? towards ‘no’. An answer congruous with the 

question’s tilt promotes solidarity; the opposite 

answer may threaten it. This is part of a wider 

phenomenon called preference in Conversation 

Analysis (Pomerantz & Heritage 2012, Nishizaka & 

Hayano 2015, Pillet-Shore 2017), specifically the 

preference for agreement, a type of action preference: 

Some actions (e.g. answering positively a positively-

tilted question) are preferred actions, while others 

 
1 Thanks to Karen Nylund-Gibson and Delwin Carter for 

help with modelling, Simon Todd for extensive comments 

on the paper, and John W DuBois, and members of UC 

(e.g. answering negatively a positively-biased 

question) are dispreferred actions. 

Previous research finds that people minimise the 

face threat in dispreferred responses by designing 

them to be less direct (Sacks 1987 [2010], Pomerantz 

1985). They may delay the answer using silence, 

audible breaths, laughter, or words like well, uh; 

qualify it using phrases like I think, or explain the 

answer. Such answers have dispreferred turn formats; 

by contrast, short and straight answers have preferred 

turn formats. In other words, previous research found 

that action preference and design preference tend to 

go together: preferred actions tend to be implemented 

with preferred turn formats, and vice versa. 

Traditionally, these observations come from 

qualitative analyses of small datasets. Recent 

quantitative studies both confirm these observations 

and complicate the picture. Stivers et al. (2009) find 

that responses that do not really answer the question 

are produced slower than answers, and tilt-non-

conforming answers are slower than conforming ones. 

Roberts et al. (2015) find that positive answers are 

only slightly (~55 ms.) faster than negative ones. 

Robinson (2020a) argues against the claim that 

‘neutral’ yes-no questions, e.g. Do you have cats? 

asked by someone who does not know the answer, 

prefer ‘yes’; instead, both ‘yes’ and ‘no’ answers are 

preferred responses, while conditional (‘it depends’)-

type answers are dispreferred. Kendrick & Torreira 

(2015) found that longer delays are much more 

strongly associated with dispreferred turn formats 

than with dispreferred actions. Kendrick & Holler 

(2017) found that dispreferred responses to polar 

questions were 123-165 ms slower than preferred 

ones (depending on the operationalisation). 

Previous studies have not extensively investigated 

differences between the various strategies for creating 

Santa Barbara’s CEILing group and the California Annual 

Meeting on Psycholinguistics for additional discussion. 
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dispreferred turn formats, which may serve different 

functions and have different relationships with action 

preference. This may be in part due to sample size 

limitations, as disentangling the many strategies 

requires more than the 200 or so question-answer 

pairs analyzed in previous work (Robinson 2020a, 

Kendrick & Torreira 2015). This study examines 

these differences using corpus-based computational 

methods, leveraging rich annotations available for the 

Switchboard Corpus (Godfrey, Holliman and 

McDaniel 1992). Focusing on polar (i.e. yes-no) 

questions and their answers in American English, we 

aim to answer: 

1. Are there regularities as to how different answer 

design strategies appear together? 

2. If so, how are the different groups of strategies 

related to action preference? 

The first question is answered by sorting answers 

into classes according to different features of turn 

design, then examining which features are associated 

with which classes, using a latent class model 

(Nylund-Gibson & Choi 2018). The second is 

answered by predicting class membership from 

action preference, using tilt-conformity as an 

auxiliary variable (Asparouhov & Muthén 2014). 

2 Data and methodology 

2.1 Corpus and extraction of question-answer 

pairs 

This study uses the Switchboard Corpus (Godfrey, 

Holliman and McDaniel 1992), consisting of 

American English telephone conversations between 

strangers on researcher-designated topics. We mainly 

made use of the annotations made available in XML 

format through the NXT-format Switchboard Corpus 

(Calhoun et al. 2010) and the Switchboard dialogue 

act corpus (SwDA) (Jurafsky, Shriberg & Biasca, 

1997), as converted into CSVs in Potts (2011). 

The corpus is divided into approximately 

utterance-sized units called slash units. SwDA 

assigns a dialogue act annotation to each slash unit, 

e.g. qy for polar questions, ny for ‘yes’ answers, etc. 

Tags are often modified by adding letters followed by 

^, e.g. ^r means something is a repetition. Unless 

otherwise specified, when mentioning a tag in this 

paper, all the modified versions are included. 

Appendix A lists and defines all the SwDA tags 

relevant to this paper. 

Polar questions were extracted by searching for the 

tags qy and ̂ g. For each extracted question, the next 

turn from a different speaker than the one who 

produced the question was extracted as the answer. 

Question-answer pairs where there was a gap of 5 

seconds or longer between the question and the 

answer were excluded, as they are likely to be 

erroneous. See Appendix B for the treatment of rare 

edge cases like multiple questions and turn 

increments. After question-answer pairs were 

extracted, we determined whether the answer 

implements a preferred action and detected different 

answer design features. 

2.2 Features of answer design 

Before extracting the features of responsive turns, 

each turn was divided into three parts. The first slash 

unit to convey the polarity of the answer (generally 

tagged ny, na, aa, nn, ng, ar, no, am, arp, nd) is 

called the core of the answer in this paper. The parts 

preceding it are pre-core, and the parts following it 

post-core. Answers without detectable cores are not 

considered. An example is given in Table 1. 

 
Features of the responsive turn considered in this 

study are divided into two groups: Those preceding 

the core or concerning the core itself, and those 

following the core. The following paragraphs 

describe how the features were extracted. Though 

many features were extracted based on the literature, 

only those appearing >5% of the time were included 

in the final dataset. Full details of the extraction 

process and excluded features are in Appendix B. 

Pre-core/Core features. The OFFSET between two 

turns was calculated by taking the timestamps of the 

last word of the question and the first word of the 

answer. Non-linguistic vocalisms at edges of turns are 

not considered part of the turn in this calculation. This 

resembles Offset 2 of Kendrick & Torreira (2015). A 

negative number indicates overlap between the two 

turns; a positive number indicates a gap. 

Fillers and discourse markers were tagged in the 

corpus (Meteer & Taylor 1995). Features related to 

these words are detected either directly using those 

tags, or using the forms of words (since there are 

missing tags): 

• FILLERS: either words other than oh tagged {F 

}or having the form uh or um 

A 1 # Like Garth Brooks. # / Question qy^d 

B 2 Garth Brooks, {F oh }  / Pre-core ^h 

3 yes, #  / Core ny 

4 {D you know } he's fine. # / Post-core sv^e 

Table 1: Examples of pre-core, core and post-

core slash units. 
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• DMOTHER: discourse markers other than oh, 

tagged {D } or with the forms well or you know. 

• DMOH: discourse marker oh. It is considered 

separately as it does not serve to delay the answer, 

but challenges the question’s appropriateness and 

asserts the answerer’s epistemic authority 

(Heritage 1998, 2005). 

Other core-delaying features like breath and laughter 

were excluded as they did not exceed 5%. 

Cores were also tagged for whether they are 

interjection-type – simple, single-word answers that 

convey polarity and do not grammatically combine 

with other words – or non-interjection-type ones 

(NONINTERJ) (called type-nonconforming answers 

in G Raymond (2003)). Cores tagged nn, ny, are 

treated as interjection-type answers, plus words like 

right, yeah, sure, probably, certainly when standalone; 

the rest are non-interjection-type answers. Non-

interjection answers are mostly repetitional (Heritage 

& G Raymond 2012, Enfield 2019), repeating words 

and grammatical structures in the question (B: Well, 

do you do any recycling? A: Uh, we do here.). Some 

are transformative answers (Stivers & Hayashi 2010) 

which indirectly imply the answer (A: You use your, 

your company’s? B: My husband’s, which implies a 

positive answer, but rejects the presupposition that the 

company is owned by B). 

Finally, we looked for words and phrases 

expressing qualification or epistemic downgrade 

(DOWNGRADE), i.e. lowering the answer’s 

confidence, before or at the core: 

• Adverbs like probably, somewhat, sometimes¸ 

personally, maybe, perhaps; 

• Modal auxiliaries like could, might, may; 

• Degree adverbs like really, so, very, too, usually, 

with a negator (e.g. Uh not really); 

• Epistemic/evidential verbs like think, believe, 

guess, know, say, feel, and common paraphrases, 

based on Cappelli (2007) and Thompson (2002); 

• Slash units tagged ^h (hedge). 

Extraction was aided by part-of-speech tagging and 

dependency parses from spaCy (Honnibal & Montani 

2017) with a three-stage process: adverbs and modal 

auxiliaries were extracted from the corpus, those 

related to epistemic downgrade were manually 

chosen, and then the corpus was reprocessed to detect 

the chosen forms, reducing the possibility of missing 

forms that were mistakenly tagged. Note that some 

downgraders act as interjection-type answers alone 

(Stivers 2022: 95).  

Post-core features. A post-core has the feature 

SAMEPOLA if it contains a polarity-conveying 

dialogue act with the same polarity as the core. It has 

the feature COREEXT if it contains an extension of 

the core (with the tag ^e): these are utterances that 

repeat or qualify the polarity of the answer, but with 

more complex expressions than the core (e.g. Yes, I 

do.). A post-core has the feature EXPAND if it has a 

statement (with tag sv or sd) without the 

modification ^e – roughly corresponding to turn 

expansions (Ford 2001, Lee 2015) in Conversation 

Analysis. Such expansions can include explanations 

and elaborations of the core, twists on the core, etc. 

Features for fillers, discourse markers, and 

downgrade were also extracted for the post-core 

(other than oh, which has no known consistent post-

core function). An additional feature extracted for 

post-core but not pre-core is CONJBUT, consisting of 

conjunctions but and (al)though, because they often 

present information that contrasts with the polarity 

conveyed by the core, often in order to qualify it. 

Feature Definition Location Example 

OFFSET Time (sec.) between question and 

answer 

PreC/C B: Do you have kids? / 

A: [offset = 1.794s] I have three.  

FILLERS Words like uh or um that fill pauses Both {F Uh, } we will be. 

DMOH The discourse marker oh PreC/C {F Oh, } I do. 

DMOTHER Discourse markers other than oh Both {D Well, } {F uh, } I have thought about it. 

NONINTERJ Repetitional and transformative 

answers 

PreC/C B: Is Texas one of them? 

A: Texas is not one of them. 

DOWNGRADE Language for epistemic downgrade Both Probably not. 

SAMEPOLA Polarity-bearing dialogue act with the 

same polarity as the core 

PostC No, / no. 

COREEXT Extension of the core PostC No,  / I'm not. / [sd^e] 

EXPAND Statements expanding on the core PostC Yeah.  /{F Uh, } I understand. [sv] 

CONJBUT Contrastive conjunctions like but PostC No, / I don’t, / {C but } I think I know what it is. 

SISR Self-initiated self-repair PostC Yeah,  / [ we, + we've ] seen that,  / yeah. / 

Table 2: Summary of features included in the final modelling, alongside actual examples from the corpus. PreC/C = Pre-

core/core, PostC = post-core, Both = both Pre-core/core and post-core.
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Unlike the case of pre-core/core, self-initiated self-

repair (SISR) appeared in post-core positions >5% of 

the time, and was therefore included. A post-core has 

the feature SISR if it has either a slash unit with the 

tag % (abandoned utterance), or brackets [] which 

indicate repair in the transcriptions (Meteer & Taylor 

1995). Table 2 summarises and exemplifies all the 

features included the final modelling. 

2.3 Determination of tilt-conformity 

The biases that the forms of questions impose on the 

answer are called conduciveness (Bolinger 1957, 

Quirk et al. 1985) or tilt (Heritage & C Raymond 

2021). Three question design factors determine tilt: 

syntactic type, polarity of the question, and presence 

of negative polarity items. 

There are three main syntactic types of questions: 

Inverted questions (a.k.a. interrogative-formatted 

questions) are those where the auxiliary verb precedes 

the subject, e.g. in Are you eating?, the auxiliary are 

precedes the subject you. Queclaratives (a.k.a. 

declarative-formatted questions) have the same 

syntax as a statement (e.g. So you’re eating.) but 

serves as a question, sometimes with rising intonation. 

Tag questions consist of a declarative plus a tag that 

turns it into a question, usually the word right or an 

inverted auxiliary-subject sequence with polarity 

reversed from the statement, e.g. You are eating, 

aren’t you?, where aren’t you inverses the polarity of 

you are. The three types are largely determined from 

SwDA tags: inverted questions have unmodified tags, 

whereas queclaratives take the modifier ^d and tag 

questions ^t. Some exceptions were manually 

corrected; details are in Appendix B.3. 

The polarity of the question is in most cases the 

polarity of the root of the question in a dependency 

parse: if a negator depends on it, then it is negative, 

otherwise it is affirmative. For tag questions, the 

polarity of the question is defined as the polarity of 

the declarative portion of the question. When a tag 

question has an auxiliary-subject sequence as the tag, 

the root is located in the tag rather than the declarative 

(e.g. the second are in You are eating, aren’t you), so 

the polarity of the question is the opposite of the root. 

Details are in the Appendix. 

Negative polarity items (NPIs) are words like at 

all, any, yet etc., which occur only in negative 

statements and questions, and are usually said to shift 

the tilt towards ‘no’ answers (e.g. Heritage & C 

Raymond 2021). 

From the three question design features above, the 

tilts of the questions were determined following 

standard overviews (e.g. Heritage & Clayman 2010: 

142-143, Pillet-Shore 2017, Stivers 2022: 11). 

Queclaratives are tilted towards the same polarity as 

the statement, e.g. So you’re eating? is biased towards 

‘yes’, So you’re not eating? towards ‘no’. Tag 

questions are similarly tilted towards the same 

polarity as the declarative portion of the question. 

Positive inverted questions are assumed to be biased 

towards ‘yes’ answers, e.g. Are you eating? is biased 

towards ‘yes’, as are negative inverted questions like 

Aren’t you eating?. Table 3 summarises this situation. 

Questions with NPIs are assumed to be negatively-

tilted, unless they are found in negative inverted 

questions.  

Answers were sorted into tilt-conforming polarity 

(TC), tilt-non-conforming polarity (TNC), and no 

polarity (NP) by considering the polarity of the 

answers. Answers with cores tagged ny, na, aa, 

sd^m were considered positive, and those tagged nn, 

ng, ar were considered negative; these polarities 

were compared with the tilt of the question to 

determine tilt-conformity. Those tagged arp and nd 

(answers classified by SwDA as dispreferred) were 

manually annotated for polarity. Answers tagged no, 

am were considered NP; they are neither ‘yes’ nor 

‘no’, e.g. ‘maybe’ or ‘it depends’ answers. Answers 

without any of these dialogue acts were excluded 

from the sample; they typically involve 

transformative answers that do not clearly give a ‘yes’ 

or ‘no’, but do not explicitly refuse to provide a 

polarity like no, am either. 

2.4 Statistical analysis  

The statistical approach taken is mixed mode latent 

class analysis (MMLCA) (Morgan 2015), which 

combines latent class and latent profile modelling 

(Nylund-Gibson & Choi 2018) by allowing both 

categorical and continuous variables. It identifies 

distinct categories of answer designs, called latent 

classes, in a data-driven way that does not predefine 

groups. Each latent class has a distinct distribution of 

feature values, as well as a prior probability 

Type Pol Tilt Example 

Inverted + yes Are you fly fishing? 

- yes Isn't that correct? 

Quecla-

ratives 

+ yes Now this is a LeBaron? 

- no You can't read labels? 

Tag + yes Those are good aren't they? 

- no You don't have mountains 

in Texas, do you? 

Table 3: Types of question syntax without NPIs 

and their associated tilts. Pol = polarity. 
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representing how prevalent it is in the overall corpus. 

For each answer, the model generates the posterior 

probability of it belonging to each class, rather than 

assigning it to a single class. Examining the feature 

distribution of each class allows us to see and interpret 

answer designs holistically, abstracting over 

individual features. 

The overall likelihood of the mixed modal latent 

class analysis model (MMLCA) is: 

∏ 𝑓(𝒚𝒊|𝚽) 

𝑁

𝑖=1

 = ∏ ( ∑ 𝜋𝑘

𝐾

𝑘=1

∏ 𝑓𝑗𝑘(𝑦𝑖𝑗|𝜽𝒋𝒌)

𝐽

𝑗=1

)

𝑁

𝑖=1

 

where 𝒚𝒊 is the profile of answer design features like 

fillers, discourse markers and offset time extracted for 

answer instance 𝑖 , 𝚽  is the model parameters, N is 

sample size, 𝐾  is the number of latent classes of 

answer designs, 𝐽 is the number of features, 𝜋𝑘 is the 

prior probability of an answer belonging to latent 

class 𝑘 , and 𝜽𝒋𝒌  are the class-specific model 

parameters for the distribution of each feature 𝑗  in 

class 𝑘 . Note that the probability of the features 

conditional on latent class are multipled together to 

get their joint probability, i.e. within each latent class, 

features are assumed independent. For each 

observation, the most likely latent class is: 

argmax
1≤𝑘≤𝐾

(𝜋𝑘 ∏ 𝑓𝑗𝑘(𝑦𝑖𝑗|𝜽𝒋𝒌)

𝐽

𝑗=1

) 

After fitting the model, tilt-conformity is used to 

predict the design of the answer with the ML three-

step approach (Vermunt, 2010). The full process is 

implemented in MPlus (Muthén & Muthén 2019), 

accessed through MPlusAutomation in R 

(Hallquist & Wiley 2018). 

3 Results 

A total of N = 2233 Q-A pairs were extracted from the 

corpus, slightly more than Stivers’ (2022) 1738 and 

considerably more than most other studies. As shown 

in Figure 2, there are considerable skews in tilt-related 

properties: Positive inverted questions without NPIs 

are by far the most common, followed by positive 

queclaratives; other categories are much rarer. Other 

descriptive statistics are in Appendix C; this section 

will focus on modelling results. 

3.1 Latent classes and features 

Mixed mode latent class models were run on all the 

binary turn design features plus OFFSET, which is 

modelled as Gaussians with class-varying means and 

variances. Models with 1-7 classes were fitted, with 

8000 random starts and 4000 remaining at the final 

stage. Although different random starts converged to 

slightly different log-likelihood values, inspection of 

parameter estimates for top values reveals that they 

are almost identical. 

To find the optimal number of classes, the models 

with 1-7 classes were compared using a variety of 

quantitative measures to determine the optimal model, 

following Nylund-Gibson & Choi (2018). This 

includes a series of information criteria, plus p-values 

of the BLRT and VLMR tests, which compare 

consecutive models: a significant p-value means the 

more complex model is better than the simpler one 

(Table 4). After the 5-class model, AWE shows an 

increase (worsening), and all other information 

criteria show diminishing returns clearly kicking in at 

the 6-class model (Figure 3). BLRT is significant for 

all models; VLMR is insignificant from the 4-class 

 
 

Figure 1: Sankey diagram of extracted data by tilt-

related properties. Quecl = queclaratives, Inv = 

inverted questions, -Q and +Q = negative and 

affirmative questions, +NPI and -NPI = with and 

without NPIs, -A and +A = positive and negative 

answers, xA = no-polarity answers, cfmty = 

conformity. 

 

 

 

 

Figure 2: An illustration of the MMLCA for an 

answer instance with feature profile 𝒚𝒊 =

[  , , 3.5], with two dichotomous and one 

continuous variable. 
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Cl Description PreC/C 

fillers, 

DMs 

Answer 

type 

PreC/C 

downgrade 

Core 

extension 

Post-core 

expansion & fillers, 

DMs, etc. 

A Assumption-challenging, 

strongly delayed & expanded 

Most Both Many Very few Most 

B Assumption-challenging, 

moderately delayed, unexpanded 

Many Both Many None Little 

C Assumption-conforming, weakly 

delayed, strongly expanded 

Some Interj. None Most Most 

D Assumption-conforming, 

undelayed & unexpanded 

Few Interj. None Some Little 

E Unusual offsets Some Mixed Little Mixed Mixed 

Table 5: The five classes with key properties and brief descriptions of each class. DM = Discourse marker. 

#C #Par LL BIC aBIC CAIC AWE BLRT VLMR 

1 15 −15,934 31983 31936 31998 32144 – – 

2 31 −14,327 28893 28794 28924 29225 <0.001 <0.001 

3 47 −13,776 27915 27766 27962 28418 <0.001 <0.001 

4 63 −13,472 27430 27230 27493 28105 <0.001 0.15 

5 79 −13,287 27184 26933 27263 28030 <0.001 0.07 

6 95 −13,176 27085 26783 27180 28103 <0.001 0.15 

7 111 −13,092 27041 26688 27152 28229 <0.001 0.24 

Table 4: #C = Number of classes, #Par = Number of parameters; LL = model log-likelihood; BIC = 

Bayesian information criterion; aBIC = sample size-adjusted BIC; CAIC = consistent Akaike information 

criterion; AWE = approximate weight of evidence criterion; BLRT = bootstrapped likelihood ratio test p-

value; VLMR = Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test p-value. 

 

 

Figure 5: Estimated probabilities of each binary answer design feature by class. The fact that lines cross 

each other suggests that they play different functions in answer design. If all the features played similar 

functions and one simply uses more of them if the turn is ‘more dispreferred’, we would expect the lines 

for different classes to roughly be parallel. 

 

Figure 3: Information criteria for models with 

varying complexity. AWE worsens and aBIC, 

BIC and CAIC improve very little after 5 

classes. 

 

 

Figure 4: Model-estimated densities of offset values 

of the five classes. Mean offsets (in sec.) of each class 

are: A: .098, B: .122, C: .238, D: .249, E: -.205. 
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model on, though the p-value dipped to .07 at the 5-

class model. With all metrics considered, we chose 

the 5-class model. 

In the following paragraphs, we will answer our 

first research question on which answer design 

features tend to appear together by examining the 

design feature values associated with each of the five 

classes. 

All five classes’ feature profiles (Figure 5 and 

Figure 6) are amenable to straightforward 

interpretation. Sample dialogues from each class are 

in Appendix D. Class A contains strongly delayed, 

hedged, and lengthy answers: these are characterized 

by the longest offset, are often non-interjection-

formatted and downgraded answers, and are most 

likely to have fillers and discourse markers pre-core 

as well as expansions and associated features like 

fillers and discourse markers post-core. Class B is 

like Class A, but with little post-core material and 

slightly less fillers and discourse markers. Inspection 

of transcripts also shows that they are mostly 

transformative, not repetitional answers. Class C has 

much shorter offsets than A-B, many fewer pre-core 

fillers and discourse markers, and mostly interjection-

type answers, but has a similar rate of expansions as 

Class A. Class D has the shortest offsets and least pre-

core material, is largely interjection-type, there are 

some core extensions but almost no expansion. Class 

E has greatest offset variance and largely captures 

instances with very long gaps or overlaps. In terms of 

turn design, it only stands out in having the greatest 

chances of SAMEPOLA, mostly due to turns with long 

overlaps necessitating repetition; thus, it does not 

shed much light on the relationship between answer 

design features, and will not be discussed further in 

the following paragraphs.  

From these observations, we can group features 

according to the classes they are associated with. 

Firstly, non-interjection-type cores, pre-core/core 

epistemic downgrades and lack of core extensions are 

associated with Class A+B over C+D. These features 

are ASSUMPTION-CHALLENGING: They convey some 

stance against what is typically expected of an 

answer. Epistemic downgrades challenge the 

assumption that the answerer knows the answer with 

certainty. Non-interjection-type answers can reject 

different assumptions, e.g. challenging the relevance 

of the proposition raised by the questioner, assuming 

more control over the topics discussed, or increasing 

one’s epistemic authority (Raymond 2003, Enfield et 

al. 2019, Stivers 2022); this is especially clear in the 

case of transformative answers, which as mentioned 

above are most common for Class B. The lack of core 

extensions is because non-interjection-type answers 

are already complex and thus hard to extend. 

Secondly, post-core expansions and most other 

post-core features like downgrades, fillers, repair, 

discourse markers and but (which are most likely 

found in expansions rather than core extensions) are 

mostly associated with Class A+C over B+D. A+C 

may be labelled EXPANDED ANSWERS, B+D as NON-

EXPANDED ANSWERS. 

Finally, pre-core fillers and discourse markers 

follow the pattern A>B>C>D. These features DELAY 

the presentation of the answer core. The fact that they 

differ across all four classes suggests that  they serve 

the double function of anticipating (a) assumption 

challenges (hence A, B > C, D) and (b) a longer, 

multi-utterance turn (hence A > B, C > D). 

Interestingly, offsets pattern primarily with the first 

group (A, B > C, D), not other delay-related 

properties, as it is unclear that A>B or C>D. Thus, 

while our results support Kendrick & Torreira’s (2015) 

suggestion that offset length is an aspect of turn 

design, silent delays may play a more restricted role 

than delays with fillers and particles: Longer silence 

primarily signals assumption-challenging answers, 

not expanded ones. These differences are small but 

noticeable: A and D are 151 ms apart. 

3.2 Relationship with tilt-conformity 

We now proceed to discuss how the various answer 

design features relate to action preference by 

examining their relationship with tilt-conformity, 

under the assumption that tilt-non-conforming 

answers implement dispreferred actions. Comparing 

 

Figure 6: Distribution of probability mass assigned 

to each class by tilt-conformity and question type. 

 

Figure 7: Distribution of probability mass 

assigned to each class in difference tilt-

conformity conditions. 
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tilt-non-conforming (TNC) and tilt-conforming (TC) 

answers, D is much less probable in TNC than TC 

answer: the odds of getting A, B and C over D are 

higher in TNC  answers (A vs D: p = .003; B vs D: p 

= .005; C vs D: p < 0.001). All other comparisons are 

insignificant. Comparing non-polarity-bearing (NP) 

answers to TC ones, the odds of A and B are 

significantly higher than C, D and E for NP answers 

(p < 0.001 for all); as is clear in Figure 6, TC-NP 

differences are much larger than TC-TNC ones, 

showing that assumption-challenging features are 

much more associated with NP than turn expansions. 

To determine whether this pattern is unique to 

inverted questions, which dominate the sample, a by-

question type barchart is given in Figure 7. The TC-

TNC difference is still much smaller than TC-NP or 

TNC-NP. Because TNC cases are underrepresented, 

in most cases there is not enough power to 

quantitatively detect differences between TC and 

TNC. Visually, however, in tag questions, TNC may 

favour B (assumption-challenging, non-expanded) 

over not just over D (p = .007) but also C (p = .105) 

and A (p = .057), suggesting that assumption 

challenges play a bigger role than expansions in TNC 

answers to tag questions. However, a larger sample is 

needed to verify this. 

4 Discussion and conclusion 

This paper examined turn design in one context: 

Answers to polar questions in American English, 

mostly information-seeking questions due to the 

corpus’ nature. We first examined what turn design 

features tend to go together. Most of the features 

examined fall into three categories depending on how 

they co-occur: assumption challenges, answer 

expansions, and delaying strategies. The three typical 

sets of strategies traditionally said to characterise 

dispreferred turn formats (Pillet-Shore 2017) – 

qualification, accounts (i.e. answer explanations) and 

delays – fall into these three categories. This suggests 

that the three types of strategies have distinct 

distributions and thus functions. 

Two unexpected observations emerge from this 

typology. Firstly, while the choice between 

interjection- vs. non-interjection-type answers is 

usually associated with a separate dimension (G 

Raymond 2003) from the dispreferred turn design 

strategies of qualification, account and delay, we find 

that it patterns with qualification in the assumption-

challenging category. Indeed, only 5% of interjection-

type answers are downgraded, while 21% of non-

interjection-type answers are. Secondly, offset 

patterns with assumption-challenging features rather 

than other (nonsilent) delay-related features, 

suggesting that silent delays project only assumption-

challenging, not expanded answers. 

The fact that nonsilent delays correlate with both 

assumption challenges and answer expansions may 

be explained by multiple mechanisms. Firstly, they 

may anticipate the other turn design features, e.g. 

Heritage (2015) argues that well alerts the listener to 

upcoming nonstraightforward, transformative and 

expanded answers. They may also directly signal 

similar meanings as some other answer design 

strategies, e.g. difficulty in memory retrieval or lower 

level of knowledge (Smith & Clark 1993, Brennan & 

Williams 1995), which presumably correlate with 

epistemic downgrades. 

To examine how action preference is related to 

answer design, we also examined the relationship 

between tilt-conformity and answer design. As 

expected, tilt-nonconformity disfavours answers with 

no delays, expansions, or assumption-challenging 

features over answers with at least some of these. 

TNC status may favour assumption-challenging 

features even more in tag questions, probably because 

they have stronger tilts, and thus going against the tilt 

poses a greater face threat. Yet, regardless of question 

type, the tilt-conformity effect is far smaller than the 

difference between non-polarity-conveying and 

polarity-conveying answers (regardless of tilt-

conformity): Answers without polarity are 

overwhelmingly designed with non-interjection-type 

answers and/or epistemic downgrades, likely because 

they inherently challenge the assumption that the 

answerer is willing and able to give a straightforward 

yes/no. This extends Robinson’s (2020a) hypothesis 

that ‘yes’ and ‘no’ answers are both preferred answers 

to positive inverted questions, and only conditional 

answers are dispreferred, by expanding it to all polar 

question formats with non-polarity-bearing answers. 

One difference between Robinson’s and our study is 

that he found no significant difference in pre-

beginning behaviour (including fillers and discourse 

markers in our study) between tilt-conforming and 

tilt-nonconforming answers, while we do find that 

tilt-nonconforming answers disfavour class D, which 

has the least pre-beginning behaviour. This is likely a 

result of our larger sample size, and supports 

Robinson’s idea that although the social action of 

asking a positive inverted question doesn’t by itself 

impose a preference, the syntactic form still encodes 

a tilt (Robinson 2020b). 
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Our results favour a gradient, multidimensional 

view of preference (Robinson 2020a). Limited by the 

categories employed by pre-existing SwDA 

annotations, our study cannot fully examine this 

richness, e.g. we could not distinguish between 

expansion types or determine which questions are 

truly information-seeking. Future studies will 

hopefully shed further light on these dimensions, a 

key piece of research as dialogue systems strive to 

mimic human conversational behaviour (Alloatti et al. 

2021, Dingemanse & Liesenfeld 2022, Lah & Lee 

2023). 
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Appendices 

A Switchboard tags 

qy polar question 

ny ‘yes’ answer 

nn ‘no’ answer 
ny affirmative non-‘yes’ answer 

ng negative non-‘no’ answer 

no other answer 

nd dispreferred answer 

aa acceptance 

aap partial acceptance 
am ‘maybe’ answer 

ar rejection 

arp partial rejection 

h hold 

^r self-repetition 

^m other-repetition 
^e expansion 

^g tag question 

^h hedge 

sd statement, not opinion 

sv statement, opinion 
{F } filler 
{D } discourse marker 
{C } conjunction 
% abandoned utterance 
[] repair 
<> vocalism 

 

B Details of feature extraction 

B.1 Details of extracting question-answer pairs 

and answer features 

Before further processing, any slash unit with + as its 

dialogue act was merged with the preceding act by the 

same participant. When there are additional slash 

units after the first question slash unit of a certain turn 

(for example, reformulations of the question or turn 

increments), all slash units up to either the the slash 

unit right before the start of the next turn or the one 

right after the start of the next turn were considered, 

whichever one’s midpoint was closer to the start of 

the next turn. 

The last question slash unit of the question turn 

was considered in determing question type and 

polarity. This question was parsed with spaCy. If 

spaCy identified multiple sentences within the slash 

unit, then we took the one with a question mark if 

there is only one such slash unit; we took the longest 

sentence with a question mark if there were multiple 

such slash units; and we took the longest sentence if 

there were no question marks.  

The following were treated as potential answer 

cores: ny (yes answers), nn (no answers), na 

(affirmative non-yes answers), ng (negative non-no 

answers), no (’other answers’), sd^m (repetition of 

the other’s question, which generally affirm the 

answer in this corpus), aa and ar (acceptance / 

rejection of question-formatted collaborate 

completions), plus any sd with the word ‘depend’ in 

it. For each responsive turn, the first slash unit with 

one of these dialogue acts was treated as core. Some 

yes/no answers were mistakenly tagged as b 

(backchannels); when they are classified as 

interjection-type answers (see below) and there are no 

other slash units in the response, they are treated as 

‘yes’ answers. Although sv and sd often also 

implemented polar answers, they were not included 

as it is difficult to automatically determine whether 

they bear polarity and, if so, whether they are positive 

or negative. Determination of answer polarity was 

discussed in the main text. 

Well and you know were originally extracted 

separately from other discourse markers, but later 

merged into the general category. 

OFFSET, SISR and NONINTERJ were mostly 

extracted as stated in the main text; NONINTERJ are 

those answers classed as nn and ny. In addition, a 

small number of answers from other classes were also 

interjection-type. These were extracted by 

considering a list of potential interjection-type 

answers: yeah, no, yes, uh-huh, right, huh-uh, okay, 

sure, exactly, absolutely, definitely, certainly, 

probably, yep, yip, mm-hm, of course, no question, I'll 

say, possibly, maybe, alright, fine. This list combines 

the one in Stivers (2022), plus other interjection-type 

answers fouund in an inspection of all one-word cores 

attested in the corpus. An answer is considered 

interjection-type if its core contains one of these 

interjections alone, or one of these interjections after 

by uh, um, oh, well. 

The determination of DOWNGRADE was relatively 

complex. Lists of adverbs and auxiliaries were 
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created by parsing all the answer (pre-)cores in the 

corpus, extracting all adverbs and auxiliaries, and 

determining polarity. Auxiliaries deemed to be 

downgraders include could, might, should, may, can, 

ought, must. Adverbs deemed to be downgraders on 

their own were probably, somewhat, sometimes, 

personally, maybe, perhaps, possibly, fairly. Adverbs 

deemed to be downgraders when combined with 

negation were really, so, very, too, usually, exactly, 

normally, particularly, always; these were only 

considered downgraders when there is a negator in 

the same sentence. 

Epistemic verbs include the lemmas think, believe, 

guess, suppose, know, feel, hear, assume, bet, 

conjecture, consider, doubt, expect, fancy, figure, 

reckon, gather, imagine, judge, presume, sense, 

surmise, suspect, trust with I as subject, and say with 

subjects other than I. Other phrases included were my 

guess, my feeling, I get the feeling, looks like. 

B.2 Unused answer design features 

The following features were extracted but not used in 

the end because they appeared less than 5% of the 

time. 

A pre-core/core has the feature HOLD if it contains 

a slash unit tagged h (hold).  

Non-linguistic vocalisms are transcribed in the 

corpus within angular brackets <>. Four were coded 

into features: Throat-clearing (THROAT) from the tag 

<throat_clearing>, laughter (LAUGH) from the 

tag <laughter>, lip-smacking (LIPSM) from the tag 

<lipsmack>, and breaths (BREATH) from the tag 

<breathing>. 

Conjunctions (CONJ) marked {C }, with the forms 

so, but, because, and sentence-initial And were treated 

as conjunctions. Edit terms (EDITTERM) were 

extracted with {E }, with I mean originally extracted 

apart from other edit terms; all edit terms were 

discarded in the end. 

The feature DIFFPOLA was used for dialogue acts 

conveying a different polarity as the core. 

Sure, exactly and really were considered 

UPGRADER when not accompanied by negators. 

Absolutely, definitely and certainly were always 

considered upgraders. 

B.3 Determination of tilt-conformity 

Generally, any question without an auxiliary-subject 

(or copula-subject) sequence or a tag is considered 

queclarative.  This include subclausal questions. The 

main exception is that when a question omits a copula 

or auxiliary verb that cannot be omitted in 

declaratives; in this case, this is considered ellipsis of 

the beginning of the question (Quirk et al. 1985), e.g. 

you got any hobbies that you want to talk about?. For 

questions starting with how about (e.g. {C And } how 

about SILENCE OF THE LAMB? /), the question 

type was set to be the same as that of the previous 

question. 

In general, question slash units with ^d were 

treated as queclaratives, those with ^g as tag 

questions, and other questions were treated as  

inverted. Sub-clausal questions were treated as 

declarative. However, there are a number of cases 

where the Switchboard corpus appeared to use 

intonation instead of syntax to determine ̂ d would be 

used. To smooth out these inconsistencies, if a 

question was tagged as inverted but our syntactic 

parse finds an auxiliary-subject sequence, or the other 

way around, we manually checked them to determine 

question type. 

Polarity was determined as described in the main 

text: For all questions but tag questions with 

auxiliary-subject tags, it was whether the root had a 

negator dependent; for tags with auxiliary-subject 

tags, it was the opposite polarity as the tag. 

Answer polarity largely was determined as 

mentioned in the main text. Answers tagged sd 

containing the word depend were treated as NP. 

C Descriptive statistics 

In the main text, we have discussed the model results. 

In this appendix we present the descriptive statistics 

to paint a more comprehensive picture of the data. 

Relationships among binary turn design features. 

To examine the relationship between different binary 

variables, log-odds ratios were computed between 

each pair of features, and plotted in Figure 8. Positive 

values mean the features tend to appear together, 

negative ones mean they tend to appear apart, and 

zero means no relationship. As is clear from the 

heatmap, most relationships are non-negative. Most 

strong positive relationships are concentrated 

between features of the post-core and, to a lesser 

extent, between features of the core/pre-core. 

EXPAND and post-core SISR are especially notable 

for their strong association with other post-core 

features, suggesting most of those other features are 

found in expansions. DMOH, COREEXT and 

SAMEPOLA are weakly or negatively correlated with 

other variables, and appear to work independently of 

other features. 
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Relationship between OFFSET and binary turn 

design features. Following Kendrick & Torreira 

(2015), we examine at entire distributions of offsets 

rather than just means.  For each turn design feature, 

kernel density estimates of the offset were calculated 

when the feature is present vs when it is absent. The 

difference between the two densities at various values 

on (-2, 2) is shown in Figure 9. The clearest pattern is 

that for all turn design features but DMOH and 

EXPAND, near-zero (i.e. no gap, no overlap) onsets are 

much more common when the feature is absent than 

when it is present. However, the prevalence of gaps 

over overlaps only seems to be associated with the 

presence of the pre-core FILLERS and post-core SISR, 

CONJBUT, and DMOTHER features. For 

DOWNGRADE and NONINTERJ, longer gaps are 

associated with the presence of the feature, but so are 

slight overlaps; only short gaps are associated with 

absence. For most other features, the pattern is unclear, 

or even reversed for SAMEPOLA. 

Relationship between tilt-conformity and binary 

turn design features. Generally, tilt-non-conforming 

(TNC) turns are more likely to contain the turn design 

features examined than tilt-conforming (TC) ones, 

and no-polarity (NP) answers are more likely to 

contain them than TNC ones, though the degree 

varies. For pre-core/core NONINTERJ, DMOTHER 

and DOWNGRADE, the TC-TNC difference is much 

smaller than the NP-TNC difference; for pre-core 

FILLERS or post-core STNONEXPAND, the TNC-TC 

difference and NP-TNC difference are more 

comparable. DMOH, EXPAND and SAMEPOLA are 

again exceptions to the general pattern. 

 
Relationship between tilt-conformity and offsets. 

Near-0 offsets are most commonly seen with TC 

answers, followed by TNC, and finally NP. Gaps 

between .3-.6 seconds are most likely TNC, followed 

by NP and TC; beyond around .8 seconds, the order 

is NP > TNC > TC. From all this, it is clear that NP 

responses are most closely associated with long gaps, 

followed by TNC and TC. Nevertheless, the 

differences are quite minute. 

 
Zeroing in on inverted questions, we find that 

positive inverted questions follow the general pattern 

in Figure 11, but negative questions are radically 

different: TC (positive) answers actually are more 

likely to have long gaps than TNC (negative) or NP 

ones (Figure 12). This may be because negative 

  

Figure 8: Log-odds ratios between different answer 

design features. * indicates that the two variables 

are significantly associated at the .05 level of 

significance using Fisher’s exact tests. 

 

 

 

Figure 10: Barcharts of the prevalence of design 

features in each condition 

 

Figure 11: Kernel density of offsets by tilt-

conformity. 

 

 

 
Figure 9: Difference in kernel density estimates of 

the OFFSET feature when each feature is present vs 

absent. Red (<0) means that offset value is more 

common when the feature is absent is larger, and 

vice versa. 
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inverted interrogatives still express the speaker’s 

stance that something in the context makes the state 

of affairs expressed in the question improbable 

(Heritage & C Raymond 2021). 

 

D Sample answers from the four classes 

All answers given in this section have class 

probability of at least .95. 

D.1 Class A 

B Is Pennsylvania kind of out of line there? / 

A {D Well, } {D actually, } I don't think they're out 

of line.  / 

[ De-, + Devil's ] advocate possibly,  / 

{C but } <rustling> <inhaling> [ it, + you ] are 

trying to avoid paying taxes  / 

{C and } [ whe-, + whether ] or not you agree with 

that law, [ i-, + you're ] still circumventing it.  / 

You are legal [ in, + in ] your circumvention of that 

law. /  

 

Delays: YES – long. 

Fillers and discourse markers: Well, actually. 

Epistemic downgrade: I don't think. 

Non-interjection answer: Repetitional, not a direct no. 

Expansion: extensive justification and elaboration 

after core. 

 

A [ You don't, + {F uh, } you're not ] [ in-, + into ] 

hacking or whatever <laughter>. / 

B {F Oh, } [ [ I, + I think I'm, ] + I think I'm ] a 

hacker,  / 

{C but }  I'm [ [ not, + not kind, ] + not [ the, + {F 

uh, } the, ] ] {D you know, } dial around randomly 

trying to break into computers type -- -- hackers,  / 

no,  / 

that's <laughter> one of those sports I don't go for. 

/ 

 

Delays: YES – long. 

Fillers and discourse markers: Oh, uh, you know.  

Non-interjection answer: Repetition, not a direct yes. 

Epistemic downgrade: I think. 

Expansion: extensive justification and elaboration 

after core. 

 

A {D Well } [ don't most of them, + doesn't just ]  

about everything now have both metric and 

English. / 

B They do,  / 

{C but } things are generally packaged  in the 

English sized packages, {D you know. }  / 

You buy a quart of milk,  / 

{C and } sure it  [ has, + has ] the metric equivalent 

written on there,  / 

{C but } it still a quart. / 

 

Delays: YES – long. 

Fillers and discourse markers: you know. 

Non-interjection answer: Repetitional, not a direct yes. 

Expansion: extensive justification and elaboration 

after core. 

 

D.2 Class B 

B Do you have any children? / 

A {F Uh, } they're all grown up. / 

 

Delays: YES – moderate. 

Fillers and discourse markers: Uh. 

Non-interjection answer: Transformative, not a direct 

no. 

Expansion: NONE, no elaboration or justification 

after the non-interjection answer. 

 

B Have you read that? / 

A {F Uh, } I haven't gotten through <laughter> it yet. 

/ 

 

Delays: YES – moderate. 

Fillers and discourse markers: Uh. 

Non-interjection answer: Transformative, not a direct 

no. 

Expansion: NONE, no elaboration or justification 

after the non-interjection answer. 

 

B Did you all ever watch that? / 

A [ I, + {D yeah, } I ] started, too,  and, {F uh } -- -- 

[ kind of, + kind of ] worked away from that. / 

 

Delays: YES – moderate. 

Fillers and discourse markers: yeah, uh. 

Epistemic downgrade: kind of. 

 

Figure 12: Kernel density estimates of offsets by 

tilt-conformity for inverted questions without NPIs 

only. 
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Non-interjection answer: Transformative, not a direct 

no. 

Expansion: NONE, no elaboration or justification 

after the non-interjection answer. 

D.3 Class C 

A Do you find trouble keeping the records for taxes 

and all that  / 

B No,  / 

it's not hard,  / 

I just keep it in a notebook and write down what 

I've made and, {F uh, } {D you know, } what it's 

going to have to go for that month  / 

{C and } -- -- {D you know, } it's [ not that, + not 

that ] hard.  Not at all. / 

 

Delays: YES – minimal. 

Fillers and discourse markers: NONE before core. 

Interjection-type answer: No 

Expansion: significant elaboration after the core.  

 

A [ Have you, + have you ] ever done anything at 

all? / 

B Yeah,  / 

I have.  / 

{F Uh, } sit-ups  / 

{C or, }   [ al-, + also ] last summer I was doing 

Nautilus  / 

{C or } last year <cough>  I'm, {F uh, }  belong   

to a club right here.  / 

Got kind of expensive, {F uh, }  [ to r-, + to [ r-, + 

renew. ] ]   They wanted another fifty dollars. /  

 

Delays: NONE. 

Fillers and discourse markers: NONE before core. 

Interjection-type answer: Yeah. 

Expansion: significant elaboration after the core.  

 

A I wonder if she's written anything really recently, 

if she's got anything  [ printed, +  in print. ] / 

B Yeah,  / 

she has,  / 

{C because } [  I, + I ] remember seeing a new 

book by her -- -- that  was out,  / 

{C and } I think [ it was a, + it was an ] adult book. 

/ 

 

Delays: NONE. 

Fillers and discourse markers: NONE. 

Interjection-type answer: Yeah. 

Expansion: significant elaboration after the core.  

 

D.4 Class D 

B When you did your papering did you start in the 

middle of the wall? / 

A No  / 

I didn't. / 

 

Delays: NONE. 

Interjection-type answer: No. 

Expansion: NONE, only extension I didn’t. 

 

A Have you ever read anything by Susan Howatch? 

/ 

B Yes,  / 

I have. // 

 

Delays: NONE. 

Interjection-type answer: Yes. 

Expansion: NONE, only extension I have. 

 

A Like, Queen's Reich, if you ever heard of them. / 

B {F Oh, } sure.  / 

Of course. / 

 

Delays: NONE. 

Fillers and discourse markers: Oh 

Interjection-type answer: sure. 

Expansion: NONE, only extension of course. 

 

D.5 Class E 

A {C so. } [ Have you, + do you  ] have a computer 

for yourself at home? / 

B [Offset = 1.21] No  / 

I didn't. /  

 

Delays: YES – long. 

Fillers and discourse markers: NONE. 

Interjection-type answer: No. 

Expansion: NONE, only extension I didn’t. 

 

B [ Do you work with, + do you work around ] 

children when you work? / 

A [Offset = -.70] No,  / 

no,  / 

not at all.  / 

I work with <noise> computers. /  

 

Delays: NONE – overlap of speakers. 

Fillers and discourse markers: NONE. 

Interjection-type answer: No. 

Expansion: elaboration after the core. 
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A Do you have any [ l-, + ] nieces or nephews 

<Laughter> (( then )) ? / 

B [Offset = -2.09] Yeah.  / 

Yeah.  / 

I have a nephew.  / 

He's a little brat. /  

 

Delays: NONE – overlap of speakers. 

Fillers and discourse markers: NONE. 

Interjection-type answer: Yeah. 

Expansion: elaboration after the core 
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Abstract

We present a method for analysing context-
sensitive word meanings using BERT embed-
dings and Gaussian Mixture Models in the
fields of lexical pragmatics and Conceptual
Engineering. Our methodology generates vi-
sual conceptual landscapes that reveal how
words cluster in different contexts, demon-
strated through a case study examining the term
PLANET. We provide quantitative metrics for
meaning stability and contextual variation, use-
ful for researchers studying lexical pragmat-
ics and meaning change. We also provide an
open-source tool which offers an accessible
interface for generating visualisations and met-
rics, requiring minimal technical expertise. Re-
sults show that even seemingly straightforward
terms exhibit complex meaning landscapes that
resist simple definition, highlighting the impor-
tance of context-sensitive analyses, combining
quantitative metrics and qualitative approaches.
This work bridges theoretical pragmatics and
computational linguistics, offering empirical
grounding for studying how word meanings
shift across contexts.

1 Introduction

Language is a complex, dynamic system, con-
stantly evolving and adapting to the contexts in
which it is used. Words are not static entities but
are deeply embedded in networks of meaning, in-
fluenced by both linguistic and extra-linguistic fac-
tors. This variability in meaning has long been of
interest to linguists, especially in the context of
polysemy, the phenomenon of words having multi-
ple related senses (e.g. paper as a physical object
vs. a scholarly article), and modulations (Reca-
nati, 2010), whereby contextual factors fine-tune
a word’s interpretation without generating a dis-
crete sense (e.g. an ATM swallowing a credit card).
We refer to the combination of these polysemous
senses and modulation as contextual meaning vari-
ation, a category encompassing both stable sense

multiplicity and more fluid, context-dependent in-
terpretive shifts.

Contextual meaning variations are not merely
theoretical concerns – they have significant impli-
cations for real-world applications. Conceptual En-
gineering (CE) is one such domain that directly en-
gages with these issues. CE is concerned with iden-
tifying and addressing deficiencies in how words
are used, including issues such as vagueness, ambi-
guity, and biases that distort clear communication
(Cappelen and Plunkett, 2020; Cappelen, 2018).
Much attention in CE is given to ‘improving’ words
in isolation, but the challenge of modifying word
meanings is complicated by the very nature of
words: they exist within networks of meanings
that shift across different contexts.

In this paper, we propose an interdisciplinary
approach that bridges CE, lexical pragmatics, and
computational linguistics. We create a tool and
method that helps address the practical challenges
faced by those navigating the complexities of lexi-
cal meaning (e.g. conceptual engineers) by leverag-
ing natural language processing (NLP) techniques
to map the intricate relationships within word mean-
ings designed to be broadly useful for researchers
in semantics and pragmatics.

Specifically, we use language models such as
BERT (Devlin et al., 2019) to generate contextu-
alised embeddings for a selection of words fre-
quently targeted by conceptual engineers, drawn
from the spoken component of the British National
Corpus 2014 (Love et al., 2017). Using Gaussian
Mixture Models (GMMs), we analyze these em-
beddings to uncover how words cluster in different
contextual settings, allowing us to visualise and
understand the conceptual landscapes of words
– how meanings interconnect and shift based on
context. These visualisations and metrics map the
intricate landscape of meanings associated with a
lexical item. Unlike traditional corpus methods
such as collocation analyses, our approach con-
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denses embeddings into clear visual representa-
tions, highlighting the proximity, distinctness, and
relationships between meanings while accounting
for contextual and distributional complexities. By
mapping the conceptual landscapes of words, we
offer lexical pragmaticists and conceptual engi-
neers a way to approach the delicate task of un-
derstanding contextual variations with greater pre-
cision, while simultaneously advancing the capabil-
ities of NLP research to handle complex, context-
dependent word meanings. This includes appli-
cations in word sense disambiguation (WSD) and
dialogue systems.

2 Related Work

While this tool and methodology have wide-
ranging applications, we focus on CE as a case
study. CE is inherently practical, aiming to actively
modify word meanings rather than merely theo-
rising about them. This dimension makes it even
more crucial to have robust methods that allow for
precise, context-aware revisions to word meanings,
ensuring that any interventions are both effective
and sensitive to the complexities of language.

2.1 Conceptual engineering

CE is an emerging area of analytic philosophy con-
cerned with improving the tools we use to think
and communicate, namely, our words and concepts,
when these are found to be defective in some way
(Cappelen, 2018; Koch et al., 2023; Isaac et al.,
2022). These ’defects’ may be theoretical (e.g.
vague, misleading, or imprecise terms) or socio-
political (e.g. terms that encode harmful ideolo-
gies). A prominent example is Haslanger (2000),
who argues that biologically grounded definitions
of terms like WOMAN and RACE should be replaced
with socially grounded ones to better reflect struc-
tural realities and serve emancipatory goals. In this
sense, CE is a normative project.

Here, we provide empirical tools that can be
used by CE practitioners, and, crucially, also by
those who wish to critique or scrutinise their ef-
forts. If CE is to be practised at all, it should be
done with a full understanding of how meanings
actually function across different contexts of use.
This paper seeks to separate diagnosis from pre-
scription, and this is where linguistic analysis has
a crucial role to play. We offer a method for map-
ping the actual complexity of word usage, making
it possible to ask more informed questions about

what kind of change is feasible, who it affects, and
where resistance might arise. For a more nuanced
discussion of these facets, see Haket (forthcoming).
In this sense, the framework is not a blueprint for
linguistic intervention, but a diagnostic system for
meaning dynamics.

2.2 Lexical Pragmatics
Lexical pragmatics is concerned with how meaning
is shaped by context, particularly the influence of
pragmatic factors such as speaker intent, discourse
context, and social norms. Meaning can vary signif-
icantly across different contexts, with words taking
on multiple meanings depending on their use. Pol-
ysemy has been a key focus in pragmatics, with
scholars like Grice (1989) and relevance theorists
(Wilson and Sperber, 2006) exploring how contex-
tual cues guide these inferences on the utterance
level, and lexical semanticists/pragmaticists explor-
ing the potential for these contextual meaning vari-
ations on a lexical level (e.g. Del Pinal 2015).

CE has often treated meanings as fixed,
dictionary-style entries that can be revised in iso-
lation (Cappelen, 2018). However, psycholin-
guistic research shows that understanding speaker
meaning in everyday discourse frequently bypasses
full semantic decoding (Gibbs, 1984; Gibbs and
Moise, 1997; Bezuidenhout and Cutting, 2002).
This suggests that CE should shift its focus from
static semantic definitions to the dynamic, context-
sensitive meanings that arise in real-world use (Pin-
der, 2020). However, these present a fundamental
challenge that has been undertheorised in the CE
literature. Utilising this insight means that concep-
tual engineers must consider not only stable seman-
tic meanings of words but also the ways in which
meaning shifts across contexts, through polysemy
or through processes like narrowing, broadening,
and metaphorical extension. By incorporating con-
textual meaning variations into CE, we can more
precisely map how word meanings function across
discourse and avoid overly simplistic or static revi-
sions

2.3 Computational Lexical Pragmatics
If conceptual engineers indeed need to shift their fo-
cus to these lexical pragmatic meanings, they need
a way of accessing, analysing, and understanding
them. After all, these kinds of meanings may not
necessarily appear in dictionaries. The challenge
lies in systematically analysing how words are ac-
tually used across different contexts, a task that
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has traditionally been difficult to approach at scale.
However, recent advances in computational linguis-
tics, particularly through word embeddings like
BERT (Devlin et al., 2019), have revolutionised
the study of meaning variation. BERT’s contex-
tual embeddings have been shown to capture dis-
tributional patterns in language, aligning with the
American branch of distributionalism (esp. Harris
1954) that semantically similar words tend to occur
in similar contexts (Chiang and Yogatama, 2023;
Ferret, 2021). BERT’s ability to learn such patterns
through its masked language modeling objective
has revolutionised our ability to study meaning
variation.

More specifically, the clustering and analysis
of these kinds of embeddings have led to impres-
sive results in a variety of tasks, particularly WSD
(Soler and Apidianaki, 2021). BERT embeddings
can capture both contextual variations, with the
spatial location of embedded words shifting based
on their surrounding context (Coenen et al., 2019),
and semantic distinctions between different word
meanings and usages (Erk and Chronis, 2022; Chro-
nis and Erk, 2020). This dual capability is sup-
ported by multiple empirical findings: embeddings
of non-polysemous words show higher similarity
than polysemous words (Cevoli et al., 2023; Wil-
son and Marantz, 2022), and BERT’s clustering
results correlate strongly with human judgments
about meaning similarities (Soler and Apidianaki,
2021). BERT can also capture various other lin-
guistic phenomena including metaphorical uses,
syntactic roles, and constructions (Giulianelli et al.,
2020).

2.4 Aims of this research
Our work makes a threefold contribution to the
field. First, we shift the focus of conceptual engi-
neering from static, dictionary-style definitions to
the dynamic, context-dependent variations in mean-
ing that arise in discourse, emphasising the impor-
tance of lexical pragmatics for conceptual revision.
Second, we apply well-established computational
lexical tools, such as embedding and clustering
techniques, to conceptual engineering, demonstrat-
ing how these methods can identify meanings that
need revision based on empirical, context-sensitive
data. Third, we provide a practical tool for both
conceptual engineers and researchers in lexical
pragmatics, enabling the analysis of meaning varia-
tion in context and helping to identify inconsisten-
cies or ambiguities. By integrating pragmatic the-

ory with computational techniques, our approach
allows for a more systematic analysis of both sta-
ble meanings and context-dependent shifts, making
the revision process more aligned with pragmatic
understanding.

3 Methods

In this section, we present a brief overview of the
data used, and the computational methods.

3.1 Data

The Spoken British National Corpus (BNC) con-
sists of 1,251 anonymised, unscripted, face-to-face
conversations recorded from 672 volunteers from
a range of socioeconomic and demographic back-
grounds designed to be a representative sample of
the British population (Love et al., 2017). The con-
versations were collected from 2012 to 2014 in a
variety of contexts, including business meetings
and radio phone-ins, and therefore are represen-
tative of everyday vernacular speech. Work on
spoken language is underrepresented in previous
empirical work on CE, despite it being the primary
mode of communication. As such, we chose to
focus our research on this area. The Spoken BNC
is released under the Spoken BNC2014 User Li-
cence for non-commercial research and teaching
purposes.

3.2 Contextual embeddings

BERT (Devlin et al., 2019) is a widely used
transformer-based language model, trained on
masked token prediction and next-sentence like-
lihood. Unlike generative models, BERT is bi-
directional, attending to both preceding and fol-
lowing tokens. We use the 336M parameter bert-
large-uncased model, chosen for its balance of per-
formance, efficiency, and simplicity in analysing
semantic meaning in the Spoken BNC. BERT’s
low-resource, low-complexity nature makes it ideal
for researchers with limited computational power,
to complete our method in under 24 hours. BERT
is released under an Apache 2.0 license.

BERT generates contextual embeddings, unique
embeddings for each token based on its context,
in contrast to static embeddings like word2vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014), which provide a single global representa-
tion of a word, ignoring local context. As has been
noted, this makes BERT particularly suitable for
investigating lexical pragmatic effects: BERT cap-
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Figure 1: An example of how the target word BROWN is turned into a contextual embedding, e. For a target word
the C tokens before and after w are input to BERT. The final embedding e for the target word is then the wth row of
the embedding matrix X output from the final hidden layer. A collection of embeddings taken from n sentences are
then collated into the matrix E, which is then reduced to 2D and fitted to a GMM.

tures contextual nuances, while static models ab-
stract away this variability.

We generate contextual embeddings for 24
words, target tokens, that occur within the Spoken
BNC, including words commonly targeted by con-
ceptual engineers such as DUTY, PLANET, TRUTH,
and FAMILY (for a full list see Appendix C). These
were chosen due to their significance for CE, which
usually targets social, moral, political, or philosoph-
ical meanings.

We define the context window, C, as half the to-
tal number of tokens in the input, excluding the tar-
get token, Tw. For a single occurrence of the target
token in the text, the total number of tokens fed into
BERT is then 2C+1, where Tw is the middle token:
[T1, ..., TC , Tw, TC+2, ..., T2C+1]. BERT therefore
takes as input a 2C + 1 length utterance. The last
layer hidden-state is taken as the output – an embed-
ding matrix X ∈ R(2C+1)×d. The word contextual
embedding is then the wth row, e = Xw ∈ R1×d.
For n separate occurrences of that target token
within the text can be represented by the occur-
rence matrix E ∈ Rn×d.

3.3 Conceptual landscapes

A Gaussian Mixture Model (GMM) is a method
of modelling multimodal data using a combination

of K unimodal distributions. We use a GMM to
perform unsupervised soft clustering on the embed-
ding matrix E after dimensionality reduction with
principal component analysis (PCA). We optimise
K and the number of principal components for
each word using the Silhouette score (Rousseeuw,
1987). We then perform a robustness analysis using
the Adjusted Rand Index (ARI) (Rand, 1971). The
ARI measures the similarity between two sets of
cluster assignments. Practically, the ARI ranges
between [0,1] with 0 indicating entirely random
assignments, and 1 indicating perfect agreement
between the two cluster assignments. We fix the
number of principal components, and then use 1000
random initialisations for training the GMM. The
ARI is calculated for all pairs of cluster assign-
ments for the 1000 random initialisations. We cal-
culate the ARI with (i) 2 principal components, and
(ii) the optimal number of principal components.
The final labels are calculated by aggregating the
results of the 1000 runs into a consensus matrix
and using hierarchical clustering on this consensus
matrix.

To construct the conceptual landscapes we use
the GMM fit to the first two principal components
with the optimal number of clusters, and find the
log-likelihood scores over a defined space (Figure
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1). Limitations and ethical considerations of this
methodology can be found in Appendices A and B.

3.4 Metrics
We use four main metrics to describe the land-
scapes: maximum explained variance (MEV), self-
similarity, intra-group similarity, and inter-group
similarity. The definitions used here closely follow
those from Ethayarajh (2019).

MEV If target token Tw appears in sentence i
then ei is the corresponding embedding. The val-
ues σ1, ..., σm are then the first m singular values
of the centered occurrence matrix. The MEV is
the proportion of variance explained by the first
principal component, given by

MEV(w) =
σ2
1∑
i σ

2
i

(1)

and ranges over [0, 1]. MEV indicates the extent
to which a contextual embedding could be replaced
by a static embedding. If MEV is high it means
that the first principal component alone accounts
for most of the variation in how a word is used
across all its different contexts in the corpus. Even
though a given model (such as BERT) produces dif-
ferent embeddings for a word in each context, these
embeddings are not scattered randomly. Instead,
their differences lie mostly along a single primary
axis of meaning variation. You could therefore,
in principle, project all the contextual embeddings
onto this single line with relatively low loss of in-
formation about their overall distribution. A word
with a high MEV therefore indicates a uniform con-
sistency of word usage (for example, if the word
BARK is always used in the context of “like a dog”).
Conversely, if the MEV is low, then no one vector
can adequately capture to variation in usage. In
terms of CE then, the MEV measures the extent to
which changing the semantic meaning is likely to
influence speaker meanings.

Self-similarity The self-similarity is the aver-
age cosine similarity between embedding vectors,
given by

Sim(w) =
1

n2 − n

∑

i

∑

j ̸=i

cos (ei, ej) (2)

and ranges over [0, 1]. For CE, this metric gives a
value of how much variation we see within the word.
A word with a high self-similarity is constrained in

its diversity of usage and meaning, whereas a low
self-similarity indicates high diversity in usage.

Anisotropy (the non-uniform distributions of
words in embedding space) in LLM contextual em-
beddings is well documented (Ethayarajh, 2019). It
is therefore necessary to control for anisotropy by
taking a random sample of embeddings and finding
the total average similarity. This baseline is then
subtracted from the similarities for each word.

Intra-group similarity Let ek,i be the embed-
ding ei assigned to label k with nk members. The
global average intra-group similarity for K groups
is then

Intra =

∑
k

∑
i

∑
j ̸=i cos (ek,i, ek,j)∑

k(n
2
k − nk)

(3)

For CE, this metric measures similarity within
assigned contextual clusters. If the clusters contain
contextually similar usages, this score should be
high. A high intra-group similarity suggests that
the word is used consistently within each cluster,
facilitating more precise and effective CE inter-
ventions. This allows for targeted modifications
to the word’s meaning and usage, making it eas-
ier to implement changes and achieve the desired
conceptual clarity.

Inter-group similarity Let ek,i be the embed-
ding ei assigned to label k, where nl are those
embeddings not assigned to label k. The global
average inter-group similarity for K groups is then

Inter =

∑
k

∑
l ̸=k

∑
i

∑
j cos (ek,i, el,j)∑

k

∑
l ̸=k nknl

(4)

For CE, this metric compares members of a sin-
gle contextual cluster with members from other
contextual clusters. If the clusters are contextu-
ally different from one another, and each individual
cluster contains usages which are contextually sim-
ilar, this score should be low. High inter-group vari-
ation suggests more distinct boundaries between
contexts, delineating specific usages, which can
make CE easier to implement since it can target
specific contexts without interference from others.

3.5 Tool
To facilitate practical application of this method-
ology, we have made a tool publicly available
athttps://github.com/acceleratescience/
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Figure 2: The Silhouette scores (a), optimal number of principal components (b), and optimal number of clusters (c)
for each GMM fit to each word. Bold lines indicate averages, and shaded regions indicate the standard deviation.

conceptual-cartography. The tool provides
an intuitive interface for generating conceptual
landscapes and computing the metrics described in
this paper. Conceptual engineers can input their
target words and corresponding text corpora to
visualise meaning clusters, analyze contextual
variations, and quantify polysemy through our
suite of metrics (MEV, self-similarity, intra-group
and inter-group similarity). This enables precise
identification of meaning variations and supports
evidence-based decision-making in conceptual
revision projects. The tool includes comprehensive
documentation and example analyses, making
it accessible to researchers regardless of their
computational background.

4 Results and Discussion

We applied our methodology to a range of words
commonly targeted by conceptual engineers, span-
ning scientific terms (e.g., WEIGHT, ENERGY,
PLANET), philosophical concepts (e.g., TRUTH,
FREEDOM, KNOWLEDGE), social constructs (e.g.,
FAMILY, MARRIAGE, EDUCATION), and terms re-
lated to technology (e.g., COMPUTER). A complete
list of words analysed can be found in Appendix
C, and presentation of all the calculated metrics for
each word can be found in Table 1 and Table 2.

4.1 Context size

Figure 2 shows the result of optimising the GMM
for (a) Silhouette scores, (b) number of principal
components, and (c) number of clusters for differ-
ent context window sizes for the target words. Note
that the minimum value of the Silhouette score is
achieved at C = 4, and therefore when the total
number of tokens is ∼ 9. The utterance lengths
of the Spoken BNC are approximately power-law

distributed (see 9) with an average utterance length
of ∼ 10. This suggests that taking a single ut-
terance as input to BERT may be insufficient to
capture the full contextual meaning of the target
word. This lends credence to modern approaches
to meaning that emphasise meaning across entire
discourses as opposed to within a single utterance
(Jaszczolt, 2015). As the total number of input
tokens exceeds the average utterance length, the
Silhouette score increases quickly and remains rel-
atively steady, achieving a maximum at C ∼ 40.

Importantly, the average number of optimal prin-
cipal components across words and context win-
dows is ∼ 2, and the optimal number of principal
components is 2 for every word, except for DUTY,
and MARRIAGE. For the following sections, we
choose a context window of 40, where the Silhou-
ette score is at a maximum. For all subsequent anal-
yses, the number of clusters is fixed to the optimal
number of clusters for each word (for Silhouette
scores, optimal principal components and optimal
number of clusters for each word, see Figure 8).

4.2 Cluster properties
Figure 3 shows the MEV scores and average self-
similarities after correcting for anisotropy (a), and
the intra-group similarity and inter-group similarity
(b) for the target words. These results are in strong
agreement with Ethayarajh that static embeddings
would be poor substitutes for the contextual em-
beddings obtained from BERT. In addition, we also
found that a control for anisotropy was not neces-
sary when reducing dimensions.

Figure 3c shows that there is an excellent agree-
ment between the ARI scores when using 2 princi-
pal components and when using the optimal num-
ber of components, suggesting that the 2D repre-
sentations capture a substantial amount of the clus-
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Figure 3: (a) Anisotropy-corrected self-similarity (red)
and maximum explained variance (blue). (b) Intra-
(solid line) and inter-group (dashed line) similarity for
the optimal number of principal components (red), and
for 2 principal components (blue). (c) ARI for 1000
GMMs fitted to the optimal number of principal com-
ponents (red), and for 2 principal components (blue).
Error bars are the standard deviations.

tering structure found in the higher-dimensional
space. Secondly, the ARI scores show significant
variability across words. Words such as WEIGHT,
SYSTEM, and FAMILY have high average ARI, and
low variance; words such as INFORMATION, EDU-
CATION, and DUTY, have lower average ARI and
higher variance.

Words with high ARIs cluster consistently across
different initialisations, indicating a well-defined,
stable model, and therefore a well-defined and sta-
ble conceptual landscape. The contexts are likely
to be more distinct and less ambiguous. Words
with lower ARIs may have more ambiguous or
varied contexts, causing the clusters to overlap.
Therefore, the varying levels of stability reflect
the differences between contextual distinctions and
ambiguity. The ARI scores for each word are un-
derstandably correlated with the Silhouette scores
(r = 0.723, p < 0.0001), given both metrics aim
to quantify a measure of cluster quality and stability
albeit from different perspectives.

Figure 4: The conceptual landscapes generated using
the negative log-likelihood of the GMM predictions in
2D for PLANET with 4 clusters.

4.3 Conceptual landscapes

Since the average number of optimal principal com-
ponents is approximately 2, it is therefore reason-
able to use the 2D conceptual landscape as an indi-
cator of contextual word usage without significant
information loss. Figure 4 shows example concep-
tual landscapes for PLANET (for all target words
and landscapes, Figures 6 and 7).

4.3.1 Planet
Due to space constraints and the fact that concep-
tual engineers typically focus on refining meanings
of individual words or closely related sets, this
paper analyses a single term (PLANET) to demon-
strate how empirical methods can inform CE. The
redefinition of PLANET by the IAU in 2006, par-
ticularly the exclusion of Pluto, is one of the most
frequently mentioned case studies in CE (Landes
and Reuter, 2024). Here, it serves here not as a
diachronic case study of semantic change, but as a
touchstone for the challenges conceptual engineers
face when revising the meanings of contextually
variable terms. We examine the current seman-
tic landscape in which such revisions take place.
Specifically, we ask: when a formal body like the
IAU proposes a revision, what kind of semantic
structure is it intervening in—and what does that
structure imply about the likely uptake, resistance,
or diffusion of the revised meaning?

Our analysis reveals both stability and complex-
ity in how PLANET is used. The high ARI of 0.96
indicates consistent, clearly identifiable usage pat-
terns, suggesting distinct meanings that conceptual
engineers could potentially target. However, the
low MEV of 0.09 demonstrates that no single, static
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representation can capture the term’s full range of
uses. The self-similarity score of 0.29, while rela-
tively high, points to considerable contextual varia-
tion. Together, these metrics suggest that PLANET

exists in a complex semantic space with multiple
distinct but related meanings.

This complexity is further illuminated by our
identification of four distinct clusters of usage
through Gaussian Mixture Model (GMM) analysis
and qualitative interpretation:

1. Astronomical: Used in scientific contexts to
describe celestial bodies in space.

2. Environmental: Used in discussions about
global ecology or climate change, such as ’sav-
ing the planet’.

3. Metaphorical: Used to describe a person
or object as alien or incomprehensible, as in
’from another planet’.

4. Hyperbolic: Used in casual or media contexts
to exaggerate the scope of issues or concepts,
as in ’worst thing on the planet’.

Figure 5: Clusters for PLANET after qualitative analysis.

The PLANETexample illustrates several critical
insights for CE.The IAU’s redefinition assumes a
clear boundary between the astronomical mean-
ing of PLANET and its other uses, such as in envi-
ronmental or metaphorical contexts. As such, the
use of PLANET in environmental contexts (’sav-
ing the planet’, or even the phrase ’the planet’) is
of no consequence, as this definition does not de-
pend on whether dwarf planets are PLANETS or
not. However, our empirical findings suggest that
these meanings are not as easily separated as this
theoretical model suggests.

These clusters are not isolated silos: intra-cluster
similarity is high (0.92), but inter-cluster similarity
remains non-trivial (0.36) indicating gradience and
potential overlap between uses. This matters for
CE, because it undermines the assumption that a re-
vision to one sense (e.g. the astronomical sense tar-
geted by the IAU) can be neatly isolated from oth-
ers (e.g. the environmental or metaphorical ones).
For instance, even if ’the planet’ in ’save the planet’
refers to Earth rather than any celestial body, our
analysis shows that it remains semantically entan-
gled with the broader category of PLANET.The vari-
ability across these different clusters of meaning
(especially the overlap between the environmental
and metaphorical senses) illustrates the importance
of understanding modulation for CE. If concep-
tual engineers attempt to modify a word’s meaning
in one context, the resulting revision can inadver-
tently affect other uses, complicating the task of
meaning modification.The observed gradience in
meaning—where senses overlap and shift between
contexts—illustrates a core challenge for CE. If
one sense is revised without accounting for these
overlapping uses, unintended consequences may
arise in contexts that seem unrelated at first glance,
undermining the intended revision.

This complexity is what conceptual engineers
must reckon with. Rather than assuming that a
term like PLANET can be revised in one domain
(e.g. astronomy) without consequence, our data
suggests that contextual variations make such revi-
sions porous. In short, if CE is to intervene effec-
tively, it must first understand the semantic terrain
it is operating within—and our metrics offer a scal-
able, replicable way to map that terrain.

4.4 Usage in Conceptual Engineering and
Beyond

Conceptual landscapes offer significant theoretical
and practical advantages for conceptual engineers.
By visualising the variations in meaning of a term
like PLANET, conceptual engineers can pinpoint
the kinds of meaning they aim to revise and assess
how it interacts with other meanings, helping to
identify overlaps, dependencies, and links. For in-
stance, revising the astronomical sense of PLANET

might clarify scientific discourse, but without care-
ful consideration, it could unintentionally disrupt
the metaphorical or environmental uses prevalent
in public discussions. These landscapes provide
a framework for addressing meaning with preci-
sion, sensitivity, and empirical grounding, without
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requiring extensive training in computational tech-
niques, embeddings, or computer science.

Our methodology offers concrete benefits for CE
practice specifically through a structured approach
across all stages of the process (see e.g. Koch et al.
2023):

Diagnostic Phase: Identify major meaning
clusters, quantify stability (MEV/self-similarity),
and map relationships between senses/modulations
(inter-cluster similarity).

Planning Phase: Target clusters for revision,
predict interference with others, and identify opti-
mal intervention points in the meaning network.

Implementation Phase: Monitor meaning
shifts, assess uptake in target contexts, and identify
unintended consequences in related clusters.

This framework shifts CE from intuition-based
practice to an empirically-grounded methodology,
enabling practitioners to visualise and quantify con-
ceptual landscapes. Our tool makes this approach
accessible to conceptual engineers without compu-
tational expertise, bridging the gap between the-
oretical CE and practical application. By provid-
ing a data-driven understanding of polysemy and
variation, it supports both CE and lexical pragmat-
ics. The methodology combines CE’s focus on
individual words with NLP’s large-scale analysis,
allowing researchers to explore both the nuances
of specific words and broader linguistic landscapes
with greater precision.

5 Conclusion

This study introduces a novel methodology for
analysing context-sensitive word meanings, bridg-
ing the fields of CE, lexical pragmatics, and com-
putational linguistics. First, we have argued for
shifting the focus of CE from static definitions to
dynamic, context-sensitive meanings. Second, we
have provided a methodology for conceptual engi-
neers and lexical pragmaticists to apply computa-
tional tools to map the conceptual landscapes of
words, revealing polysemy and contextual varia-
tions.

As demonstrated through our analysis of
PLANET, our approach can effectively identify dis-
tinct meaning clusters while quantifying their rela-
tionships. The four identified senses (astronomical,
environmental, metaphorical, and hyperbolic) and
their associated metrics (ARI of 0.96, MEV of 0.09,
indicating consistent clustering and strong context-
dependence) demonstrate how words can have

clearly identifiable yet interrelated meanings that
resist simple definition. By leveraging BERT em-
beddings and Gaussian Mixture Models (GMMs),
we generate conceptual landscapes that visualise
meaning variation and provide quantitative metrics
such as MEV and self-similarity.

Finally, we have created an accessible toolkit
that provides a practical and systematic frame-
work for conceptual engineers, linguistic theorists,
and others to analyse meaning variation and guide
meaning revision efforts, empowering researchers
to base their analyses on empirical data rather than
abstract intuition.
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A Limitations

BERT is pretrained on BOOKCORPUS (Zhu et al.,
2015) and English WIKIPEDIA (Devlin et al.,
2019), which may introduce biases reflective of
these contexts into our analysis. By adjusting for
anisotropy, we mitigate some of these biases. How-
ever, this is not a complete solution. Future work
should explore other models and fine-tune on more
diverse datasets. In addition, the Spoken BNC
includes speech from British individuals over a

limited time period, which may not reflect contem-
porary language use and perspectives, and does not
encompass linguistic data from other countries.

While 2D projections are useful for visualising
and comparing word contexts, there are instances
where higher-dimensional embeddings (e.g., for
MARRIAGE) provide a clearer representation of se-
mantic differences. This highlights a limitation of
our current approach, as projecting down to 2D may
obscure important nuances. Future work should
explore higher-dimensional embeddings and non-
linear dimensionality reduction techniques (e.g.,
t-SNE, UMAP) to aid visualisation.

Corpus linguistics has been critiqued for its ’in-
evitable focus on surface forms’ (Ädel, 2010), risk-
ing an impoverished view of language. We ac-
knowledge this limitation, but argue that CE, being
applied and practice-oriented, benefits from obser-
vational data on how words are used in context.

B Ethical Considerations

B.1 Use of Language Models

Cultural and language bias. BERT’s training
data contains cultural biases, including problematic
content and skewed religious representation (Bandy
and Vincent, 2021). These may affect downstream
tasks. Our framework may help identify such bi-
ases in training corpora.

The predominance of English in training data
limits cultural representation. Fine-tuning on more
diverse datasets could mitigate inequities in down-
stream applications.

Environmental impact. We opted to use BERT
for its relative efficiency and smaller environmental
footprint, in contrast to larger language models.

Privacy and copyright. While BERT’s sources
(English Wikipedia, BOOKCORPUS) reduce some
privacy concerns, the latter was scraped without
author consent, raising ethical issues about data
usage.

B.2 Conceptual Engineering

CE attempts to reshape meanings, which can ap-
pear overly prescriptive. As meanings are bound
to culture and identity, changes not inclusive of di-
verse perspectives risk alienating the communities
they aim to help.

Moreover, CE projects can have social or politi-
cal ripple effects. We therefore emphasise that this
paper offers a descriptive tool: it does not advocate
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for any particular conceptual change. We provide
data about current usage, without prescribing what
words should mean.

C Full List of Tested Words

The tested words are:

• weight

• energy

• planet

• theory

• system

• data

• concept

• information

• truth

• freedom

• responsibility

• knowledge

• duty

• family

• marriage

• education

• student

• friend

• engineer

• wife

• child

• computer

• school

Conceptual landscapes for all words are pro-
vided in Figure 6 and Figure 7.
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Figure 6: Consensus cluster maps (negative log-likelihood of GMM predictions) for DUTY through CHURCH.
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Figure 7: Consensus cluster maps (negative log-likelihood of GMM predictions) for WEIGHT through KNOWLEDGE.
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Figure 8: Hyperparameter optimization results: (a) Silhouette scores, (b) number of principal components, (c)
number of clusters. Silhouette and ARI scores are closely correlated.

Figure 9: Distribution of utterance lengths in the Spoken BNC. These follow a power-law distribution, with an
average of 10 words per utterance.
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Word
Optimal

Components

Optimal

Clusters

Best

Score

Self-

Similarity
MEV

Optimal

ARI

Optimal

ARI std
2D ARI

2D ARI

std

weight 2 2 0.75065166 0.29663867 0.15589406440022405 1.0 0.0 1.0 0.0

energy 2 3 0.68554884 0.2355035 0.0764136765566644 0.9825799112461127 0.01962176431331328 0.9810035825407845 0.019943568812842878

planet 2 4 0.7128142 0.2913559 0.0882366070740109 0.9623680945153172 0.033088163527237174 0.9626463129788648 0.033075721085404144

theory 2 3 0.84671956 0.21386349 0.10176437079286657 0.9954917857014244 0.004464708197051879 0.9955062177600033 0.004464824823707685

system 2 3 0.6512991 0.20273864 0.04158690442568404 1.0 0.0 1.0 0.0

data 2 2 0.66792816 0.3001163 0.0629035355143655 1.0 0.0 1.0 0.0

concept 2 3 0.723671 0.20564383 0.056091484246831205 0.9927769304661705 0.010173316215442398 0.9935736885883468 0.009859014275290734

information 2 3 0.5296078 0.25662804 0.009946750868021742 0.7406537395085958 0.2229459439592183 0.6960789526143788 0.23915597814367864

truth 2 2 0.54026866 0.30280912 0.054876043198309576 0.9280861918891818 0.06604710754854408 0.9294042503312504 0.06944080370936948

freedom 2 4 0.65434194 0.26655453 0.09563030806831296 0.9334675211205564 0.1704048934448 0.9427797663532299 0.15956748076657506

responsibility 2 2 0.56938255 0.2700225 0.11916091303327889 0.9322590837578956 0.12430886548367147 0.904437876644496 0.13800775307016663

knowledge 2 3 0.6726736 0.25102633 0.0645349155540209 0.9843930515547132 0.015854844628385403 0.9841431866165496 0.015856813383450186

duty 4 5 0.7196939 0.17664373 0.06377767425054486 0.9874551707150581 0.06252875440515283 0.7889657682855794 0.22171666221553094

family 2 3 0.64838034 0.26847154 0.022635997134030736 0.9943836321000173 0.005135851540094211 0.994669251883583 0.004894600248935083

marriage 8 9 0.3940875 0.31149036 0.05500554472960928 0.6112942192156345 0.08721537746728976 0.6447443787878189 0.12265073796622647

education 2 2 0.57998776 0.29428303 0.031460283242946446 0.6239074938781386 0.39106286425586695 0.6854307222784576 0.35662533525437484

student 2 2 0.60584253 0.31139386 0.06900681973577344 0.9219265130861394 0.22414619352034612 0.9590315441198952 0.1349587985075622

friend 2 2 0.6121608 0.30614358 0.03020277056434878 0.9774785414648027 0.021040128884952422 0.9774135569385687 0.02137824727231833

engineer 2 2 0.466553 0.29832488 0.04074953892079064 0.7353913559980679 0.24881847024839246 0.6982006637956051 0.23926154624159524

wife 2 3 0.5990231 0.32535738 0.03624206212147031 0.9089545688639884 0.07546172732778701 0.9178098402172326 0.06638190772251286

child 2 2 0.6781394 0.28536147 0.11498878751245134 0.9901787999403814 0.007877072801540326 0.9904813585767728 0.007709889184639891

computer 2 3 0.5107223 0.32953215 0.026559695009549786 0.7491521491427756 0.18228835360128462 0.7498979023596061 0.18482899770396627

school 2 3 0.52753365 0.28709567 0.060625261536956604 0.9864745788983414 0.011797563212586125 0.9867719126782513 0.011881742870975943

church 2 3 0.5926918 0.31584865 0.03375614676062694 0.7429283349034067 0.2752246758009878 0.7661161198120406 0.25985354840800257

Table 1: Calculated metrics for 24 target words using dimensionality reduction and unsupervised clustering. Metrics include the number of optimal principal components and
clusters, best clustering score, self-similarity, maximum explained variance (MEV), ARI scores and standard deviations for both optimal clustering and 2D projections.
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Word
Optimal
Intra-Sim

Optimal
Inter-Sim

2D
Intra-Sim

2D
Inter-Sim

weight 0.8156033219962284 0.18104519595828528 0.8156033219962284 0.18104515090349865
energy 0.8336862218346286 0.29917733958914533 0.8336863203976584 0.29917730863040515
planet 0.9207608160844708 0.3597553812266942 0.9207608160844708 0.35975542080850764
theory 0.9263468231635071 0.30127710391438284 0.9263466688882307 0.30127714540843425
system 0.8536792740152507 0.27814700771867 0.8536796265171682 0.2781468876547384
data 0.7635351625646621 0.22914614096660874 0.763537767362795 0.2291443617544815
concept 0.8683227585248771 0.30286055940233236 0.8683227585248771 0.30286050245991253
information 0.821972462161749 0.3293009304867715 0.819028850508441 0.3297536590393733
truth 0.7062944748230764 0.28244020454910296 0.7062943393117325 0.28244022355133097
freedom 0.9097507468259896 0.3721182697521081 0.9097507468259896 0.3721182697521081
responsibility 0.7112177734375 0.2816186389568326 0.7112175071022727 0.28161882269883615
knowledge 0.8539526334736376 0.29840904028655746 0.8539525793884304 0.2984091032783977
duty 0.8704321464283045 0.39059547301983527 0.8753667447726858 0.40915019581755635
family 0.8506438458340466 0.32548975138527925 0.850408401614284 0.3256464671847802
marriage 0.7729137680385885 0.4574278943574383 0.9296340574523867 0.443919260225337
education 0.7194930980302446 0.28191425273944803 0.7206263273206777 0.28236683933054896
student 0.7317915722548086 0.2667373108328637 0.7317915722548086 0.26673728025891486
friend 0.7342716988092002 0.2663353340758285 0.7342721319883346 0.2663351627458536
engineer 0.6412440521413054 0.3058740765440698 0.6201696425980734 0.3141900634765625
wife 0.8135365350376823 0.33955498015490126 0.8165262413059602 0.3409786710666057
child 0.7725739291386711 0.2235273103563482 0.7711400170618056 0.22415934626025402
computer 0.7929313357494175 0.3450574308027275 0.7929309680417951 0.34505763451584726
school 0.7931535947179521 0.24504607627722041 0.793153645676212 0.24504624575719003
church 0.818619789088437 0.3265899456336431 0.818619789088437 0.3265899456336431

Table 2: Calculated metrics for 24 target words using dimensionality reduction and unsupervised clustering. Metrics include the Inter-Similarity and Intra-Similarity for both
optimal clustering and 2D projections.
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Abstract

Other people’s code, data, and definition of a
language task often provide the groundwork
for new research efforts. The work we present
here began as a straightforward investigation
of conversational implicature, a central aspect
of natural dialogue, starting with updating a
prior method to employ more recent LLMs.
But differences in results with the work we
were replicating led to a deep dive into why
those differences were occurring, and this led
us to consider more carefully what it means to
begin working on a topic with prior work “as a
starting point”. We describe our process, what
we found, and lessons suggested about data
quality, task definition, and the current pace of
change in NLP.

1 Introduction

Conversational implicature (Grice, 1975) is a ubiq-
uitous phenomenon in conversation, and as such
it is highly relevant for conversational AI using
large language models. Just as for other language-
related capabilities, today’s standard paradigm for
progress is to use a well defined computational task,
together with a benchmark dataset and evaluation
metrics, to establish the current state of the art and
then adapt or introduce new methods to improve it.

The standard approach is not without its prob-
lems, however. Tasks or metrics sometimes turn
out to have problems with measurement validity, i.e.
whether a measurement is actually measuring what
we want measured—this has arisen, for example,
in natural language inference (Poliak et al., 2018)
and topic modeling (Hoyle et al., 2021). Datasets
can produce results that don’t generalize well. Data
contamination may inflate estimates of system per-
formance.

This paper began as an investigation of conver-
sational implicature, aimed at building on prior
methods and benchmarking introduced by Ruis
et al. (2024). In the end, however, what emerged

is a case study contributing to the literature on the
pitfalls of uncritically accepting the prompts and
data from prior work as a starting point. In the sec-
tions that follow, we begin by providing relevant
background on the topic of conversational implica-
ture and discuss our attempt to replicate Ruis et al.
(2024). We then shift, based on what we found, to
a meta-level discussion that leads us to highlight
the more general lessons we think this effort turned
out to offer about data quality, task definition, and
ultimately, we would argue, the pace of change in
NLP.

2 Background

The idea of conversational implicature was intro-
duced by Grice (1975). He presents the idea of the
Cooperative Principle: that utterances in a conver-
sation are driven by the shared goal of moving the
conversation forward. He also states a number of
maxims by which the Cooperative Principle is real-
ized. Deliberately violating these maxims, he then
argues, is how conversational implicature arises.
For instance, in the following exchange, the first
speaker’s question is not directly answered by the
other speaker.

“Do you want to have dinner tonight?”
“I have an exam tomorrow.”

The plain content of the reply would appear to
violate the maxim of Relation (“Be relevant,” Grice,
1975). And so the first speaker, upon hearing the
reply, is left to infer the meaning that the replier
intended to convey by assuming that there is some
level at which the maxim is not being violated, even
if it appears so at the surface (Levinson, 1983).1

1A distinction worth noting is that between conversational
implicature and conventional implicature. A conversational
implicature arises from the context within the conversation in
which the utterance is made; in contrast, conventional implica-
ture relies solely on the content of an utterance. A prototypical
example of a conventional implicature is the sentence “The
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There have been criticisms of Grice’s (1975) ar-
gument (e.g., Sperber and Wilson (1986) argue that
the maxims are so vague as to be unhelpful), but
the fundamental point that utterances carry non-
conventional meaning is generally accepted. Impli-
catures and indirect answers of this sort are very
common in conversations—occurring in 27% of
question/answer scenarios by one account (Rossen-
Knill et al., 1997). It follows, then, that large lan-
guage models trained and productized as chat sys-
tems would be more effective if able to use impli-
cature. In addition, users used to human conver-
sation are likely to interact with systems in a way
that relies on the system correctly interpreting im-
plicatures in their utterances, even if they do not
deliberately set out to do so.

2.1 Prior Work on Implicature

In Louis et al. (2020), a model derived from BERT
is trained to predict yes/no answers from a large
corpus of indirect question/answer pairs. The au-
thors found that this approach is largely successful,
with an accuracy of 80%.

One of the first pieces of research looking
at large language models’—rather than models
trained specifically for this—ability in this regard
is Zheng et al. (2021). The authors introduce a
generated dataset of conversations containing im-
plicatures, and then use it to evaluate a number of
models’ abilities. They note that the use of syn-
thetic datasets if often criticized, and argue that
any unnaturalness in their dataset is unrelated to
implicatures, since they take care to use “pragmatic
phenomena existing in daily conversations” (Zheng
et al., 2021).

The BIG-bench benchmarking suite for language
models also includes an implicature task (Maru and
Bevilacqua, 2022). The authors use a dataset of nat-
ural implicatures produced by George and Mamidi
(2020), avoiding one of the pitfalls of Zheng et al.
(2021). However, Maru and Bevilacqua cut down
the dataset by more than half, significantly limiting
the size of their analysis.

Hu et al. (2023) look at language models’ prag-
matic abilities across a number of phenomena, in-
cluding violations of the Gricean maxims. Per-

queen is English and therefore brave”: the word therefore
gives rise to the implication that being brave follows from
being English (Davis, 2024). This example also highlights
the pragmatic phenomenon of presupposition (it presupposes
that there is currently an English queen), another pragmatic
phenomenon that can have important implications (no pun
intended!) in LLM-based work (Srikanth et al., 2024).

formance at answering multiple-choice questions
that rely on non-literal understanding is compared
across a number of models and with human per-
formance at the same task. They find that the best
performing model tested (text-davinci-002) per-
forms well above random chance, and often ap-
proaches human performance in those tasks. The
authors use an expert-curated dataset consisting
of 20–40 items per phenomenon. They note that,
while this has the significant advantage of being a
reliable dataset, its size is a limiting factor.

2.2 Ruis et al. Experiment
In Ruis et al. (2024), the authors look to evaluate
the performance of a number of language models
at recovering implicatures. They use a dataset of
question/response pairs where the responses do not
directly answer the question, but carry an implica-
ture. Their experiment takes two forms: looking
at the likelihood that the model predicts a ‘yes’
answer or a ‘no’ answer in response to an implica-
ture, and a completion-based task where the models
are instructed to generate text indicate whether the
value of the implicature is yes or no.

For the likelihood task, they give the model a
prompt that contains the question, the response,
and then establishes a context in which it would
be appropriate to output a yes/no answer. Deter-
mining whether the model has successfully recov-
ered the correct value of the implicature is done
by comparing the likelihoods assigned to the ‘yes’
and ‘no’ answers and checking whether the higher
likelihood answer matches the implicature value
from the dataset. This approach has the advantage
of avoiding situations where, if used to generate
text, the model would produce output that is nei-
ther ‘yes’ nor ‘no,’ which would prevent them from
easily assessing the model’s performance. This has
the significant shortcoming, however, that not all
models tested provide a way to access the likeli-
hoods of the output. In particular, because some
models—such as GPT-3.5-Turbo and GPT-4—are
not publicly available (as is the case for a number
of the additional models we test in Section 3), the
experiments that can be conducted are limited to
those that can make use of the online APIs that the
developers elect to provide.

For the completion task, Ruis et al. use the same
prompts but instead use the model to generate text.
If the response ends with the words ‘yes’ or ‘no,’
then the responses is considered valid. It’s con-
sidered correct if the yes/no response matches the
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dataset’s value for the implicature of that data point.
They also look at human performance at recov-

ering implicatures in this data set. The same data is
given to a group of human annotators who, through
an online crowdsourcing platform, are instructed
to finish each with ‘yes’ or ‘no’ based on what is
contextually appropriate. The human annotators
achieved an average accuracy of 86%.

Ruis et al. conducted this evaluation comprehen-
sively with 17 different language models, divided
into four categories (base models, dialogue fine-
tuned, benchmark instruction-tuned, and example
instruction-tuned), across 0-shot, 1-shot, and 5-shot
scenarios. They find that the models in the Exam-
ple IT category (“LLMs fine-tuned on tasks with
natural instructions for each example,” Ruis et al.,
2024) consistently perform the best. They also find
that, in certain circumstances, the best perform-
ing language model (GPT-4) achieves comparable
accuracy to the human annotators.

3 Replication

Since Ruis et al. (2024) is one of the more com-
prehensive pieces of research on language models’
performance with implicatures, we began looking
into conversational implicature via a very standard
approach: replicating the previous findings then
seeing whether the results they obtained extend to
newer models. We characterize this approach as
“naïve” in the sense that it did not involve any par-
ticularly careful thought about the actual quality
of the previous benchmark in terms of its data or
task definition, nor were we particularly concerned
with the specifics of the prompts used in the prior
work. We simply took the previous benchmark
on board uncritically and we assumed that, most
likely, advances in language model size and general
performance would give us updated baselines to
beat.

Our attempt to replicate the results of Ruis et al.
(2024) used the same data and a subset of the lan-
guage models tested there. We also tested several
newer models (GPT-4o, Google’s Gemini 1.5 Pro,
Anthropic’s Claude 3, and Meta’s Llama versions
3.2 and 3.3) and compared those results. We used
the original Ruis et al. (2024) code, adapted for
changes in some of the model vendors’ APIs.2 Be-
cause, as noted in Section 2.2, the APIs for GPT-
3.5-Turbo and GPT-4 (among others) do not pro-

2The code can be found on GitHub at https://github.
com/a-korde/llm-implicature-experiment.

vide likelihood information, we only attempted to
replicate the completion-based task.

3.1 Modifications
Closely related to prompt engineering, “answer en-
gineering” refers to design choices that facilitate
extraction of useful responses from LLM output
(Schulhoff et al., 2024). We observed that some
original prompts provided LLMs with too much
latitude, e.g. “Finish the following text:” when the
goal was a yes or no. In order to induce some of the
language models (in particular, GPT-3.5-Turbo) to
more reliably output yes/no responses as expected
by the code, when asked in the 0-shot context for
the value of an implicature, we minimally altered
some of the prompt templates (see Appendix A):
the three original templates which included “Finish
the following text:” were modified to read “Finish
the following text with yes or no:”. This improves
the yes/no format consistency of the output; we fur-
ther modified the Ruis et al. (2024) code to identify
the model’s answer, not based on the last word of
the output, but instead by checking if the response
contains, as a whole word, ‘yes’ or ‘no.’

The choice of models was based on those in Ruis
et al.’s (2024) Example IT (instruction-tuning) cat-
egory that were still available. The text-davinci
models were deprecated by OpenAI in 2024 and
are excluded here (OpenAI, 2023a). The Cohere-
command-52B (cohere-command-xlarge) model
is also no longer available; we used Cohere’s Com-
mand R+ model. The code was extended to allow
testing Google and Anthropic models using their
APIs, as well as locally-run, open-source models
via Ollama.

3.2 Results, Expected...
Table 1 shows the mean and standard deviation in
accuracy across the different prompt templates for
each of the models tested. For both of the original
OpenAI models tested and for all k, accuracy has
improved over Ruis et al.’s (2024) results. GPT-4
remains more accurate than GPT-3.5-Turbo though
(and is comparable to GPT-4o). Our results also
agree with Ruis et al. (2024) that moving from
0-shot to 1-shot to 5-shot does not consistently
improve the models’ performance.

It is difficult to identify the source of the im-
provements due to the generally closed nature of
the model vendors. But, we expect that the change
is likely due to ongoing refinement of the models.
For instance, OpenAI notes that they regularly up-
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Model 0-Shot 1-shot 5-shot
GPT-3.5-Turbo3 77.4%± 5.9 77.2%± 4.5 77.6%± 4.9
GPT-4 86.1%± 0.7 83.3%± 0.5 83.9%± 0.3

GPT-4o 83.1%± 4.8 84.2%± 2.9 83.3%± 2.5
Cohere Command R+ 79.8%± 3.9 80.3%± 2.6 80.9%± 1.6
Claude-3.5-Sonnet 85.6%± 1.6 88.1%± 1.0 89.0%± 0.6
Gemini-1.5-Pro 83.5%± 1.9 84.4%± 4.2 83.8%± 4.6
Llama-3.2-3B 60.9%± 6.5 73.1%± 13.0 69.9%± 5.8
Llama-3.3-70B 84.2%± 1.9 84.9%± 1.8 84.9%± 1.2

Table 1: The k-shot accuracy of a subset of the models tested in Ruis et al. (2024), as well as additional models,
using our modified prompt templates (see Appendix A). Accuracy is averaged across the different prompt templates.

date models. When these tests were undertaken,
the current versions of the OpenAI models used
were gpt-3.5-turbo-0125, gpt-4-0613, and
gpt-4o-2024-08-06. The Cohere model used was
command-r-plus-08-2024. The Claude version
used was claude-3-5-sonnet-20241022. The
Gemini version used was gemini-1.5-pro-002.

3.3 ...And Unexpected

“The most exciting phrase to hear in science, the one that her-

alds new discoveries, is not ‘Eureka!’ but ‘That’s funny...’ ”

—Isaac Asimov

We were surprised to see that the one Cohere
model tested here showed a dramatic improvement
in the 0-shot task over the Cohere-command-52B
model tested by Ruis et al., which achieved an
accuracy of only 60.2% ± 5.2. One possible ex-
planation for this change was the simple fact that
we tested a different model. Changes from the
previous Command-52B model’s training data or
process could have had an impact on its capability
in this metric. It would have been fairly natural
at this point simply to leave it at that, and move
forward with Table 1 as our new baselines—and
indeed we considered doing so.

However, Ruis et al.’s (2024) hypothesis about
Cohere-command-52B’s markedly worse perfor-
mance on the 0-shot task as compared to the 1- and
5-shot tasks led us to think about an alternative
explanation. They hypothesize that the poor 0-shot
performance is “not due to a lack of implicature
understanding, but due to a failure to calibrate the
yes/no likelihoods without examples” (Ruis et al.,
2024). That is, they argue the 1- and 5-shot exam-
ples serve to clarify the task format and “prime the
model towards producing outputs and following

3The GPT-3.5-Turbo model is referred to as “ChatGPT” in
Ruis et al. (2024).

the yes/no structure” (Ruis et al., 2024). If that
is the case, then our altered prompts (see above)
specifically asking for yes/no responses may have
contributed to the improved performance.

To test this hypothesis, we re-ran the experiment
on Command R+ using the original, unmodified
prompt templates from Ruis et al. (2024). In this
context, we found that Command R+ performed
vastly worse than with our modified prompts. In
the 0-shot case, Command R+ had a mean accuracy
of just 50.8% ± 48.7 at correctly identifying the
value of the implicature. This poor performance,
and the very high variability, comes from differ-
ing behavior across prompt templates. In three of
the original prompt templates—those that were un-
modified in our experiment—the model performed
in line with our results: it achieved an accuracy
of 85.5%, 81.7%, and 72.0% for templates 0, 2,
and 3 respectively. With the other three original
prompt templates—the ones that we did modify—
the model performed extraordinarily poorly, with
the implicature accuracy varying from 0.8% to
1.5%. The completion accuracy metric (indicating
what fraction of the model’s generated completions
an identifiable answer could be extracted from)
shows the same pattern: each of the prompt tem-
plates that we did not have to modify all produced
usable responses in greater than 98.5% of cases,
and those templates that originally used “Finish the
following text:” resulted in usable responses in no
more than 2.5% of cases.

When given prompts with one example of the
task, Command R+’s accuracy jumps to a more ex-
pected 73.4%±9.1. The “Finish the following text:”
prompts remain somewhat worse performers than
the others, however, scoring 62.3%, 65.2%, and
66.0% in implicature accuracy and 83.0%, 87.2%,
and 90.8% in completion accuracy. Table 2 gives a
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breakdown of the individual prompt results across
k = 0, 1 for each of the original and modified
prompt templates.

4 Discussion

We viewed the results of our replication attempt
as equivocal. On the one hand, we we were able
to reproduce the results of Ruis et al. (2024). Fre-
quently, including in our own work, that kind of
replication success is sufficient to move on to the
more interesting business of trying to build better
models and improve the state of the art.

On the other hand, the Asimovian “that’s funny”
that emerged in our experimentation invited deeper
consideration that, we suggest, is more valuable
than the replication itself. This is where our discus-
sion pivots from a conversation just about conver-
sational implicature, per se, to a reconsideration of
the “naïve” approach we took—an approach that
is, we would argue, typical of widespread practice
in current NLP research—building on a closer look
at our replication attempt as a case study.

4.1 Datasets

We begin with data. The experiments here and in
Ruis et al. (2024) use a dataset of implicatures in
dialogue that have been manually annotated with
the value of the implicatures (George and Mamidi,
2020). The data were obtained from two categories
of sources: questions from an English language
comprehension test (specifically, from free practice
versions of the TOEFLS test (English Test Store))
and film scripts from the Internet Movie Script
Database (IMSDb). That both of these sources are
authored and not naturally occurring could present
a difficulty: they may not be representative of
how implicatures are used in natural conversation.
Movie scripts, in particular, may also be a poor
indicator of a model’s performance, because the
entire script may well have been included in the
model’s training data.

The dataset’s authors also do not go into detail on
the labeling process, only noting that “The annota-
tion is done manually by undergraduate students of
linguistics, whose primary language of instruction
is English” (George and Mamidi, 2020). While the
correct answers are provided for the language com-
prehension test, the same is not true of the entries
from movie scripts, and the implicature values pro-
vided in the dataset are presumably the judgments
of the aforementioned students.

The authors originally intended to crowdsource
the dataset of implicatures—going so far as to
design and conduct an experiment using an on-
line crowdsourcing platform—but ultimately dis-
carded the data noting that they “did not obtain
high-quality dialogue data” (George and Mamidi,
2020). They conclude that the task they designed
is somewhat ill-suited to crowdsourcing because it
requires more imagination and is less mechanical
than is common on crowdsourcing platforms.

This problem is not entirely resolved by using
their chosen data sources, though. For instance,
the dataset includes an entry with the following
context and response utterances, and says that the
implicature—the answer to the context question—
is ‘yes.’

“Have you found another school for the
children?”
“We’re still shopping around.”

This does not align with our judgment: “still
shopping around” implies that a suitable option has
yet to be found. What’s more, the dataset also con-
tains entries that (again, in our judgment) simply
do not contain implicatures. In the following exam-
ple, the response appears to be a direct answer to
the question (even though it does not contain the
word ‘yes’ or ‘no’).

“Did he ever fall back on a run?”
“All the time, sir.” (Sorkin, 1991)

These patterns show a potential issue in using the
George and Mamidi (2020) dataset to evaluate mod-
els’ performance at recovering implicatures. The
BIG-bench implicature task uses the same dataset,
but narrows it down to a greater extent—such as by
“[d]iscarding factual errors in the original dataset”
(Maru and Bevilacqua, 2022). This further con-
strained dataset may be useful in accurately identi-
fying models’ performance at implicature recovery,
but of course comes at the expense of being even
smaller. Additionally, there are a number of other
datasets that could be used to similarly evaluate
models’ performance, however they are not with-
out their own pitfalls.

The GRICE dataset is a collection of conversa-
tions involving implicatures and multiple-choice
style questions, the correct answers to which de-
pend on recovering the implicature (Zheng et al.,
2021). Unlike the George and Mamidi (2020)
dataset, Zheng et al. do not explicitly annotate the

203



Prompt k Implicature Completion

Template 1
0 0.8% 2.5%
1 62.3% 83.0%

Template 4
0 1.2% 1.7%
1 65.2% 87.2%

Template 5
0 1.5% 2.3%
1 66.0% 90.8%

Modified Template 1
0 79.3% 100.0%
1 77.7% 100.0%

Modified Template 4
0 78.8% 100.0%
1 78.0% 100.0%

Modified Template 5
0 80.3% 100.0%
1 78.8% 100.0%

Table 2: Breakdown of Cohere Command R+ implicature and completion accuracy across the original “Finish the
following text:” prompts from Ruis et al. (2024) and our modified prompts.

value of the implicature in each conversation, but
instead only which of the multiple choice answers
is correct. The GRICE dataset could be used in con-
junction with the likelihood based approach used
in Ruis et al. (2024) (see background in Section
2.2) by evaluating which of the multiple-choice
answers the model predicts is most likely to ap-
pear. Because the data is programatically gener-
ated, however, this may exhibit the same issue of
unnaturalness as in George and Mamidi (2020). In
that regard, the variety of the GRICE data is rather
limited: there are only four subtopics used to gener-
ate the conversations, which all follow a relatively
simple conversational structure.

The dataset used in de Marneffe et al. (2010)
provides a more natural source of implicature data.
The authors sourced data from transcripts of in-
terviews aired on CNN from 2000–2008 and the
Switchboard corpus of telephone conversations
(see Jurafsky et al., 1997). Labels were assigned
based on the distribution of judgments of 30 Me-
chanical Turk workers for each of the dialogues.
This may provide a higher quality source of data
for evaluating implicature recovery performance,
but it comes at the expense of being substantially
smaller (n = 224).

One of the larger extant datasets is the Circa
dataset, comprising 34,000+ pairs of crowdsourced
questions and indirect answers (Louis et al., 2020).
Both the questions and answers are crowdsourced.
Labeling of the answers is also crowdsourced
and divides the answers into yes/no categories
(along with a split between certain/strong and un-
certain/weak) as well as unsure and ‘in the middle’

(neither yes nor no) categories. The Louis et al.
dataset seems promising as it is substantially larger
than any of the others considered.

While the particular examples we discuss are
specific to conversational implicature, they are il-
lustrative of the potential issues that can arise when
relying uncritically on existing datasets or bench-
marks and using them to evaluate different models.
The nature and quality of a particular dataset can
play a significant role in a model’s performance,
and can risk presenting a distorted picture when
attempting to make comparisons across models (let
alone across datasets/benchmarks).

4.2 Prompt Sensitivity

Next, we turn to the issue of prompt sensitivity
when it comes to cross-model comparisons and
structured generation as a potential solution. Our
experiment contributes further evidence to discus-
sion in the literature regarding the danger of concep-
tualizing prompting as just another way of getting
answers from a machine, comparable to the algo-
rithms of prior generations. For example, Loya
et al., 2023 found that GPT-3.5-Turbo’s perfor-
mance on a task conducted in prior research could
be worsened or significantly improved with rel-
atively minor alterations to the prompt. Our re-
sults in Section 3.3 reinforce the point: a differ-
ence of just four words (“with yes or no”) dramati-
cally changed the model’s score on this benchmark.
These observations suggest that the sensitivity of
performance to prompt specifics is an essential con-
sideration in any experiment using LLMs, and tools
for evaluating prompt sensitivity (e.g., Sclar et al.,
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2024; Zhuo et al., 2024) should be a part of any
future benchmark development process.

In terms of mitigating the risks of prompt sen-
sitivity, Ruis et al. (2024) did so, to some extent,
by using a set of six different prompts, rather than
a single one. They divide the prompts into two
groups: natural (prompts 1, 4, and 5) and struc-
tured (prompts 0, 2, and 3). However, as shown
by the results with Command R+ (see Section 3.3),
this was not entirely successful: Command R+ has
consistent performance across prompts within a
single group, but performs substantially differently
between the natural prompts and the structured
prompts.

In addition, chain-of-thought prompting (Wei
et al., 2022), one of the techniques used by Loya
et al., is also explored in Ruis et al. (2024). They
found that 5-shot evaluation with chain-of-thought
prompting brought GPT-4 to comparable perfor-
mance to their human baseline. This improvement
over the non-chain-of-thought results suggests that
it is difficult—through completion tasks alone—to
determine to what extent a language model has
captured generalizations about implicatures.

Another way of avoiding the inherent prompt
sensitivity of large language models is to avoid us-
ing text-generation tasks to study them. Instead,
Ruis et al.’s (2024) comparing the relative likeli-
hoods of multiple possible options would be more
resilient to minor variations in the prompt. Un-
fortunately, the fact that state-of-the-art language
models are developed by corporations that do not
publish the full models presents a roadblock to
studying them in more detail (e.g., OpenAI, 2023b,
“Given both the competitive landscape and the
safety implications of large-scale models like GPT-
4, this report contains no further details.”). Be-
cause access to the models is gated behind corpo-
rate APIs, which do not provide this information,
research like ours is unable to use this technique.

Before we turn to structured output as a potential
method for addressing the pitfalls we found associ-
ated with prompt sensitivity, we again emphasize
that, although the specific issues discussed here de-
pend on the use case and particular models under
consideration, the broader issue of prompt sensitiv-
ity is fundamental to all large language models, in-
cluding both closed source and open source (Sclar
et al., 2024). As Errica et al. (2025) note, results
from any model trained to maximize a likelihood
objective are going to be sensitive to all features of
the prompt that affect its probability.

4.3 Structured Output

In the interval between our original experimenta-
tion and writing this paper, structured output be-
came an option for many LLMs: it is possible
to make LLM text-generation requests explicitly
defining the desired output format and limiting the
model’s output to that which conforms to the speci-
fied format. OpenAI’s API now supports structured
output by allowing the user to provide a JSON
schema which the output must match (Pokrass,
2024): they describe a sampling process during
text generation as “determin[ing] which tokens are
valid to be produced next based on the previously
generated tokens and the rules within the grammar
that indicate which tokens are valid next.” Ollama
similarly supports providing a JSON schema to
restrict the output (Ollama, 2024). Perhaps this
renders many prompt sensitivity concerns moot?

We tested both GPT-4o and Llama 3.2 using a
version of the Ruis et al. (2024) task adapted to use
structured output. Rather than directly parsing the
text, we used a JSON schema to have the model
generate a JSON object containing a single boolean
property representing the value of the implicature.

It turns out that, although structured output helps,
LLMs persist in being inappropriately sensitive to
details of the way they are called. In particular, note
that in defining the JSON schema for the output,
we were faced with the choice of what name to give
to the boolean property representing the recovered
value of the implicature. Although initially the
grammar constrains the possible tokens to produce
the JSON key, notice that, per the quote above, the
key itself is part of the context and thus the name of
the key will affect how the value for that property
is generated.

To confirm this makes a difference, we tested
both GPT-4o and Llama 3.2 using the original
prompt templates from Ruis et al. (2024) using
several different names for the boolean property,
the results of which are shown in Table 3. We
found that the property name can have a significant
impact, though to what extent is variable.

Furthermore, we found that performance is still
somewhat sensitive to the prompt, despite the con-
straints on the output. Table 4 shows the accuracy
of Llama 3.2 for each prompt template in the struc-
tured output task. We note that adding “with yes or
no” to prompt templates 1, 4, and 5 still produces
a marked accuracy difference. That said, we also
note that unmodified templates (0, 2, and 3) exhibit
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JSON Key GPT-4o Llama 3.2
answer_is_yes 80.3%± 6.0 60.2%± 4.7
implicature_is_yes 80.2%± 5.5 56.5%± 2.5
implicature_value 70.2%± 14.4 55.2%± 3.1

Table 3: Mean accuracy across prompt templates for
GPT-4o and Llama 3.2 depending on the key name in
the JSON schema, when tested with the unmodified
prompt templates and k = 0.

Prompt Original Modified
Template 0 64.0% 63.0%
Template 1 55.7% 60.8%
Template 2 65.0% 61.8%
Template 3 65.5% 65.0%
Template 4 55.0% 58.7%
Template 5 56.0% 61.2%

Table 4: Structured output accuracy for Llama 3.2 across
the original and modified prompt templates (for tem-
plates 1, 4, and 5) when tested with answer_is_yes as
the JSON key for k = 0.

a similar difference in some cases, so this effect
may be within the run-to-run variance of the test.

Overall, we find that, although structured output
may address the challenge of extracting informa-
tion from LLM output, prompt sensitivity remains
a significant concern. Put plainly: structured out-
put affects the output’s structure, not its substantive
content. Instructions given to the model continue
to have an impact on its apparent performance at a
task, even if the model now always produces “gram-
matically correct” output. Additionally, structured
output introduces the additional challenge of the
output grammar itself (such as the names of the
JSON keys) also affecting performance.

4.4 Other Paths Forward
As an alternative to seeking LLM-engineering
solutions to the problems we are describing—
something that in our view requires the efforts of
the entire broader community—we conclude our
discussion by considering underlying properties of
the linguistic phenomenon being studied as a poten-
tially more effective way to analyze the capabilities
of language models. This can be thought of as a
general strategy that we apply here to the specifics
of conversational implicatures as a problem space.

Defeasibility and Reinforceability of Implica-
tures Two of the characteristic features of impli-
catures are that they are both defeasible and rein-
forceable (Levinson, 1983). They are defeasible

in that the speaker of an implication-carrying ut-
terance can defeat or cancel the implication in a
subsequent utterance (for example, by saying some-
thing along the lines of, “But it’s not actually the
case that <implication>.”). Similarly, they are re-
inforceable, and the speaker could emphasize what
was previously implied. It’s important to note that
what makes the case of an implicature different
from another utterance is that defeating or rein-
forcing an implication-carrying utterance neither
produces a contradiction nor sounds redundant. By
contrast, attempting to defeat an ordinary sentence
does result in a contradiction and attempting to
reinforce it often sounds redundant.4

Those differences could be used to test a model’s
sensitivity to implicature in a context where the
likelihood of a string can be obtained from the
model. By starting with a single question and an
answer to it phrased both explicitly and as an im-
plicature, and then comparing the likelihood of
each of those being followed by a sentence that
defeats/contradicts it, it may be possible to iden-
tify whether the model has recovered the implica-
ture and the fact that it is an implicature. Flatly
contradicting a prior sentence should be relatively
unlikely. But, if the model has identified the im-
plicature, then defeating it should be substantially
more likely than the case of contradiction. Simi-
larly, a sentence that repeats the same meaning as
the previous one should be less likely in the case
where the previous sentence is explicitly saying the
same thing as compared to when the meaning of
the previous sentence is provided by implication.

Unfortunately, this hypothesis is not readily
testable at present, owing to the lack of likelihood
information provided by the APIs for state-of-the-
art language models.

Direct Inquiry vs. Conversation Continuations
Our final observation is that evaluating language
models’ competence at recovering implicatures us-
ing a strategy of simply prompting them with in-
structions to evaluate the yes/no value of an im-
plicature may not effectively represent their use
of implicature in conversations. Presumably little
of the models’ training datasets consists of people
directly asking what the meaning of an implication-
carrying sentence is (aside, perhaps, from students
of semantics or pragmatics). It is more likely that

4Levinson (1983) notes that there are circumstances, such
as involving stress, where other types of sentences can be
reinforced without issue. But those are not germane to our
discussion.
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the use of implicatures in the wild—and the conver-
sations flowing therefrom—are better represented
in the training data.

Since large language models are fundamentally
constructed as text prediction/generation systems
(e.g., “GPT-4 is a Transformer-style model pre-
trained to predict the next token in a document”
OpenAI, 2023b), a task aimed at probing the same
question but formulated to the context of text pre-
diction/generation may produce more representa-
tive results. For example, given a context question
and a response utterance carrying a conversational
implicature, using a language model to generate
a continuation of that conversation may provide
another avenue for determining whether the model
recovered the value of the implicature. If the model
has recovered the value of the implicature, then
the generated conversation should continue to flow
naturally. If it has not, then there would be a break
in the common ground and the conversation should
be anomalous in some way.

5 Conclusions

With regard to conversational implicature, we have
contributed an updated evaluation showing that
Ruis et al.’s (2024) results hold up, improve with
newer models, and that hoped-for improvements
when moving from 0-shot to 1-shot to 5-shot in-
context learning are not consistent. In addition,
however, our simple attempt at replicating prior
work using more up-to-date LLMs foregrounded
deeper issues, ones that connect to broader ques-
tions about how to use and evaluate LLMs.

One key takeaway involves data quality, which
receives little attention in NLP. In contrast to other
fields like survey research and social sciences that
have developed established, systematic frameworks
for data quality assessment (Pipino et al., 2002;
Groves and Lyberg, 2010; Birkenmaier et al., 2024),
NLP research still largely lacks such frameworks
and, despite some recognition of the problems
(Bender and Friedman, 2018; Gebru et al., 2021;
Northcutt et al., 2021) and emerging efforts to sys-
tematize data quality approaches (Dang and Verma,
2024; Mishra et al., 2020), there is scant evidence
to suggest that common best practices are moving
in that direction.

A second takeaway concerns the use of
completion-based tasks. Our results and discus-
sion suggest that completion-based tasks should be
viewed with greater caution than they presently are,

particularly for reasons associated with prompt sen-
sitivity. Unfortunately, the constraints commercial
LLM providers place on availability for alterna-
tives, e.g. use of likelihoods, stymie otherwise
potentially useful and creative solutions. We have
suggested that in the absence of general solutions,
finding ways to exploit relevant properties of the
problem may be a better, or at least complementary,
path forward.

A third takeaway concerns the pace of change in
NLP. We attempted replication because models are
constantly being updated. Having identified a prob-
lem with insufficiently constrained LLM output,
we introduced solutions (e.g. prompt rephrasing)—
only to find that by the time we were writing about
the effort, still more recent developments in struc-
tured output capabilities required their own experi-
mentation and evaluation, and, naturally, still did
not fully fix the problem. Our takeway here is
that the remarkably rapid change in NLP is both
a blessing and a curse: in general we obtain bet-
ter and better models and approaches, but there is
barely any time to actually think deeply when so
much effort is needed just to keep up. We would
suggest that the field could benefit from a dose of
slow science (Stengers, 2018), a perspective that
de-emphasizes performance targets, deadlines, and
market-based influences in favor of deeper thinking
and curiosity-driven progress.

Finally, it is worth considering here, as with any
attempt at creating an objective benchmark to mea-
sure the quality of a large language model, how
the metric being used relates to the actual goal be-
ing pursued. Achieving a perfect score—or even
a human-level score, like GPT-4—does not mean
that a model has necessarily captured the same gen-
eralizations about implicatures that humans have.
It may be that building or refining a model in or-
der to improve its score on the Ruis et al. (2024)
benchmark is not necessarily a productive way of
improving its actual ability to use implicature. The
broader take-away message is that we would do
well to reminder ourselves regularly that “when a
measure becomes a target, it ceases to be a good
measure” (Goodhart’s Law, Strathern, 1997).
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A Prompt Templates

Table 5 shows the original prompts from Ruis et al.
(2024). Those that were modified in our experiment
were changed to read “Finish the following text
with yes or no:” for the instruction.
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# Original template Modified in
our experiment

0

Does the following response to the question imply yes or no?
question: <context utterance>
response: <response utterance>
implicature:

No

1
Finish the following text:
Esther asked "<context utterance>" and Juan responded "<response utterance>", which means

Yes

2

Is the implied meaning of the following response yes or no:
question: <context utterance>
response: <response utterance>
meaning:

No

3

What is the intent of the following response, yes or no?
question: <context utterance>
response: <response utterance>
intent:

No

4
Finish the following text:
Karen asked "<context utterance>" and William responded "<response utterance>", which means

Yes

5
Finish the following text:
Bob asked "<context utterance>" and Alice responded "<response utterance>", which means

Yes

Table 5: The prompt templates from Ruis et al. (2024) and whether they were modified in our experiment.
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Abstract

We use the MG treebank of Torr (2017) to in-
vestigate the conjecture in Graf (2020) that cat-
egory systems are ISL-2 inferrable. A category
system is ISL-2 inferrable iff the category fea-
ture of every lexical item can be jointly inferred
from phonological exponents of both the item
itself and either its selecting head or the ar-
guments it selects. If correct, this conjecture
would greatly limit the overgeneration problem
posed by subcategorization mechanisms (Ko-
bele, 2011; Graf, 2011, 2017). We find that
the conjecture is largely borne out in this data
set. However, we also observe that it holds
even for features that are not expected to be
inferrable in this manner, and we demonstrate
that inferrability can arise from the assumption
that certain distributional properties of the lex-
icon are Zipfian in nature. We conclude that
category systems in natural languages may well
be ISL-2 inferrable, but that this could be due
to extragrammatical factors.

1 Introduction

A good model of language should be sufficiently
expressive to account for observed linguistic varia-
tion while still being restrictive enough to rule out
highly unnatural patterns. Graf (2017) highlights a
major overgeneration problem with syntactic sub-
categorization mechanisms. Subcategorization is
needed to capture basic facts such as devour being
a verb that takes a DP subject and a DP object. But
without meaningful restrictions on the inventory
of syntactic categories, subcategorization can be
used to enforce any constraint definable in monadic
second-order logic (MSO).

MSO has been used extensively in model-
theoretic syntax (see Rogers 1998, Rogers 2003,
Morawietz 2003, Tiede and Kepser 2009, Graf
2013, and references therein) due to its ability to
succinctly capture even the most byzantine propos-
als from the syntactic literature. However, it can

also express highly unnatural constraints such as
“a reflexive must c-command a verb of motion un-
less there are at least three CP nodes in the same
tree that each properly dominate an odd number
of nodes”. Extending a well-known translation
mechanism from MSO constraints to bottom-up
tree automata (Thatcher and Wright, 1968; Doner,
1970), the states of these automata can be compiled
into a grammar’s category system to implicitly en-
force MSO constraints via subcategorization (Graf,
2011; Kobele, 2011). Graf (2017) argues that lin-
guists’ restrictions on category systems are not tight
enough to rein in subcategorization, and as a result
current theories of syntax are much less restrictive
than they appear.

Graf (2020) shows that many undesirable kinds
of overgeneration, e.g. modulo counting, can be
ruled out if category features are required to be in-
ferrable by input strictly 2-local (ISL-2) functions.
Intuitively, the category feature of a lexical item l
is ISL-2 inferrable iff it can be predicted from the
phonological content of l itself and its local tree
context. Graf (2020) conjectures that all natural
languages have category systems that are ISL-2
inferrable. If true, this would explain how subcat-
egorization can be ubiquitous in syntax without
giving rise to unnatural MSO constraints.

In order to assess the viability of ISL-2 inferra-
bility as a linguistic universal, we test whether it
holds for MGBank (Torr, 2017), a treebank of En-
glish sentences with structures very similar to those
assumed by Graf (2020). We find that the category
features for a large majority of lexical items can in-
deed be predicted from strictly local tree contexts.
When a category feature is not ISL-2 inferrable,
that is usually due to empty heads, i.e. lexical items
that lack phonological exponents and hence pro-
vide no information for ISL-2 inferrability (an edge
case already mentioned in Graf 2020). However,
we also find a similarly high degree of inferrability
for movement features, which operate over long
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distances and would not be expected to be ISL in-
ferrable by this conjecture. Probing further, we
show that ISL-2 inferrability can arise in language
datasets following Zipfian frequency distributions.
This makes it difficult to assess whether ISL-2 in-
ferrability is a guiding principle of the grammar, as
conjectured by Graf (2017), or rather an artifact of
other features of human language.

This paper is organized as follows. Section 2
introduces the necessary background on the Min-
imalist grammar formalism (Sec. 2.1), the over-
generation problem (Sec. 2.2), and ISL-2 inferra-
bility (Sec. 2.3). Section 3 describes the data and
methodology used. Section 4 displays our find-
ings on the ISL-inferrability of category-system
features and discusses how they may support the
ISL-inferrability hypothesis. Section 5 complicates
this picture by introducing theoretical limitations
of ISL-2 inferrability and also demonstrates how a
high degree of inferrability can arise naturally from
other properties of language. Section 6 offers ideas
for future research directions and concludes.

2 Background: ISL inferrability

2.1 Categories in Minimalist grammars

Following Graf (2017), the results of this paper are
couched in the formal terms of Minimalist Gram-
mars (MG) (Stabler, 1997, 2011) and suregular
syntax (Graf, 2022b,a). However, the results of
this study are not limited in relevance to just those
formalisms and bear on syntax much more gen-
erally. ISL-2 inferrability asks whether certain
kinds of information can be inferred from local
tree contexts, and in MG trees the local relation-
ships are those between heads and their arguments
(specifiers and complements). The central question
that Graf (2017) formally hashes out as ISL-2 in-
ferrability over MG trees thus is much broader and
extends far beyond MGs to other formalisms: to
what extent can specific features of a lexical item
be inferred from the phonological content of its
arguments and/or its selecting head?

In MGs, every lexical item consists of a phono-
logical exponent that determines its pronunciation,
and a string of features that determine its syntac-
tic behavior. The feature string always contains a
category feature (x) and may contain selector fea-
tures (=x) that encode the item’s subcategorization
requirements. For example, a word like say would
have the feature string ⟨=c =d v⟩, representing that
it selects a CP complement, a DP specifier, and is a

verb.
The MG feature strings may also include move-

ment features. The licensee feature -m indicates
that the item is a mover of type m, while a licen-
sor feature +m indicates that this item furnishes a
landing site that must be filled by an m-mover. Graf
(2020) explicitly states that movement features are
not expected to be ISL-2 inferrable. This effec-
tively makes inferrability of movement features a
“control group” for our corpus experiment, a point
we will return to in Section 5.2. Until then, we
omit movement features from the discussion and
all examples.

MGs furnish multiple types of structural descrip-
tions: phrase structure trees, derivation trees, and
dependency trees. While a lot of early MG work fo-
cused on phrase structure trees, Kobele et al. (2007)
started a shift toward derivation trees as the primary
syntactic representation of MGs. Derivation trees
are also used in the MG treebank (Torr, 2017) that
our corpus analysis is based on. Subregular syntax,
including Graf (2017), prefers dependency trees
instead. But since there is a one-to-one correspon-
dence between derivation trees and dependency
trees, the choice is purely a matter of mathematical
convenience and it is easy to translate between the
two.1 Graf (2017) uses dependency trees because
of their close connection to head-argument rela-
tions: the mother-of relation in MG dependency
trees encodes subcategorization. Every node is a
(feature-annotated) lexical item, and its i-th daugh-
ter from the right is its i-th argument — the right-
most daughter is the complement, all other daugh-
ters are specifiers. Even though MGs use move-
ment, no displacement takes place in dependency
trees. Every lexical item sits in the position where
it is selected, and movement is encoded purely via
movement features. An example tree for the sen-
tence The child laughed at a bear is given in Fig. 1.

2.2 The overgeneration problem

Although subcategorization is crucial for modeling
the kinds of patterns found in syntax, it introduces

1As pointed out in Graf (2011, 2012), MG derivation
trees are built from chunks of derivational structure called
slices. Intuitively, the slice slice(l) consists of the opera-
tions that assemble the projections of lexical item l in the
phrase structure tree. A given MG derivation tree t is con-
verted to an equivalent MG dependency tree by replacing
slice(l) with l for every lexical item l of t. For example, if
slice(l) = Move(Merge(x,Merge(l,y))), this is condensed to
l(x,y). One could also say that MG dependency trees are the
derivation trees of a Tree Substitution Grammar that generates
MG derivation trees.
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∅T ⟨=v t⟩

laughed ⟨=p =d v⟩

the ⟨=n d⟩

child⟨n⟩

at ⟨=d p⟩

a ⟨=n d⟩

bear ⟨n⟩

Figure 1: MG dependency tree for The child laughed at
a bear, with empty T-head above the verb

a ⟨o⟩ a ⟨=e o⟩
a ⟨=o e⟩

a ⟨o⟩

a ⟨=e o⟩
a ⟨=o e⟩
a ⟨=e o⟩
a ⟨=o e⟩

a ⟨o⟩

Grammar:
a ⟨o⟩

a ⟨=e o⟩
a ⟨=o e⟩

Figure 2: Smuggling in an unnatural modulo counting
constraint via the category system. Left: Grammar
which tracks o[dd] and e[ven] nodes, Right: Some trees
generated by this grammar.

massive overgeneration into the formalism. As
mentioned in the introduction, Graf (2011) and Ko-
bele (2011) show that a constraint can be enforced
via MG-style subcategorization iff it is definable
in MSO. Figure 2 gives an example where the
category system is used to track whether a sub-
tree contains an odd (o) or an even (e) number of
nodes. Graf (2017) illustrates the many ways MSO-
constraints and, by extension, subcategorization un-
dermine the restrictiveness of syntactic formalisms.
A restrictive theory of syntax thus requires tight
restrictions on its category system.

2.3 ISL-2 inferrability to the rescue

Graf (2020) proposes to curb the excessive power
of subcategorization by requiring category features
to be inferrable by input strictly 2-local (ISL-2)
tree-to-tree transductions. While the definition of
ISL-2 transductions in Graf (2020) is fairly techni-
cal, the general idea is simple enough (see Fig. 3
for a visualization).

Suppose we take a dependency tree t generated
by some MG G and remove all feature strings from
all nodes, leaving only the exponents. Is there a
function fG that correctly determines for each node
n of t whether n had feature f? If the answer is pos-
itive for every node of every dependency tree of G,
then f is inferrable for G. If fG can do this based

∅T

saw

the

man

a

bear

feature
assignment

∅T ⟨=v t⟩
saw ⟨=d =d v⟩

the ⟨=n d⟩
man ⟨n⟩

a ⟨=n d⟩
bear ⟨n⟩

Figure 3: Feature assignment transduction

a ⟨=e o⟩
a ⟨=o e⟩
a ⟨=e o⟩
a ⟨=o e⟩

a ⟨o⟩

a

a

a

a

a

a

a

a

a

contexts for a⟨odd⟩: contexts for a⟨even⟩:

Figure 4: Category system implementing modulo count-
ing is not ISL inferrable

solely on I) the exponent of n and II) the exponents
of either IIA) n’s mother and siblings (upper con-
text) or IIB) the exponents of n’s daughters (lower
context), then f is ISL-2 inferrable for G.

Many unnatural category systems, like the mod-
ulo counting example in Fig. 2, are not ISL-2 in-
ferrable. Figure 4 shows that the category features
o and e are not ISL-2 inferrable because they share
at least one structural context of size 2 (in fact,
their contexts are exactly the same). Meanwhile,
many natural patterns which require subcategoriza-
tion are ISL-2 inferrable: Fig. 5 demonstrates how
local contexts can successfully disambiguate two
lexical entries for have. In light of this, Graf (2020)
conjectures that ISL-2 inferrability (or at least ISL-
k inferrability for some fixed k ≥ 2) is a linguistic
universal of category systems. Next, we will evalu-
ate this conjecture with our corpus study.

We havev two cats. We haveperf arrived.

∅T

have

we two

cats

∅T

have

arrived

we

we two arrived

lower contexts for have:

Figure 5: Example of disambiguating contexts for two
lexical entries of have
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3 Methods

3.1 Corpus: MGBank
To investigate the viability of ISL-2 inferrability
as a linguistic universal, we conducted a study us-
ing data from MGBank (Torr, 2017), a database
of MG derivation trees. The data in MGBank was
created by automatically translating a portion of
the Penn Treebank (Marcus et al., 1993) followed
by a manual check for correctness. Overall, MG-
Bank consists of 49,000 Wall Street Journal sen-
tences, adding up to over 1 million words. While
the derivation tree format in MGBank is different
from the dependency tree format used here, there
is a deterministic, sound, and complete translation
from the former to the latter (see fn. 1). These qual-
ities make MGBank an ideal data set for testing
the conjecture that syntactic categories are ISL-2
inferrable.

3.2 Determining ISL-2 inferrability
Data from MGBank was first converted from MG
derivation trees into dependency trees.2 The MG-
Bank annotation scheme includes some details
which are not relevant to our research question
and were therefore removed as part of the transla-
tion. For example, information on whether an ar-
gument should be linearized to the left or the right
of the head was removed. Additionally, adjunc-
tion was converted to category-preserving selection
with empty heads (the consequences of adjunction
are discussed in Section 5.1). Next, a lexicon was
extracted, consisting of all attested pairs of expo-
nents and feature strings.

We then examined inferrability for category fea-
tures in isolation as well as category features to-
gether with selector features. From a linguistic
perspective, the category features are more impor-
tant, since once these are determined, the selector
features follow trivially. As a control, we also test
inferrability for movement features.

In many cases, the relevant features (category /
category + selector / movement) are predictable
directly from the exponent itself. This means
that they are ISL-1 inferrable and hence ISL-2 in-
ferrable. For example, the category of destruction
is always n irrespective of its local context. ISL-1
inferrability of feature f can fail only if the corpus
contains two lexical items l and l′ such that both
have the same exponent but only of them carries f.

2Complete code for this project can be found at www.
github.com/pterodactylogan/isl-k-corpus-test

∅T saw the man a bear
⋊ ∅T saw

a

the saw

the

a

saw the a man ⋉ bear ⋉

Figure 6: Upper and lower (size 2) contexts for each
lexical item in the sentence The man saw a bear.

Lexical Item Contexts Unique Shared

a ⟨fspec1⟩ { c1,c2,c3 } { c1,c2,c3 } { }
a ⟨fspec2⟩ { c4,c5,c6 } { c4,c5,c6 } { }

b ⟨fspec1⟩ { c1,c2,c3 } { c1 } { c2,c3 }
b ⟨fspec2⟩ { c2,c3,c4 } { c4 } { c2,c3 }

c ⟨fspec1⟩ { c1,c2,c3 } { } { c1,c2,c3 }
c ⟨fspec2⟩ { c1,c2,c3 } { } { c1,c2,c3 }

Figure 7: Computing shared and unique contexts for
each lexical item. The features for items with exponent a
are strongly (and also weakly) inferrable, those for items
with exponent b are weakly (but not strongly) inferrable,
and those for items with exponent c are neither.

But f can still be ISL-2 inferrable if l and l′ have
distinct structural contexts.

Given a node n in tree t, its upper context con-
sists of n itself, its parent, and any siblings of n,
while the lower context consists of n itself and its
children. Crucially, our contexts track only expo-
nents, with all features omitted. Following Graf
(2020), we modified each tree by inserting ⋊ above
the root and ⋉ below each leaf so that every lexi-
cal item has an upper and a lower context in every
tree. Figure 6 gives an example for the upper and
lower contexts for each element in the example
from Fig. 3.

The following method is used to assess ISL-2
inferrability of a given feature (or string of features)
f: First, the set of all lexical items is extracted
from the corpus together with the upper and lower
contexts for each lexical item. This then allows us
to assess two types of ISL-inferrability in terms of
context sets. For each exponent e, let E be the set
of lexical items that share the same exponent. We
say that f is strongly inferrable iff it holds for every
exponent e that no l ∈ E carrying f ever appears
in the same (upper or lower) context as some l′ ∈
E without f. We also say that l and l′ have no
shared contexts. When the contexts are restricted to
upper and lower contexts as defined above, f being
strongly inferrable is equivalent to it being ISL-2
inferrable. We say that f is weakly inferrable iff it
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∅T ⟨=v t⟩
have

we two

cats

∅T ⟨=aux t⟩
have

arrived

have

Lower context
for both
∅T nodes

Figure 8: Inferrability is difficult with empty heads.
Here, the lower context is insufficient to discriminate
between the T head which selects a v complement (left)
and the one which selects a aux complement (right).

holds for every exponent e and every l ∈ E carrying
f that l occurs in some (upper or lower) context that
no l′ ∈ E without f occurs in. We also say that l has
a unique context. While weak inferrability does
not imply ISL-2 inferrability, it was included in
this study because it might be a useful property for
distributional learning algorithms. Weak and strong
inferrability of each feature were then computed
for each lexical item using these contexts. Figure 7
illustrates this process.

3.3 The trouble with empty heads

A possible stumbling block for ISL-inferrability
comes from empty heads, which have no pro-
nounced exponent. Empty heads introduce a lot
of ambiguity, particularly when many of them are
stacked together, e.g. in the functional hierarchy C-
T-v-V commonly assumed in Minimalism. Figure 8
illustrates this issue with an empty T-head.

At the same time, these heads may actually carry
prosodic information (e.g. a C-head that furnishes
a wh-landing site) or contribute information that is
pronounced on other heads, like tense. Arguably,
this information should be taken into account for
ISL-2 inferrability. In the following section, we
report results with this information (empty heads
have exponents such as [PAST] or [PRESENT]) and
without (empty heads have the empty string as their
exponent).

4 Results

4.1 Strong support for ISL-2 inferrability

We now report our findings on the inferrability of
feature strings in MGBank. The full corpus con-
tains nearly 40,000 distinct lexical items, with each
lexical item including an exponent, a category fea-
ture, and zero or more selector and movement fea-
tures. As mentioned above, we examined various
subsets of features, and tested inferrability both
with and without disambiguation of empty heads.

Both of these variables affect the total number of
distinct items, which we report along with results
on inferrability.

For each of the feature subsets discussed in Sec-
tion 3.2, the total number of ambiguous items was
computed, that is, those that are not inferrable. This
was done based on the criterion for ISL-1 inferra-
bility as well as both strong and weak ISL-2 in-
ferrability. The level of ISL-1 inferrability reflects
the amount of lexical ambiguity in the corpus. The
percentages for both weak and strong ISL-2 inferra-
bility therefore indicate the percentage of lexically
ambiguous items (rather than all items) which can-
not be disambiguated using a context of size 2.
Because the number of lexically ambiguous items
may be much smaller than the total, taking the lat-
ter as a baseline could create a skewed view of
how much work the local structural context does to
disambiguate category information.

Table 1 shows the inferrability for category fea-
tures and category + selector features depending
on whether empty heads have as their exponent the
empty string or linguistic annotations like [PAST].
These results demonstrate that ISL-inferrability
holds for the vast majority of lexical items (modulo
movement features). In fact, nearly two-thirds of
category features and nearly half of category + se-
lector feature pairs are ISL-1 inferrable. Category
features alone have much less ISL-1 (lexical) am-
biguity than category + selector features together,
which is unsurprising as it is common for a word
to correspond to multiple lexical items that differ
in their subcategorization properties but still have
the same category. Interestingly, more of this am-
biguity can be resolved by ISL-2 contexts with
category + selector pairs than category features
alone. Overall, category feature assignment faces
less lexical ambiguity than category + selector as-
signment while at the same time being harder to
disambiguate via contexts.

Identifying the empty heads in the corpus has
a profound effect on the inferrability of category
features, nearly halving the number of ambiguous
items. Even without doing this, however, category
features are strongly ISL-2 inferrable for over 94%
of all items, and over 75% of lexically ambiguous
ones. When this is relaxed from strong to weak in-
ferrability these numbers increase to 98% and 95%
respectively. If empty heads are also identified,
then category features become weakly inferrable
for over 99% of all lexical items, and over 97%
of lexically ambiguous ones. Our results therefore
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ISL-2 Ambig. Items

Feature Set
Empty Heads
Filled?

Total
Items

ISL-1 Ambig.
Subtotal

Strongly Ambig. Weakly Ambig.

Category Only No 29610 8369 1762 (21.1%) 422 (5.0%)
Category Only Yes 29685 8414 1210 (14.4%) 264 (3.1%)
Category + Selector No 36635 18124 2861 (15.8%) 808 (4.5%)
Category + Selector Yes 36688 18157 1571 (8.7%) 330 (1.8%)

Table 1: Count and percentage of lexical items which are ambiguous under each condition tested. Percentages of
ISL-2 ambiguous items are calculated w.r.t. the number of ISL-1 ambiguous items as explained in the text.

Issue Count %

Wrong category 199 75.4%
Wrong category in other contexts 29 11.0%
Inconsistent category 10 3.8%
Non-alpha symbol 11 4.2%
Ambig. functional head complement 7 2.7%
Problem unclear 7 2.7%
Empty selector and complement 1 0.4%

Total 264

Table 2: Reason for ambiguity of category features
which are not weakly ISL-2 inferrable with identified
empty heads.

show that both category features and selector fea-
tures are largely ISL inferrable using contexts of
size 2, which is in line with the conjecture that ISL
inferrability is a restriction on category systems in
human language.

4.2 Where ISL-2 inferrability fails
Of the subset of lexical items for which category
features are not weakly ISL-2 inferrable (with iden-
tified empty heads), over 90% correspond to some
error in the MGBank corpus. These included an
incorrect category label on the lexical item in ques-
tion, an incorrect category label on another lexical
item with the same exponent, or general inconsis-
tency in the category assigned to that form (i.e. one
or the other should have been used uniformly). Ta-
ble 2 summarizes the reasons why weak ISL-2
inferrability failed, with a count of the number of
items affected when only category features are in-
cluded and empty heads are identified. The first
four reasons for ambiguity correspond to annota-
tion problems in the corpus, while the rest reflect
other reasons ISL-inferrability may have been diffi-
cult.

Looking more closely, the most common prob-
lem involved noun-noun compounds being mis-

parsed as adjective-noun adjunction structures or
vice versa. For example, “desktop computer” and
“marketing director” were misparsed as adjective-
noun sequences, while “imported steel” and “orga-
nized crime” were misparsed as noun-noun com-
pounds. These errors alone accounted for nearly
one third of the weakly ambiguous items. Sim-
ilarly, the first word in a multi-word name like
“Bloomfield Hills” or “West German” was occa-
sionally misparsed as an adjective, adverb, or
quantifier. In other cases, category for a given
item was varied randomly between two reasonable
choices. For instance, prenominal quantifiers were
sometimes coded as ‘A’ and sometimes as ‘Q’. If
the annotation had been consistent, the category
would presumably have been recoverable. Over-
all, there were only a handful of items whose non-
recoverability was not obviously related to annota-
tion errors or empty heads.

Taken together, these results are promising for
the ISL-inferrability conjecture: the category sys-
tem used in MGBank displays a high degree of
ISL-inferrability, and in cases where inferrability
fails this is usually due to errors in the corpus itself.

5 Confounds and caveats

Our findings show that ISL-2 inferrability is an ob-
servable trend in MGBank. This could be taken as
strong support of the conjecture of Graf (2020) that
the category systems of natural languages are ISL-
2 inferrable. However, there are several reasons
why this might be too strong an inference.

5.1 The problem with adjunction

While ISL-2 inferrability looks like a plausible uni-
versal when considering heads and their arguments,
it is much more likely to fail for adjuncts.

Consider a language like German, which makes
a difference between adjectives and adverbs in
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ISL-2 Ambig. Items

Feature Set
Empty Heads
Filled?

Total
Items

ISL-1 Ambig.
Subtotal

Strongly Ambig. Weakly Ambig.

Movement Only No 29456 7688 1407 (18.3%) 285 (3.7%)
Movement Only Yes 29497 7708 469 (6.1%) 35 (0.5%)

Table 3: Count and percentage of lexical items which are ambiguous for movement features. Percentages of ISL-2
ambiguous items are calculated w.r.t. the number of ISL-1 ambiguous items as explained in the text.

[adjunctizer]⟨=adv =v v⟩

seldom⟨adv⟩ [adjunctizer]⟨=adv =v v⟩

quickly⟨adv⟩ run⟨v⟩

Figure 9: Adjunction as category-preserving selection.
An adjunctizer head selects the adjunction site as its
complement, and the adjunct itself as its specifier.

terms of distribution (and hence in terms of cat-
egory features) but does not consistently mark this
distinction in its morphology. Hence a form like
schnell ‘quick(ly)’ could be an adverb or an adjec-
tive in a predicative construction like Er ist schnell
‘he is fast’. In the analysis assumed by Graf (2020)
and also here, adjuncts are modeled as arguments
of an empty head – an adjunctizer. For example,
an adverb adjoining to a VP would be modeled as
the specifier of an empty V-head that takes a VP
as its complement (Fig. 9). In such a configura-
tion, the category of German schnell might not be
ISL-2 inferrable. Its lower context would be ⋉,
and its upper context would be just the empty ad-
junction head and its complement, which might be
yet another empty adjunction head. This context is
equally compatible with schnell being an adjective
or an adverb.

Since adjuncts are very common, even in cor-
pora, it is suprising that we found such robust
support for ISL-2 inferrability. Admittedly, over
40% of (weak and strong) ISL-2 inferrability fail-
ures for category feature in MGBank are on lexical
items that are used (in at least some instance) as
adjuncts, but many of those are related to coding
errors. Given that there are theoretical reasons to
doubt the viability of ISL-2 inferrability for a very
common construction, there is reason to wonder
whether the high rate of ISL-2 inferrability found
in our study could be due to other confounds in the
data.

5.2 Movement features as a control group
In contrast to category features, movement features
represent syntactic relationships which are funda-
mentally non-local. There is no local way of pre-
dicting whether, say, an object is topicalized, on
the basis of its arguments and seleting heads. Some
features are more predictable, e.g. which is more
likely to undergo wh-movement than remain in situ,
and the C-head do is very likely to furnish a wh-
landing site because of how do-support works in
English. Still, theoretical considerations lead us
to expect low ISL-2 inferrability scores for move-
ment features. But, as shown in Table 3, the scores
for movement features are very close to and some-
times even better than our findings in Section 4.1
for category (and category + selector) features.

We note that the distribution of movement fea-
tures in the corpus is highly skewed, with over
half of the movement-bearing lexical items being
V heads with the +CASE feature. These are almost
always dominated by empty transitive little-v, and
select a DP argument — making +CASE highly in-
ferrable. Even so, the finding is surprising from a
theoretical perspective that focuses on what con-
figurations are possible rather than which are com-
mon. In order to more accurately tease apart the
factors contributing to inferrability, we turn to data
simulations to provide a baseline.

5.3 Simulated data
Understanding whether ISL-inferrability is an in-
trinsic guiding principle of human language or sim-
ply a coincidence resulting from other properties
requires setting up an appropriate baseline to test
how much inferrability we might expect without
this being an independent requirement of the sys-
tem. To create such a baseline, synthetic datasets
of lexical items and corresponding contexts were
created programatically. These synthetic datasets
are generated automatically based on I) the desired
number of distinct exponents, II) the desired num-
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ISL-2 Ambig. Items

Feature Set
Total
Items

Phono.
Forms

Ctxs.
Per item

ISL-1 Ambig.
Subtotal

Strongly Ambig. Weakly Ambig.

Simulation 29685 24769 11.9 6007 108 (1.8%) 53 (0.9%)
(Category)

Simulation 36688 24769 9.6 13961 245 (1.8%) 137 (1.0%)
(Category & Selector)

Simulation 29497 24769 12.0 5806 100 (1.7%) 50 (0.9%)
(Movement)

Table 4: Count and percentage of lexical items which are ambiguous in simulated data. Metrics of total lexical items,
phonological exponents, and contexts per item follow those for each category set tested (with filled empty heads).
Percentages of ISL-2 ambiguous items are calculated w.r.t. the number of ISL-1 ambiguous items as explained in
the text.

ber of distinct lexical items, and III) the average
number of contexts in which each lexical item ap-
pears. Given these, the synthetic data is generated
using the following assumptions:

1. Each exponent appears in at least one lexical
item.

2. Each lexical item appears in at least one con-
text.

3. The frequency distribution of phonological
items is Zipfian, both in terms of how many
lexical items each exponent appears in and
in terms of how frequently they are part of
contexts for other items. In other words, a few
exponents appear in many lexical items while
most appear in very few.

4. The frequency distribution of lexical items is
Zipfian. In other words, a few lexical items
appear in many contexts, while most appear
in very few.

For each of the feature sets for which we ex-
amined inferrability in MGBank, corresponding
synthetic datasets were created with identical val-
ues for the number of exponents, lexical items, and
average contexts per lexical item. We then tested
ISL-inferrability in these synthetic datasets, run-
ning three simulations for each experiment and
averaging results across the simulations.

The simulated datasets show a high degree of
inferrability, comparable to what we find in the ac-
tual corpus. Table 4 shows the inferrability results
for simulated datasets with metrics matched to the
corpus data for each feature set tested (category,

category + selector, and movement). These high
inferrability rates demonstrate that the simple as-
sumption of Zipfian distributions yields datasets
where inferrability arises as an emergent property,
rather than being a hard constraint on feature sys-
tems.

6 Conclusion

This paper uses the MG treebank (Torr, 2017) to
evaluate the conjecture of Graf (2017) that syntac-
tic categories are ISL-2 inferrable over the kind of
dependency trees used with Minimalist Grammars.
Intuitively, this conjecture states that the syntac-
tic category of a lexical item can be inferred from
its own surface form and/or the surface forms of
its arguments and/or the surface form of the head
it is an argument of. So though the conjecture is
stated in very technical terms specific to MGs and
subregular syntax, its relevance — and thus the
import of our findings — extends to all syntactic
formalisms that assume syntactic categories and
selectional restrictions. Our analysis of MGBank
largely supports the conjecture in Graf (2017) that
category systems are ISL-2 recoverable: ISL-2 re-
coverability fails only for a small number of lexical
items, and many of these cases are arguably due to
coding errors in the corpus.

However, we also found a high degree of ISL-2
recoverability for movement features and category
features of adjuncts, which is unexpected as neither
kind of feature should be reliably ISL-2 inferrable.
Through simulation, we also showed that a high
level of inferrability can result simply from the fre-
quency distribution of language datasets – namely,
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a Zipfian distribution.
Together, these findings indicate that human lan-

guage category systems (and other syntactic fea-
tures) are reliably ISL inferrable, but that this may
not be due to a specific direct requirement for in-
ferrability. In terms of Chomsky (2005), ISL-2
inferrability may be a third factor principle rather
than a hard constraint of UG.

Regardless of the reason for which ISL-
inferrability appears, its prevalence is a useful prop-
erty of language to understand. One key benefit to
identifying such properties is that they can often
be leveraged for learning — just as many proposed
language learning strategies leverage the Zipfian
distributions that are known to be present. ISL-2 in-
ferrability is particularly suggestive of an approach
children may take in learning syntax. It offers a
clear direction in which to generalize: two phono-
logically identical items in the same local context
must also have the same category.

This work furnishes a proof-of-concept for the
ISL-2 inferrability of syntactic features and sug-
gests a method for further corpus work which might
extend these results to more languages and data
sources.
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Appendix A: Compiled Results

Category Features
Corpus Simulation

Type Ambig. Items % of Lexically Ambig. Items % of Lexically
Ambig. Items Ambig. Items

SL1 8414 - 6007 -
SL2 (strong) 1210 14.4% 108 1.8%
SL2 (weak) 264 3.1% 53 0.9%
Total Items: 29,685 Phono. Forms: 24,769 Contexts per Item: 11.9

Table 5: Side-by-side comparison of inferrability results for category features (with filled empty heads) from the
corpus study and the simulated data. Simulated data was generated using the number of items, exponents, and
categories per item which matched the corpus (indicated at bottom of table).

Category & Selector Features
Corpus Simulation

Type Ambig. Items % of Lexically Ambig. Items % of Lexically
Ambig. Items Ambig. Items

SL1 18,157 - 13,961 -
SL2 (strong) 1571 8.7% 245 1.8%
SL2 (weak) 330 1.8% 137 1.0%
Total Items: 36,688 Phono. Forms: 24,769 Contexts per Item: 9.6

Table 6: Side-by-side comparison of inferrability results for category and selector features (with filled empty heads)
from the corpus study and the simulated data. Simulated data was generated using the number of items, exponents,
and categories per item which matched the corpus (indicated at bottom of table).

Movement Features
Corpus Simulation

Type Ambig. Items % of Lexically Ambig. Items % of Lexically
Ambig. Items Ambig. Items

SL1 7708 - 5806 -
SL2 (strong) 469 6.1% 100 1.7%
SL2 (weak) 35 0.5% 50 0.9%
Total Items: 29,497 Phono. Forms: 24,769 Contexts per Item: 12

Table 7: Side-by-side comparison of inferrability results for movement features only (with filled empty heads) from
the corpus study and the simulated data. Simulated data was generated using the number of items, exponents, and
categories per item which matched the corpus (indicated at bottom of table).

All Features
Corpus Simulation

Type Ambig. Items % of Lexically Ambig. Items % of Lexically
Ambig. Items Ambig. Items

SL1 19,493 - 15,314 -
SL2 (strong) 1832 9.4% 237 1.5%
SL2 (weak) 394 2.0% 133 0.9%
Total Items: 37,873 Phono. Forms: 24,769 Contexts per Item: 9.3

Table 8: Side-by-side comparison of inferrability results for entire feature string (with filled empty heads) from
the corpus study and the simulated data. Simulated data was generated using the number of items, exponents, and
categories per item which matched the corpus (indicated at bottom of table).
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Appendix B: MGBank Categories

Category Num. Lexical Items
n 19,585
v 9,574

adj 5,122
adv 964
lv 693
q 589
p 349
D 293
c 147
t 90

part 89
prog 64
mod 64
d 63

perf 32
voice 28
intj 23
tbar 22
negs 21
punc 13
prd 12
neg 12
log 8
ln 8

adjc 2
advc 2
vbar 2
self 1

features 1
top 1

Total 37,874

Table 9: Category features present in MGBank and the number of lexical items of each category.
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Abstract
Using Phonet (Vásquez-Correa et al., 2019), a
neural network-based model, we generate vec-
tor representations of speech segments consist-
ing of phonological class probabilities and use
these representations to quantify segmental de-
viations in the English of native Hindi speakers
from American English (AE) and Indian En-
glish (IE) baselines, in order to explain how
these deviations impact perceptions of accent-
edness by native AE speakers. The primary
focus is on three AE phonemes and their re-
alizations in Hindi English (HE) and Indian
English: the labiovelar approximant /w/, often
produced as the labiodental approximant [V];
the alveolar stop /t/, commonly realized as the
retroflex stop [ú]; and the rhotic approximant /ô/,
rendered as the rhotic tap [R]. Multinomial logis-
tic regressions of Euclidean distances from HE
segments to AE/IE baselines on accent ratings
show that larger distances from AE baselines
increase the likelihood of perceiving stronger
accents while larger distances from IE base-
lines decrease the likelihood. Changes in the
probability distributions of contrastive phono-
logical classes are found to correlate with the
strength of the perceived accent. These results
offer valuable insights into the interplay be-
tween native phonology and the perception of
accented speech.

1 Introduction

The growing prevalence of English as a global lin-
gua franca has led to a diverse variety of Englishes
shaped by local linguistic and cultural influences.
Among these, Indian English occupies a unique
position, with distinct phonological characteristics
arising from substrate Indo-Aryan and Dravidian
languages (for more, see Wiltshire, 2020). These
characteristics often include systematic phonetic
differences, which are perceived as accented speech
by speakers of other varieties of English.

This study explores how phonetic variation in
Hindi English, i.e. the English of native Hindi

speakers, influences perceptions of accentedness by
native speakers of American English. We focus on
three American English phonemes: the labiovelar
approximant /w/, often produced as the labiodental
approximant [V] in Hindi English (Sailaja, 2009;
Wiltshire and Harnsberger, 2006; CIEFL, 1972);
the alveolar stop /t/, commonly realized as the
retroflex stop [ú] (Masica, 1991; Kachru, 1986); and
the rhotic approximant /ô/, rendered as the rhotic
tap [R] (Wiltshire, 2015; Krishnamurti, 2003; Ma-
sica, 1991). We use Phonet (Vásquez-Correa et al.,
2019), a neural network based on Gated Recurrent
Units (GRU) (Chung et al., 2014), to train a single
model on large speech corpora of both American
and Indian English to infer the classification prob-
abilities of phonological classes associated with
the phone segments of both Englishes. The result-
ing probability vectors are treated as representa-
tions of the phone segments in a joint vector space
spanning both Englishes. These representations are
used to examine the relationship between perceived
accent and the Hindi English segments’ proximity
to American and Indian English baselines in the
joint vector space. The segments [V], [ú], and [R] are
produced uniformly in similar contexts across the
varieties of Indian English spoken in the Indian sub-
continent (Wiltshire, 2020), including the English
of native speakers of Hindi and other Indo-Aryan
languages (Fuchs, 2019; Sirsa and Redford, 2013;
Wiltshire and Harnsberger, 2006); this facilitates
the use of Indian English baselines to study varia-
tions in accent perception driven by these segments
in Hindi English speaker productions. Quantifying
the degree of accentedness using explainable proba-
bility vector representations could also facilitate an
empirical validation of theories of second language
speech learning, in particular the Speech Learn-
ing Model (SLM/SLM-r; Flege and Bohn 2021)
and the Perceptual Assimilation Model (PAM; Best
1995); the joint vector space of the trained Phonet
model could be surmised as a perceptual space of

222
Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 222-234.

Eugene, Oregon, July 18-20, 2025



segment representations to test theories of speech
learning, with distances/similarities between the
representations serving as indicators of how sec-
ond language learners might assimilate the pho-
netic categories of the language being learned into
their own native categories.

2 Related Work

There are a number of studies that investigate ac-
cent classification and native language identifica-
tion using corpora of spoken English from the In-
dian sub-continent, employing both handcrafted
feature-based and neural network-based methods.
These studies have used a variety of inputs such
as MFCC-based features, prosodic features, for-
mant frequencies, and raw spectrogram-based fea-
tures with a range of classification models (Guntur
et al., 2019; Krishna and Krishnan, 2014; Cheng
et al., 2013; Sharma et al., 2024; China Bhanja
et al., 2022; Siddhant et al., 2017; Jiao et al., 2016).
Feature-based approaches offer explainable results
at the expense of hand-crafting time- and resource-
intensive features, and neural network approaches
are black-box mechanisms capable of automati-
cally deducing key features from the data input.
We use Phonet to automatically convert key aspects
of the spectral speech input into explainable vector
representations of speech segments, thereby facil-
itating an explainable framework relating accent
perception to gradient phonetic variation.

Other computational methods have been instru-
mental in capturing gradient phonetic variation
which, unlike Phonet, have relied on traditional
machine-learning approaches. For example, Yuan
and Liberman (2009) introduced a method for cap-
turing nuanced variations, such as degrees of /l/-
darkness in American English, using log probabil-
ity scores from forced alignments instead of cat-
egorical phone labels. This method, extended in
later work (Yuan and Liberman, 2011), demon-
strated both categorical distinctions and gradient
degrees of /l/-darkness across contexts. Support
Vector Machines have been used to classify r-
full and r-less tokens in English using MFCCs
(McLarty et al., 2019). Random forest classifi-
cation has also been employed to model sociopho-
netic variables (Villarreal et al., 2020), estimating
variable realizations by comparing acoustic fea-
tures with canonical pronunciations.

Approaches that model phonological class prob-
abilities—as done in Phonet—broaden the scope

of analysis from individual segments to sets of
segments that share articulatory or acoustic fea-
tures. This shift enables a more generalized and
interpretable analysis of speech, since phonological
classes such as [continuant] and [sonorant] encode
linguistically meaningful distinctions that under-
lie multiple segments. By modeling speech at the
level of these classes, we capture gradient varia-
tion along perceptually and articulatorily relevant
dimensions, facilitating cross-speaker and cross-
context generalization. Moreover, class-based rep-
resentations align with theoretical models of speech
perception and learning, which emphasize feature-
based similarity rather than segmental identity. As
shown in Tang et al. 2023, such representations
complement traditional acoustic measures and have
proven effective in capturing phonetic processes
like lenition (Wayland et al., 2023).

3 Methods

This section provides an overview of the Phonet
model, its architecture and training methodology,
the datasets used for its training, and the dataset
consisting of the English of native Hindi speakers
with accent annotations.

3.1 Phonet model

Phonet is a GRU-based neural network that esti-
mates the posterior probabilities of the occurrence
of phonological classes from speech signals. The
signal is chunked into half-second segments, fol-
lowing which the log energy signal across 33 tri-
angular filters along the Mel scale is calculated
for each 25-ms window in the chunk. These log-
energy feature sequences are processed by two
bi-directional GRUs and a time-distributed dense
layer, followed by separate dense layers for classi-
fying each phonological class in a multi-task learn-
ing setup to calculate the probabilities of the classes
associated with the input feature sequence. The
probabilities are averaged across the frames to give
a unique vector of the probabilities of phonological
classes for each phone segment. The bi-directional
GRU captures co-articulation effects by incorporat-
ing information from surrounding segments.

3.2 Phonological classes

Phonemes are grouped into phonological classes
based on their shared phonetic features. One com-
mon distinction is between [+consonantal] and [-
consonantal] phonemes. Consonantal phonemes,
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such as stops, fricatives, affricates, nasals, and liq-
uids, involve constriction of the articulators in the
vocal tract and are labeled [+consonantal]. In con-
trast, vowel and glide phonemes are typically la-
beled [-consonantal] because they do not involve
the same level of constriction. An in-depth guide to
phonological classes can be found in Hayes (2011).
For the American and Hindi English phonemes in
this study, the labiovelar approximant /w/ is de-
fined by the classes [+sonorant, +continuant, +ap-
proximant, +voice, +round, +labial, +dorsal +high,
+back, +tense], while the labiodental approximant
/V/ is defined by [+sonorant, +continuant, +approxi-
mant, +voice, -round, +labial, +labiodental, -dorsal,
-high, -back]. The alveolar /t/ is [+consonantal,
+coronal, +anterior], but the retroflex /ú/ is [+con-
sonantal, +coronal, -anterior]. Finally, the approxi-
mant /ô/ is [-consonantal, +sonorant, +continuant,
+approximant, -tap, +voice, +coronal, +distributed],
while the tap /R/ is [+consonantal, +sonorant, +con-
tinunant, +approximant, +tap, +voice, +coronal,
-distributed, +anterior]. The classes that contrast
the /w/-/V/, /t/-/ú/, and /ô/-/R/ pairs are of particular
interest for analyzing against accent ratings.

3.3 Training datasets

To train models on American English and Indian
English speech data, we use the English language
datasets of the Mozilla Common Voice Speech
Corpus (Ardila et al., 2020) and select datasets
tagged with United States English and India
and South Asia accent tags. Data from the
Librispeech-100 corpus (Panayotov et al., 2015),
the L2-ARCTIC non-native English speech corpus
(Zhao et al., 2018), and the Indic Text-To-Speech
(TTS) corpus (Baby et al., 2016) are used to source
additional data in both Englishes. Only the En-
glish data from native Hindi speakers is selected
from the L2-ARCTIC and Indic TTS datasets; how-
ever, the Mozilla Common Voice corpus does not
include the speaker’s native language tag for En-
glishes from the Indian sub-continent and all the
data with the India and South Asia accent tag
from this corpus is consequently used, forming the
bulk of the training set for the Indian English data.
A total of approximately 150 hours of American
English and 120 hours of Indian English data are
used for training.

3.4 Hindi English dataset with accent ratings

The CSLU FAE (Foreign Accented English) Re-
lease 1.2 dataset (Lander, 2007) contains contin-

uous speech in English by speakers of 22 lan-
guages, including samples from native Hindi speak-
ers. The corpus consists of telephone-quality utter-
ances with information about perceptual judgments
of the accents in the utterances. The speakers were
asked to speak about themselves in English for 20
seconds. Three native speakers of American En-
glish independently listened to each utterance and
judged the speakers’ accents on a 4-point scale:
1-negligible/no accent, 2-mild accent, 3-strong ac-
cent and 4-very strong accent. To facilitate inves-
tigation of the drivers of accent perception rela-
tive to the no/negligible accent baseline, the mini-
mum accent rating of the three speakers is taken as
the aggregate rating for each recording. The very
strong accent rating is subsequently merged into
the strong one, given only one recording is tagged
with that rating after applying the aggregate mea-
sure. Table 1 shows the distributions of the three
accents across the recordings of native Hindi speak-
ers, and Table 2 shows the distribution of the target
Hindi English phone segments by accent rating and
word position. We refer to this subset of the CSLU
FAE dataset containing native Hindi speakers as
the Hindi English dataset in subsequent sections.

3.5 MFA pre-processing

The Montreal Forced Aligner (MFA) tool
(McAuliffe et al., 2017) is used to force-align the
audio and transcripts of the training and Hindi En-
glish datasets, with the resulting TextGrid files used
to label the phonological classes of each audio
frame during Phonet training, in conjunction with
the mapping of phone segments to phonological
classes described in section 3.6. The transcripts
are transcribed into IPA segments using the pre-
trained MFA grapheme-to-phoneme (G2P) models
and existing pronunciation dictionaries for Ameri-
can and Indian English (McAuliffe and Sondereg-
ger, 2023a,b, 2024a,c). Custom acoustic models
for American and Indian English are trained to
avoid potentially noisy output from the existing
pre-trained model (McAuliffe and Sonderegger,
2024b), given that this model is trained on a va-
riety of world Englishes.

3.6 Phonet training and inference

To learn the phonological classes associated with
phone segments during training, and to generate
probability distributions over the classes for seg-
ments during inference, a mapping between the IPA
segments in the MFA pronunciation dictionaries
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Accent Rating No. Recordings
No/Negligible 17
Mild 194
Strong 137
Total 348

Table 1: Distribution of accent ratings in the Hindi En-
glish dataset using a minimum aggregate of the ratings
of three independent raters.

Initial Medial Final
No/Negligible 29 31 44
Mild 294 346 376
Strong 246 264 256

(a) Distribution of [V]

Initial Medial Final
No/Negligible 23 50 86
Mild 138 569 957
Strong 120 374 643

(b) Distribution of [ú]

Initial Medial Final
No/Negligible 12 15 14
Mild 115 173 179
Strong 76 121 157

(c) Distribution of [R]

Table 2: Distribution of target segments in the Hindi
English dataset by word position and accent rating.

and phonological classes is created for both Ameri-
can and Indian English phone sets. This mapping is
created at the phonetic level, given that the learning
of speech sounds in a second language occurs at
the level of position-sensitive allophones and not
at the phonemic level (Flege, 1995; Kohler, 1981).

A single Phonet model is trained on the
combined American and Indian English training
datasets to estimate the classification probabilities
of phonological classes for segments of both lan-
guages in a joint vector space. The model can be
said to incorporate the acoustic properties of both
languages in its parameter weights; this means that,
given a phone segment in the Hindi English data,
the model can estimate whether the phonological
class probabilities of that segment tend towards
American English or Indian English baselines, or
contain elements of both Englishes.

To facilitate joint training, the phone set to
phonological class mappings of the two Englishes
are merged into a single mapping, shown in Table 6
in the Appendix. The training and Hindi English
datasets are force-aligned using the custom acous-
tic models described in Section 3.5. An 80-20 train-

test split is used for training; the range of accuracy
and F1 scores across the phonological classes can
be found in Table 5 in the Appendix. The model
is trained for a maximum of 30 epochs with early
stopping, using the Adam optimizer (Kingma and
Ba, 2014) with a categorical cross-entropy loss
function.

3.7 Statistical Analyses

In the vector space of phonological class proba-
bilities defined by the Phonet model, Euclidean
distances are calculated between instances of the
target Hindi English phone segments and the cen-
troids of all instances of the baseline segments in
the American and Indian English training data. The
baselines consist of 500 recordings randomly sam-
pled from each of the American and Indian English
training datasets. The distances are regressed on the
accent ratings using a multinomial logistic regres-
sion, taking the no/negligible rating as the reference
level. The general hypotheses are that, relative to
a no/negligible accent rating, the odds of a mild or
strong accent should increase with increasing dis-
tance from the American English baseline and de-
crease with increasing distance from the Indian En-
glish baseline. Interactions of distance with word
position are also investigated, given that variations
in the categorization of a speech segment can be
driven by the position of the segment in the word se-
quence (Dmitrieva, 2019). Two-way ANOVA tests
are conducted to analyze the effect of accent rating
and word position on the class probabilities of the
Hindi English target segments. Significant differ-
ences would be expected for phonological classes
that are contrastive between the baseline American
English and target Hindi English segments, and the
direction of the difference should correlate with
differences in accent strength, suggesting that the
class probabilities have an impact on the strength
of the accent perceived. We report results only for
those phonological classes which show significant
main effects of accent ratings, or interaction ef-
fects of accent ratings with word position on the
probabilities.

4 Results

Throughout this section, the terms AE and IE are
used to refer to the American English and Indian
English baselines respectively, with HE used to re-
fer to the Hindi English dataset with accent ratings.
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Figure 1: Left: Coefficient plots of multinomial logistic regression on accent ratings with reference level set
to no/negligible accent, for the labiodental approximant [V] in the Hindi English data. The interaction effect of
Euclidean distance from AE [w] baseline with word position is significant, as is the main effect of distance from the
AE baseline. Center, Right: Interaction plots of dorsal and approximant probabilities of the labiodental approximant
[V] in the Hindi English data by accent rating and initial word position (AE=American English; IE=Indian English).

Figure 2: Left: Coefficient plots of multinomial logistic regression on accent ratings with reference level set to
no/negligible accent, for the retroflex [ú] in the Hindi English data. The main effects of Euclidean distance from
AE/IE baselines are significant, with increasing distance translating to higher/lower odds of strong accent perception.
Center, Right: Distributions of anterior and coronal probabilities of retroflex [ú] in the Hindi English data by word
position (AE=American English; IE=Indian English).
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Figure 3: Distribution of tap, anterior, and distributed probabilities of rhotic tap [R] in the Hindi English data by
accent rating and word position. The differences in distributions across the accent ratings of all classes taken
together suggest that speakers with the strong accent are producing the rhotic tap [R] and those with no/negligible
accent the rhotic approximant [ô].

Segment Accent Effect β-coef. p-val
[V] Mild AE Dist. 1.069 .0144

Medial Pos. 1.918 .233
Final Pos. 1.479 .347
AE*Medial -1.833 .007
AE*Final -1.844 .0038

Strong AE Dist. 1.334 .0027
Medial Pos. 1.79 .271
Final Pos. 0.671 .674
AE*Medial -1.843 .008
AE*Final -2.146 .00093

[ú] Mild Medial Pos. 0.654 .0153
Final Pos. 0.727 .0045

Strong AE Dist. 1.339 .0446
IE Dist. -2.22 .0013
Final Pos. 0.510 .0497

[R] Mild AE Dist. 3.567 9.2e-07
IE Dist. -3.041 1e-06

Strong AE Dist. 4.618 5.6e-09
IE Dist. -3.179 6.1e-07

Table 3: Log-odds coefficients (β-coef) of selected
variables with accent rating as dependent, taking the
no/negligible accent as reference level. Only signifi-
cant effects are reported (p< .05). Positive log-odds
coefficients suggest increased likelihood of the accent
rating per unit increase in the regressor, relative to the
reference accent. Negative coefficients suggest a de-
creased likelihood. (AE=American English; IE=Indian
English).

4.1 Labiodental approximant [V]

Figure 1 shows the coefficient plot of the multino-
mial logistic regression model described in Section
3.7, and Table 3 includes the β-coefficients for sig-
nificant regressors with associated p-values. Inter-

action effects between distance from AE baseline
and word position are significant both word medi-
ally and word finally. The main effect of distance
from AE baseline is also significant. As Table 3
shows, for every unit increase in Euclidean distance
from the AE baseline, the corresponding increase
in the sum of the log-odds coefficients across main
and interaction effects is higher word-initially and
medially than word finally, suggesting higher odds
of accent perception in these positions. There are
no main nor interaction effects with distance from
the IE [V] baseline, suggesting that accent percep-
tion is driven by listeners’ unmet expectations of
perceiving the labiovelar approximant [w].

Looking at the two-way ANOVA tests, the in-
teraction effects of accent rating and word po-
sition on dorsal and approximant probabilities
are significant (dorsal: F4,1877=3.121, p=.0143;
approximant:F4,1877=3.899, p=.0037). Tukey post-
hoc tests reveal significant differences in aver-
age dorsal probabilities word-initially between the
no/negligible and strong accent ratings (p=.02),
as well as significant differences in average ap-
proximant probabilities word-initially between the
no/negligible and mild and strong accent ratings
(mild: p=.0263; strong: p=.0315). The interac-
tion plots in Figure 1 show that the dorsal and
approximant probabilities decrease with increasing
accent strength in word initial position, suggesting
that speakers with stronger accents are using the
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labiodental instead of the labiovelar approximant.

4.2 Retroflex stop [ú]
Starting with the logistic regression, the results
indicate that there are no significant interaction
effects between distances from baselines and word
position on accent ratings for the retroflex stop [ú].
There are significant main effects of distance from
baselines for the strong accent rating (Table 3),
with larger distance from AE/IE baseline resulting
in higher/lower odds of the strong accent. Word
position of the retroflex [ú] is significant medially
and finally with the odds of perceiving an accent
higher in those positions.

The two-way ANOVA tests show signifi-
cant main effects of word position on both
anterior (F2,2951=5.327, p=.00491) and coronal
(F2,2951=25.980, p=6.6e-12) probabilities. Tukey
post-hoc tests show lower average anterior proba-
bilities word finally than in both initial (p=.02) and
medial (p=.0397) positions, with word final coro-
nal probabilities also lower than in initial (p<.001)
and medial (p<.001) positions, as the probability
distributions in Figure 2 show. However, there
are no significant interaction effects word-finally
between accent ratings and word position on the
probabilities of either phonological class, nor are
there significant main effects of accent ratings on
the probabilities, suggesting that the anterior and
coronal probabilities have no association with the
strength of the accent rating for the retroflex [ú].

4.3 Rhotic tap [R]
Results for the rhotic tap [R] indicate that there
are no interaction effects in the logistic re-
gression between distances from baselines and
word position. Significant main effects are ob-
served for distance from baselines (Table 3), with
larger distance from AE/IE baselines resulting in
higher/lower odds of accent perception. The two-
way ANOVA tests show significant main effects of
accent ratings on anterior (F2,853=26.08, p=1.02e-
11), distributed (F2,853=4.056, p=.0176) and tap
(F2,853=5.798, p=.00316) probabilities, and signif-
icant main effects of word position on tap proba-
bilities (F2,853=4.369, p=.01295). Tukey post-hoc
tests reveal significant differences in average ante-
rior probabilities between all accent rating pairs,
with the largest differences between the strong and
no/negligible (p<.001) and mild and no/negligible
(p<.001) ratings. Differences in average distributed
probabilities between strong and mild accent rat-

ings are also significant (p=.03). Differences in
tap probabilities between mild and no/negligible
ratings are significant (p=.005) as well as between
final and medial positions (p=.0093). These distri-
butions are shown in Figure 3. Given that the tap,
anterior and distributed classes between the tap [R]
and approximant [ô] rhotics are contrastive, when
taken together the higher anterior and tap probabil-
ities and lower distributed probabilities for strong
and mild accents relative to the no/negligible ac-
cent could indicate that speakers in the HE dataset
vary between the tap [R] and the approximant [ô] in
their productions, with strongly accented speakers
tending towards the rhotic tap.

5 Discussion

5.1 Alignment with theories of second
language speech learning

The results empirically show that instances of the
Hindi English segments that are farther from the
American (Indian) English baselines are associated
with higher (lower) odds of an accent. These results
align with predictions from contemporary theoreti-
cal models of cross-language speech learning, such
as the Perceptual Assimilation Model (PAM; Best,
1995) and its extension (PAM-L2; Best and Tyler,
2007), which state that a second language learner’s
ability to perceptually distinguish speech categories
in the language being learned (L2) depends on the
categories’ perceived similarity to the closest cate-
gories in the speaker’s native language (L1). The
Speech Learning Model (SLM; Flege, 1995) posits
that learners at the initial stages of language learn-
ing subconsciously map L2 categories to their most
similar L1 categories, and new L2 categories are
eventually created in the learners’ mental repre-
sentations independent of their L1 categories as
learners are exposed to more input distributions in
the L2.

The existence of the labiovelar approximant [V],
retroflex stop [ú], and rhotic tap [R] in the English
of L1 Hindi speakers could be the result of trans-
fer effects from learners’ L1 language (Sharma,
2017; Kachru, 1986) or learners’ exposure to pro-
ductions from other speakers of Hindi English or
Indian English (Sirsa and Redford, 2013). The
transfer hypothesis is supported by the existence
of the phonemic categories /V/, /ú/ and /R/ in Hindi,
which also lacks the /w/, /t/ and /ô/ phonemes from
General American English (Ohala, 1999; Masica,
1991; Giegerich, 1992). The realizations of the /w/,
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Figure 4: Coefficient plots of multinomial logistic re-
gression on accent ratings with reference level set to
no/negligible accent, for the rhotic tap [R]. The main
effects of Euclidean distance from AE/IE baselines are
significant (AE=American English; IE=Indian English).

/t/ and /ô/ categories as [V], [ú] and [R] respectively in
the Hindi English data are supported by the Single-
Category assimilation model from PAM/PAM-L2,
which predicts poor discrimination of the Amer-
ican English categories when they are perceived
by learners to be similar to their L1 Hindi cate-
gories. The SLM also predicts the realization of
the L1 Hindi categories in speech in place of the
American English categories once learners subcon-
sciously map the American English categories to
their most similar L1 Hindi categories. To get an
approximate similarity measure, the cosine sim-
ilarities between the baseline American English
categories and the L1 Hindi categories in the Hindi
English data are computed in the joint vector space
of the Phonet model, using their probability vec-
tor representations. Only the set of speakers with
a strong accent rating is used for the calculation,
given that speakers with no/negligible or mild ac-
cents may be producing American English-like cat-
egories in their speech in line with the SLM hypoth-
esis described. The cosine similarities between the
category pairs are strong ([w]-[V]: µ=0.70, σ=0.14;
[t]-[ú]: µ=0.81, σ=0.12; [ô]-[R]: µ=0.74, σ=0.07),
which supports the predictions of the PAM/PAM-
L2 and SLM models.

Also consistent with the SLM model is the find-
ing that the perceived degree of accentedness varies
depending on the position of the segment within
the word, as the mapping of L2 to L1 sounds oc-
curs at the level of position-sensitive allophones.

For example, larger distances from the American
English labiovelar approximant [w] baseline are
more prominent word-initially and medially, and
the retroflex [ú] segment has a greater impact on
accentedness perception word-medially and finally,
possibly because the category /t/ is realized in
American English as retroflex [ú] primarily in word-
initial positions and particularly before the rhotic
approximant [ô] as in ’try’ (Polka, 1991).

The retroflex [ú] segments in word-final position
in the Hindi English data have lower anterior and
coronal probabilities than in initial and medial po-
sitions, suggesting a higher degree of retroflexion
word-finally. The lack of significant effects of ac-
cent ratings on anterior and coronal probabilities,
together with the significant effect of word-final
position on accent strength and the high degree of
word-final retroflexion suggest that while the pro-
duction of the retroflex [ú] segment is significant,
there may be other acoustic differences between
the [t]/[ú] segments that are more salient to the per-
ception of accentedness. This finding lines up with
research showing that American English speakers
have difficulty distinguishing retroflex from dental
stops in Hindi (Pruitt et al., 2006; Polka, 1991),
suggesting a lack of sensitivity to retroflexion.

The significant difference in average dor-
sal and approximant probabilities between the
no/negligible and strong accents for the labioden-
tal approximant [V] segments suggests that English
speakers of Hindi realize the segment as a labial
sound without the accompanying tongue back ap-
proximation toward the velum. Moreover, the con-
striction at the lips is too narrow to achieve the
typical resonance of an approximant. For the rhotic
tap [R] segment, higher anterior and tap probabili-
ties for mild and strong accents indicate a forward
articulation consistent with a tap rather than the
retracted, posterior articulation of the American
English [ô]. Lower distributed probabilities for
mild and strong accents suggest a reduced tongue
contact spread, characteristic of the localized artic-
ulation of the tap and contrasting with the broader
tongue configuration of the approximant [ô].

5.2 Investigating Phonet’s probability-based
representations for accent classification

We investigate whether the phonological class prob-
ability vectors generated by Phonet for the seg-
ments in this study can differentiate among ac-
cent ratings relative to two baseline representations:
the log Mel-filterbank (MFCC) transformations de-
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scribed in Section 3.1 that serve as input to the
Phonet model, and pre-trained embeddings from
the final transformer layer of the WavLM architec-
ture, using the wavlm-large model (Chen et al.,
2022). The MFCC and WavLM representations
are derived by averaging across all frames for the
segment. We run two types of accent classifica-
tion models that take the representations as input:
a linear support vector classifier (SVC) with L2
regularization, with a cross-validated grid search
determining the optimal regularization parameter,
and a neural network classifier (NNet) with a single
dense layer of size 512 that uses a ReLU activation,
followed by a softmax classification layer. All neu-
ral network models are trained using the categorical
cross-entropy loss with the Adam optimizer default
parameters and a dropout value of 0.5. The Phonet
probabilities, like the MFCC representations, are
log-transformed. An 80-20 train-test split is used
with results averaged across three seeds.

F-score
Segment Features SVC NNet

[V] MFCC 51.28 51.74
Phonet 45.93 52.43

WavLM 62.14 68.34
[ú] MFCC 50.19 47.64

Phonet 49.96 52.44
WavLM 69.96 79.3

[R] MFCC 52.56 57.41
Phonet 52.39 55.65

WavLM 61.37 67.24

Table 4: F-scores from linear support vector (SVC) and
neural network (NNet) based accent classifiers using
features from different segment representations as input.
Results are averaged across three seeds.

The results in Table 4 show that the WavLM rep-
resentations, as expected, discriminate the accent
ratings best across all segments and classifier types.
The nonlinear neural network classifiers trained
using Phonet representations show noticeable im-
provements in the F-score across all segments when
compared to the linear SVC classifiers. The im-
provement is particularly visible with the labioden-
tal approximant [V]: the biased linear SVC classifier
does worse with Phonet representations compared
to MFCC-based ones whereas the nonlinear neural
network classifier shows comparable performance
between the two representations. The MFCC-based
neural network classifiers, in contrast, only show
improvement over the linear SVC classifiers for
the rhotic tap [R] segment, with worse results for
the retroflex [ú] segment possibly due to overfitting.
These findings indicate that the Phonet-based rep-

resentations may be richer than the MFCC-based
ones in the sense that they may contain more non-
linear relationships and interactions that can be
unlocked by more complex models; however, they
do not rival the pre-trained WavLM representations
which contain more information to better discrimi-
nate accents, at the cost of reduced explainability.

6 Conclusion and Future Directions

This study demonstrates the use of a neural network
model, Phonet, to capture gradient phonetic varia-
tion revealing nuanced patterns of L2 mispronunci-
ation that align with and extend second-language
speech theories. These findings align with theo-
retical models of second language speech learning
such as the Perceptual Assimilation Model and the
Speech Learning Model, particularly in demonstrat-
ing the influence of L1 phonological systems on L2
production and the positional sensitivity of speech
articulation. The study highlights how gradient
phonetic variation offers deeper insights into the
articulatory and perceptual mechanisms underly-
ing accentedness, bridging theoretical predictions
and empirical observations. Beyond validating
second-language speech models, this approach un-
veils fine-grained articulatory details, advancing
our understanding of L2 speech learning and pro-
viding a robust foundation for future research in
cross-language speech perception and production.
Future research could explore observed patterns of
L2 English mispronunciation and positional sen-
sitivity for other L1 languages using pre-trained
model representations to see if similar generaliza-
tions emerge. Analyzing co-articulatory effects
and dynamic speech variations could further bridge
theoretical models and real-world speech patterns,
offering deeper insights into second-language ac-
quisition.
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A Appendix

A.1 Phonet accuracy and F1 scores
Table 5 shows the Phonet model’s accuracy and F1
classification scores for each phonological class.

A.2 Phone to phonological class mapping
Table 6 shows the merged mapping between the
MFA phonesets from McAuliffe and Sonderegger
(2024a,c) and the phonological classes from Hayes
(2011).
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Phonological Class Accuracy F1 score
syllabic 91.07 91.23
consonantal 91.55 91.59
long 86.69 88.8
sonorant 93.68 93.68
continuant 92.50 92.50
delayed release 91.98 92.57
approximant 92.86 92.9
tap 97.31 98.33
nasal 91.83 92.98
voice 93.2 93.2
spread glottis 95.66 96.81
labial 87.65 88.8
round 90.4 92.42
dental 96.15 97.33
coronal 88.65 89.02
anterior 88.08 88.79
distributed 87.56 90.31
strident 95.11 95.52
lateral 92.9 94.8
dorsal 90.97 91.01
high 87.56 88.61
low 91.37 92.41
front 90.26 90.99
back 90.33 92.01
tense 86.84 90.98
constr glottis 99.99 99.99

Table 5: Accuracy and F1 scores for classification of phonological classes by the Phonet model.
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Phonological Class Phone List
syllabic a aj aw a: e: ej i i: o: ow æ 5 A A: 6 6: Oj @ Ä E E: 3 3: Ç I 0 0: U
consonantal b bj c ch cw d Ã dj d” f fj h j k kh kw l m mj m

"
n n

"
p ph pj pw s

t Ù th tj tw t” v vj z ç ð N ã é éw g gw ł ł
"
M ñ R Rj R̃ S ú új úw L Z V P T

long a: A: 6: i: E: 3: e: o: 0:
sonorant a a: aj aw 5 æ A A: 6 6: E E: 3 3: Ç e: ej I i i: o: ow Oj 0 0: U @ Ä

l ł ł
"
L j R Rj R̃ ô m m

"
mj M N ñ n

"
n V w

continuant a a: aj aw 5 æ A A: 6 6: E E: 3 3: Ç e: ej I i i: o: ow Oj 0 0: U @ Ä
ð T f fj j R R̃ Rj ô S Z v vj ç l ł ł

"
L h s z V w

delayed release f fj S Z ç v vj Ù Ã h s z ð T
approximant a a: aj aw 5 æ A A: 6 6: E E: 3 3: Ç e: ej I i i: o: ow Oj 0 0: U @ Ä

j R̃ R Rj ô l ł
"
ł L V w

tap R R̃ Rj

nasal m mj m
"

M n n
"
N ñ

voice a a: aj aw 5 æ A A: 6 6: E E: 3 3: Ç e: ej I i i: o: ow Oj 0 0: U @ Ä
ð d dj ã d” R R̃ Rj ô j é éw Z Ã v vj m mj m

"
M n N n

"
ñ b bj l ł

"
L gw g z V w

spread glottis h
labial p pj ph pw f fj v vj V M mj m m

"
b bj

round 6 6: ow o: Oj 0 0: U
dental t” d” ð T
coronal c ch cw ç R R̃ Rj ô S Z Ã Ù ú új úw t th tw tj t” n

"
n ñ L d ã d” dj l ł ł

"
s z T ð

anterior R R̃ Rj t tw th tj t” d dj d” n
"

n l ł ł
"

s z T ð
distributed c ç ch cwé éw Ù Ã S Z ô L ñ T ð
strident s z Ù Ã S Z
lateral l ł ł

"
L

dorsal a a: aj aw 5 æ A A: 6 6: E E: 3 3: Ç e: ej I i i: o: ow Oj 0 0: U @ Ä
c ch cw ç k kw g gw N ñ ł ł

"
L w

high I i i: 0 0: U c ch cw ç k kw g gw L N ñ w
low a a: aj aw A A: 6 6: æ
front æ E E: Ii i: c ch cw ç e: ej j é éw ñ L
back A A: 6 6: 3 3: Ç o: ow Oj U ł ł

"
w

tense e: ej i i: 0 0: o: ow @ Ä j w
constr. glottis P

Table 6: Mapping between MFA phonesets and Hayes’ phonological classes for Phonet modeling.
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Abstract

This paper proposes a uniform, structure-based
account for mixed word order preferences
crosslinguistically. These preferences include
the short-before-long preference in the English
heavy NP shift, the long-before-short prefer-
ence in the Japanese transitive sentences, and
the absence of word order preference in Man-
darin Chinese preverbal PPs. The syntactic
structures of each competing word orders are
formally characterized using Minimalist gram-
mars (MGs) and constructed with a left-corner
MG parser. Complexity metrics are derived
from the parser’s behavior, which relate the
difficulties of the structure building process to
memory load. The metrics show that the pre-
ferred word orders are less memory-intensive
to build than their counterparts in both the
short-before-long and the long-before-short
cases, while no memory resource differences
are found for the case where no word order
preference exists. The results suggest that the
preferred word orders – or a lack thereof – fol-
low from their syntactic structures. This further
supports the viability of left-corner MG pars-
ing as a psycholinguistically adequate model
for human sentence processing.

1 Introduction

Word preferences are conditioned by at least two
factors: a general efficiency principle to minimize
dependency length and language-specific syntac-
tic characteristics. The efficiency principle reflects
the tendency of grammars to minimize the depen-
dency lengths between syntactic elements. This
principle takes the form of Dependency Length
Minimization (DLM, Hawkins 1994, 2004) when
focusing on the lengths of syntactic dependency
relations; and as the Dependency Locality The-
ory (DLT, Gibson 2000) when focusing on the
memory resource required to hold those dependen-
cies. Prior research has shown that this efficiency
principle accounts for the short-before-long order

in head-initial languages (e.g., Wasow, 2002) and
the long-before-short preference in head-final lan-
guages (e.g., Hawkins, 1994)

The second factor conditioning word order pref-
erences, language-specific syntactic characteristics,
helps explain word preference variations across
languages. For example, Liu (2020) notes that the
association between headedness and word order
preference does not always hold crosslinguistically.
Other language-specific properties should therefore
be considered in understanding word order prefer-
ences. These include the degree of word order
flexibility, the prominence of NPs (Yamashita and
Chang, 2001) and the richness of the case mark-
ing system (Futrell et al., 2020), all of which in-
teract with broader structural tendencies to shape
observed preferences.

Despite fruitful results and increasing empiri-
cal coverage of the research on the two factors,
the interplay between the efficiency principle and
language-specific syntactic characteristics remains
puzzling. One key issue is that it is unclear what
syntactic features and in what ways affect the pref-
erence for DLM. Research on DLM often relies
on dependency grammar as the description of syn-
tax and measures dependency length in terms of
the number of intervening words. While this ap-
proach is simple and effective for large-scale cor-
pus studies, it may overlook important syntactic
information that contributes to word order prefer-
ences. For example, Liu (2008) argues that in a lan-
guage such as Chinese, the richness of functional
words might add extra distance to heads and their
dependents when compared to a language such as
English, where the grammatical functions are re-
alized by inflection. This accounts for the larger
mean dependency distance of Chinese. However,
it remains unclear whether it is the additional mor-
phemes themselves in Chinese, the different syn-
tactic processes these functional heads undergo, or
the syntactic structure they occupy, that contributes
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to the dependency length difference.
This paper aims to address the interplay of the

general efficiency principle and specific syntactic
characteristics in predicting word order preferences
from a Minimalist parsing perspective. Minimal-
ist parsing is particularly well-suited for this task
because its complexity metrics rigorously relate
detailed syntactic structures to a general process-
ing constraint: memory resources. Kobele et al.
(2013) measure memory resources associated with
a top-down MG parser using tenure, the amount
of time a tree node is retained in memory. The
authors argue that tenure can be viewed as a gen-
eralization of the DLT principles which correlates
processing difficulties with memory space needed
for holding dependency relations. They show that
tenure-based complexity metrics are shown to suc-
cessfully model processing contrasts between verb
clusters in Dutch and German, and center and right
embeddings in English. Recent work has expanded
the empirical coverage of this MG processing mod-
eling program (e.g., stacked relative clauses in Man-
darin and English Zhang 2017; attachment ambi-
guity in English and Korean Lee 2018; gradient
difficulty in Italian relative clauses De Santo 2019,
2020; end-weight preference in English and Man-
darin Liu 2022, among others).

One limitation of the top-down MG processing
model is that it encounters difficulty capturing the
long-before-short preference in Japanese transitive
sentence (Liu, 2022, 2023). Intuitively, word or-
der preferences arise when speakers try to order
long constituents around other shorter ones to ease
processing. This shows up in syntactic trees as un-
balanced sister nodes. For instance, in an English
sentence The tall and big-boned detective chased
the suspect, the subject and the vP is a pair of un-
balanced sister nodes, as shown in (1).

(1) ...

vP

DP

the tall and
big-boned detective

v’

v VP

chase the detective

When no other syntactic operations are involved,
the top-down parser explores the structure top-
down and from left to right to follow the word
order. After the parser expands vP to DP and v’,

exploring either branch requires the parser to store
the other branch in memory. This makes exploring
the less complex branch more memory-efficient,
which is the intuition behind the short-before-long
preference. And in order to derive the opposite or-
der preference in Japanese, additional structural as-
sumptions are needed, which presents a challenge
to the model (Liu, 2022, 2023).

Against this background, we opt for the left-
corner parser for MGs in this study. We argue
that the left-corner Minimalist parsing model ef-
fectively captures the short-before-long, the long-
before-short preferences, and the absence of order
preference. According to the modeling results, the
preferred word orders require fewer memory re-
sources to build than their counterparts. Further-
more, no memory load difference is found for struc-
tures that do not exhibit order preferences.

The remainder of the paper proceeds as follows.
Section 2 introduces Minimalist Grammars (MGs),
a left-corner MG parser, and the key complexity
metrics for our parsing model. Section 3 presents
modeling results of the three word order prefer-
ences. Section 4 concludes the paper with a dis-
cussion on the role of syntactic assumptions in the
parsing model.

2 Left-corner Minimalist parsing

The left-corner Minimalist parsing approach to pro-
cessing modeling consists of three components:
characterizing syntactic proposals using Minimal-
ist Grammars (MGs), incorporating the formalisms
into left-corner parsing models, evaluating model-
ing results based on complexity metrics connecting
parsing difficulty to memory load.

Minimalist Grammar is chosen as the formal-
ism for two reasons. First, it incorporates the tool-
box needed for Chomskyan syntax, providing de-
tailed structural information known to influence
processing. Second, MG parsers are available and
relatively well-understood from previous studies
(top-down MG parsing: Stabler 2013; Kobele et al.
2013, left-corner MG parsing: Stanojević and Sta-
bler 2018; Hunter et al. 2019).

A left-corner MG parser is used instead of a
top-down parser to overcome known difficulties
of the latter as discussed above. The left-corner
MG parser, on the other hand, has been recently
argued to be a plausible model for human sentence
processing (Liu, 2024).

The following subsections introduce the gram-
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mar formalism and its left-corner parser, and the
key complexity metric needed for the subsequent
modeling work.

2.1 Minimalist Grammar and left-corner MG
parser

Minimalist Grammar (MG, Stabler 1997, 2011) is
a lexicalized, context-sensitive grammar formalism
based on the Minimalist Program (Chomsky, 2014).
In MGs, lexical items (LIs) are finite sequences
of features containing information about sound,
word shapes, and instructions for structure building
operations. The grammar makes use of two such
operations, merge, which combines categories, and
move, which regulates movements.
Merge happens when two LIs have matching

selector-selectee features as their first features. (2)
illustrates how Merge builds a VP in English and
Japanese.

(2) a. chase the suspect (VP): V

chase:: =d, V the suspect (DP): d

the:: =n, d suspect:: n

b. hannin-o oikaketa (VP): V

hannin-o ‘suspect-acc’:: d oikaketa ‘chase’::
d=, V

To build the VP, the objects bear the same
selectee feature d in both the English and the
Japanese cases. The selector feature of the verb
is =d in English and d= in Japanese. The placement
of the equal sign (=) indicates the selectee to be
merged on the left or the right. This allows our
model to capture headedness.
Move happens when two LIs have matching

licensor-licensee features as their first features, of-
ten written as polar pairs (e.g., +f, -f). This is
illustrated in (3).

(3) TP

T’

T:: =v, +k, t vP: v

the detective: d, -k v’: =d, v

chase the suspect

In (3), after other merge features are checked, the
T head and the subject DP have matching k features

as their first features. Movement is licensed. In
contrast to a phrase structure tree where the mover
is indicated at its landing site, the subject remains
at its merge position in (3). Trees such as this are
derivation trees. The central role derivation trees
play in MGs and MG parsing is discussed in Graf
et al. (2017). We will also use derivation trees as
the data structure for our processing model.

A note on notation before proceeding. In the
above derivation trees, double-colon (::) indicates
a LI, while a single colon (:) indicates a derived cat-
egory. Phrase node names are added wherever help-
ful for readability. For all subsequent trees, we will
omit features, lexical/derived category distinctions,
and use phrase names for tree nodes. Movement
arrows will also be added when helpful.

2.2 Left-corner MG parsing and complexity
metrics

MG parsing can be viewed as a structural building
process where a parser operates on MG rules, takes
a string of words as input, and outputs a derivation
tree when there is a valid parse. The left-corner
parser for MGs used in this study is an arc-eager
move-eager left-corner parser based on Stanoje-
vić and Stabler (2018); Hunter et al. (2019), in
which the readers can find the full definitions of the
parsing rules. For our purpose, we focus on tree an-
notations which are faithful visual representations
of how the parser builds/traverses derivation trees.

Consider an arc-eager move-eager left-corner
parse for the sentence (with silent nodes and string
spans added) in (4). The parse history is repre-
sented using tree annotations in (5).

(4) 1 The 2 detective 3 T 3 v 3 chased 4 the 5

suspect 6

(5) TP

T’

T vP

DP

the detective

v’

v VP

chased DP

the suspect

1

2

2-3

4

2-3

3

4-6

6

4-6-8

8

5

6

6

6

6-8-10-12-13

13

7

8

8-10

10

9

10

10-12

12

11

12

12-13

13

Following conventions in top-down MG parsing
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literature (e.g., Kobele et al. 2013; Graf et al. 2017),
the superscripts and subscripts on the tree nodes,
called indices and outdices, represent the steps at
which that node enters and exits the memory stor-
age of the parser. The dashes in the index of a
node, which we use uniquely for left-corner pars-
ing, connect the steps at which the parser updates
its prediction regarding that node. Derivation trees
annotated with indices, outdices, and dashes are
shown to be condensed yet complete representa-
tions of the behavior of the left-corner MG parser
(Liu, 2023, under revision). Building on this, we
focus on the parser’s updates represented with the
dashes in the indices and show how to build com-
plexity metrics based on them.

The update can be understood by examining the
correspondence between parse items and derivation
tree fragments. One node in the derivation tree can
correspond to multiple strictly different parse items
for a left-corner MG parse. For example, in (5) the
parser reads the first input word the (step 1) and
makes a left-corner prediction based on it (step 2),
creating a parse item which takes the form of an
implication shown in (6).

(6) (2-i) n, M => (1-i) d, M

This parse item is interpreted as follows, if from the
string span of (2-i) the parser finds an item with
category feature n and an optional mover chain M,
the parser can infer that from the string span of
(1-i) there is an item of category d which carries
over the mover chain M. In terms of tree fragments,
(6) corresponds to a DP with a daughter node yet
to be confirmed. This is also the tree portion anno-
tated with indices and outdices up to 2, matching
the steps so far.

Next, when the parser reads detective from the
input (step 3), the left-hand side of the implication
in (6) is satisfied, a new parse item (7) is created at
the same step and replaces (6).

(7) (1-2) d

This parse item means that from the string span
of (1-2), there is an item of category d without
any mover chain. In terms of tree fragments, (7)
corresponds to the fully built DP the detective. At
step 3, both daughters of the DP are fully annotated.
The DP node itself has an index of 3 and no outdex,
meaning that it is still in memory at this step, ready
for further operations.

Both the right-hand side in (6) and the whole
item in (7) correspond to the same DP node in the

derivation tree. The parser updates its knowledge
of the node from a conditioned inference to a con-
firmed node. And the dashed index on the DP node
records the steps at which the parser makes those
updates. By taking the difference between the two
dash-connected steps, we get the number of steps a
parse item needs to be stored in memory, or its item
tenure. For example, the parse item in (6) has a
trivial item tenure of 1, as it is only stored between
steps 2 and 3.

For a non-trivial example, vP has in its index 4-6.
The parser first updates its knowledge on the vP
node when it makes a left-corner prediction based
on the DP the detective. A vP with a daughter node
yet to be confirmed is created and held in memory.
The parser’s second update happens after the T
head is read and processed. The time between the
two updates is recorded with the dash-connected
step pair. By taking the difference of the pair, we
have the item tenure of the partially built vP, 2.

Item tenure serves as the basis for the complex-
ity metrics of our left-corner MG parsing model.
There are many ways to construct complexity met-
rics based on item tenure. Liu (under revision)
explores a few of those possibilities. Here we focus
on Maximal item tenure (MaxTitem) and its recur-
sive variant (MaxTR

item). MaxTitem is the maximal
duration that any parse item remains in memory.
MaxTR

item, following Graf et al. (2017), applies
MaxTitem recursively. MaxTitem is shown to be
able to capture the processing of sentence embed-
dings (Liu, 2024), it is included here to further test
its reliability. In cases of a lack of word order pref-
erences, we expect to find a tie in MaxTitem for
the word order pair. Examining MaxTR

item in those
cases helps reveal further potential processing dif-
ferences.

With methods and tools ready, we turn to the
modeling results.

3 Modeling results

The processing phenomena modeled with the left-
corner MG parser are the short-before-long pref-
erence in the English heavy NP shift (HNPS); the
long-before-short preference in the Japanese transi-
tive sentences; and the absence of word order pref-
erence in preverbal PPs in Mandarin Chinese. For
each case, we make pairwise comparisons between
the two opposite word orders (e.g., shift vs. canon-
ical word order in English heavy NP sentences).

Overall, MaxTitem successfully captures all
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three word order preferences. The preferred order
has a lower MaxTitem in both the English (short-
before-long) and Japanese (long-before-short) tar-
get sentences. Furthermore, MaxTitem predicts a
tie in processing difficulties in the Mandarin (no
preference) sentences. Since our goal is to under-
stand the interplay of specific syntactic structures
and a general memory constraint on processing, we
next examine the structural assumptions and the
complexity metric in each word order pair.

3.1 Short-before-long preference

The target sentences for the short-before-long pref-
erence are the canonical (8) and heavy NP shift
order (9) in English (with silent heads).

(8) Max T v-put all the boxes of home furnish-
ings V in a car.

(9) Max T v-put V in a car all the boxes of
home furnishings.

Evidence for the short-before-long preference in
the above sentences is found in numerous behav-
ioral and corpus studies (e.g., behavioral: Stallings
et al. 1998; Stallings and MacDonald 2011; corpus:
Wasow 2002; Liu 2020). For our model, we expect
to find that the shifted order has a lower MaxTitem

compared with that of the canonical order, suggest-
ing that the former is easier to process.

In terms of structural assumptions, a rightward
movement analysis (Ross, 1986; Overfelt, 2015) is
adopted to derive the heavy NP shift order. V-to-v
and AgrO movements are factored out for simplic-
ity.

The modeling results suggest that the shift or-
der is easier to process than the canonical order.
MaxTitem for the shift order is 12 compared with
8 for the canonical order. The reason for the dif-
ference in MaxTitem can be seen from the tree
annotations in Figure 1.

For both word orders, the MaxTitem is associ-
ated with the VP node. As the parser processes
the verb v-put, a left-corner prediction based on
the node predicts and stores an implicational parse
item involving VP: if the parser finds a VP, it can
confirm that there is a TP. Given the arc-eager strat-
egy, this stored VP node is considered found when
the parser makes a left-corner prediction based on
one of its fully built daughter. And this is when
word order makes a difference. If the parser first
builds the less complex daughter, the V’, the VP is
held in memory for less time than when building

TP

T’

T vP

Max v’

v-put VP

DP

all DP

the NP

boxes PP

of DP

home furnishings

V’

V PP

in DP

a car

←MaxTitem

1

2

2-4-6

6

2-4

4

3

4

4

4

4-6-18-20-22-24-25

25

5

6

6-18

18

7

8

8-10-12-14-16-17

18

8-10

10

9

10

10-12

12

11

12

12-14

14

13

14

14-16

16

15

16

16-17

17

18-20

20

19

20

20-22

22

21

22

22-24

24

23

24

24-25

25

(a) HNPS - Canonical order

TP

T’

T vP

vP

Max v’

v-put VP

DP

all DP

the NP

boxes PP

of DP

home furnishings

V’

V PP

in DP

a car

←MaxTitem

1

2

2-6

6

2-6

6

3

4

4

4

4-6-14-16-18-20-22-24-25

25

4-6

6

5

6

6-14

14

4

4

7

8

8-10

10

8-10-12-13

14

9

10

10-12

12

11

12

12-13

13

14-16

16

15

16

16-18

18

17

18

18-20

20

19

20

20-22

22

21

22

22-24

25

23

24

24-25

25

(b) HNPS - Shift order

Figure 1: Tree annotations for short-before-long
preference

the more complex daughter first. This is reflected
in the difference in MaxTitem, as can be seen in
Figure 1a for the canonical order and Figure 1b for
the shift order.

This is an encouraging result as it indicates that
the left-corner MG parsing is at least as good as its
top-down variant in capturing the short-before-long
preference. We now turn to the long-before-short
preference, where the top-down model struggles.

3.2 Long-before-short preference

The long-before-short preference we model is re-
ported in Yamashita and Chang (2001) regarding
Japanese transitive sentences. The study finds that
in a sentence production task, Japanese-speaking
participants tend to order long arguments ahead of
short ones. For example, compared with a canon-
ical SOV order in (10), a long-before-short OSV
order in (11) is preferred when the object is long.

(10) keezi-ga
detective-nom

Se-ga
height-nom

takakute
tall-and

gassiri sita
big-boned

hanni-o
suspect-acc

oikaketa
chased

v T

239



(11) Se-ga
height-nom

takakute
tall-and

gassiri sita
big-boned

hanni-o
suspect-acc

keezi-ga
detective-nom

oikaketa
chased

v T C

‘The detective chased the suspect who is
tall and big-boned.’
(adapted from Yamashita and Chang 2001,
silent nodes added)

The sentence pair in (10-11) is used in our model
as target sentences. A scrambling analysis is as-
sumed to derive the long-before-short order (Saito,
1992). V-to-v and AgrO movements are again fac-
tored out for simplicity.

The modeling results show that the shift, long-
before-short word order is easier to process than
the canonical order. MaxTitem of the shift order
is 3 compared with 12 of the canonical order. The
tree annotations confirm the processing prediction.

TP

T’

vP

detective v’

VP

DP

AP

&P

AP

height tall

and

big-boned

suspect

chased

v

T

←MaxTitem

1

2

2-14

14

2-14-15

16

3

4

4-5

6

4-5

5

6-7
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6-7

7

8-9
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(a) Japanese - SOV order
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Figure 2: Tree annotations for long-before-short
preference

In Figure 2a which corresponds to the canonical
order, MaxTitem is associated with the v’ node.
The parser predicts and stores a parse item with
v’ when the subject, detective, is processed. The
parse item is flushed from memory when one of
the daughters of v’ is built and used for left-corner
prediction. Given the word order, this only happens

after the long DP (indeed, the full VP) is fully built,
resulting in large item tenure. In the long-before-
short tree in Figure 2b, the parser builds the long
DP first, during which process no other parse item
is held in memory. As a result, item tenures and
MaxTitem stay relatively low throughout the parse,
predicting that the long-before-short order is easier
to process than the canonical order.

3.3 Absence of order preference
Liu (2020) reports in a large-scale corpus that
Mandarin Chinese preverbal PPs lack a preference
for word order when the two PPs are of different
lengths. For example, no word order preference is
found between whether ordering the longer PP first
(12) or the shorter first (13).

(12) zhexie
these

yanlun
comments

T [he weijier de yuyan]
with Virgil’s prophecy

[zai biaomian]
on the surface

v-you-suo
have-suo

V churu
differences

(13) zhexie
these

yanlun
comments

T [zai biaomian]
on the surface

[he weijier de yuyan]
with Virgil’s prophecy

v-you-suo
have-suo

V

churu
differences
‘These comments have differences on the
surface with Virgil’s prophecy.’
(from Liu 2020, silent nodes added)

(12) and (13) are the target sentences to include
in our model. In terms of the structural assump-
tion, the two PPs are considered based-generated
adjuncts. Similar to before, V-to-v and AgrO move-
ments are factored out for simplicity. Unlike before,
the two word orders are not derivationally related
under the current structural assumption. We will
consider an alternative analysis in the context of
methodological discussion in Section 4.

The results show that the two orders are indis-
tinguishable for our model based on MaxTitem.
MaxTitem is 14 for both orders, suggesting that
no preference is expected for the two word orders.
We see why MaxTitem is unaffected by word order
alternations in the tree annotations in Figure 3.

Given the current structural assumption,
MaxTitem is associated with the vP node immedi-
ately dominates the subject these comments. The
parser creates and stores a parse item with this vP
node when the subject is processed. This parse
item is flushed from memory after the inner PP, or
the linearly second PP, is processed. Alternating
the order of the two PPs would not affect the item
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Figure 3: Tree annotations for Mandarin Preverbal PPs

tenure of the parse item with the vP node created
early on.

Interestingly, MaxTR
item, a recursive evaluation

of MaxTitem, also predicts that there is no prefer-
ence between the two orders. In the two orders, the
second largest item tenures are equal, so are the
third largest. They are associated with the mother
node of the longer and the short PPs respectively.
Because of the structural similarity, all other item
tenures are equal, too. An alternation of word order
does not affect the item tenure profile.

4 Discussions: an alternative structure for
Mandarin adjuncts

The modeling results have shown that left-corner
MG parsing is an effective model for word or-
der preferences crosslinguistically. MaxTitem has
proven to be a reliable complexity metric capturing
the mixed word order preferences under the current
syntactic assumptions. Among those assumptions,

the base-generation analysis of Mandarin prever-
bal PPs warrants particular attention. While it is
standard to treat PP adjunction as base-generation,
with word order alternation derived from different
base merge positions, the choice of this structural
assumption has a potential limitation: it can be
adequately captured by a Context-Free Grammar.
For both formalisms, no movement is involved that
causes a mismatch between the string order and
the leaf order. The ability to handle this mismatch
distinguishes MG parsers from CFG parsers (Graf
et al., 2017). As a result, for our purposes, process-
ing models based on this syntactic assumption may
not fully highlight the unique contribution of MG
parsing in capturing the interplay between general
efficiency principles and detailed syntactic struc-
tures.

Furthermore, there are syntactic proposals re-
garding other types of adjuncts in Mandarin that
require the expressive power of MGs. For exam-
ple, (Larson, 2018) argues that manner adverbs in
Mandarin Chinese merge as VP complement and
move to vP edge which derives the correct word
order. This is schematized in (14).

(14) a. Zhangsan
Z

qiaoqiaode
quiet-de

shuo
speak

hua
words

‘Z. speaks quietly.’ (Larson, 2018)
b. ...

vP

vP

<Zhangsan> v’

v-shuo VP

hua V’

V AP

qiaoqiaode

We next model how this syntactic proposal af-
fects order preferences. The target sentences (with
silent heads) are shown in (15) and (16) correspond-
ing to the PP-first and adverb-first order, respec-
tively.

(15) Zhangsan
Z.

T zai
at

kongwuyiren
not-a-single-person

de
de

shatan
beach

qiaoqiaode
quite-de

v-shuo
speak

hua
word

V

(16) Zhangsan
Z.

T qiaoqiaode
quite-de

zai
at

kongwuyiren
not-a-single-person

de
de

shatan
beach

v-shuo
speak

hua
word

V
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Figure 4: Tree annotations for Mandarin PP and AP
adjuncts

‘Z. speaks quietly at an empty beach.’

For syntactic assumptions, the manner adverb
is analyzed according to Larson (2018). The PP
adjunct is base-generated either before or after the
manner adverb moves to derive the two word orders.
This is illustrated with annotated derivation trees
in Figure 4.

The modeling result suggests that an AP-first
order is preferred irrespective of the length of the
two phrases. In both word orders, MaxTitem is
associated with the mother and sister node of the
subject Zhangsan. The parse item associated with
the two nodes is stored until the parser updates its
knowledge on either node. For both orders, this
happens after the parser has processed the AP and
the PP. This means the lengths of the two phrases

have the same effect on MaxTitem for both orders.
In the PP-first case in Figure 4a, it is the v’ node
that gets an update as the parser processes the two
adjuncts and the verb v-shuo. In the AP-first case
in Figure 4b, the vP node gets an update as soon
as the two adjuncts are built and processed. This
results in a constant MaxTitem advantage of 2 (10
vs. 12) for the AP-first order over the PP-first order.

The result does not immediately rule out the
possibility that there is no preference for ordering
shorter or longer phrases first. Empirical data is
needed to verify whether there is a preference for
AP-first ordering and to assess its implications for
the DLM principle. We leave these intriguing ques-
tions for future research.

5 Conclusion

This paper offered a unified, structure-based ac-
count of crosslinguistic word order preferences us-
ing Minimalist Grammars and a left-corner MG
parser. The results show that preferred word or-
ders correspond to structures that are less memory-
intensive to process, and that no memory load dif-
ference is observed—given the current complexity
metric—in cases that lack a word order preference.
This supports the view that word order preferences
follow from syntactic structure and highlights the
potential of left-corner MG parsing as a psycholin-
guistically grounded model of sentence processing.
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Abstract
MGEN is a dataset of over 4 million naturally
occurring generic and quantified sentences ex-
tracted from diverse textual sources. Sentences
in the dataset have long context documents, cor-
responding to websites and academic papers,
and cover 11 different quantifiers. We analyze
at scale the features of generic sentences, with
interesting insights: generics can be long sen-
tences (averaging over 16 words) and speakers
often use them to express generalisations about
people.

MGEN is the biggest and most diverse dataset
of naturally occurring generic sentences, open-
ing the door to large-scale computational re-
search on genericity. It is publicly available at
gustavocilleruelo.com/mgen.

1 Introduction

Generics are sentences that express generalisations
without making use of explicit quantifiers. Exam-
ples of generics are ravens are black or ticks carry
lyme disease.

Several features of generics make them difficult
to account for semantically (Carlson and Pelletier,
1995): they are permissive to exceptions (ravens
are black is acceptable even if albino ravens exist)
and the quantifications they convey have paradox-
ical dynamics (Leslie, 2008). If we paraphrase
the previous generics as explicitly quantified, we
would have most ravens are black but few ticks
carry lyme disease: the same linguistic structure
conveys generalisations at opposite ends of the
quantification spectrum.

In this work, we introduce MGEN, a dataset de-
signed to provide a solid foundation for research
on generic sentences in English. MGEN has 4.1
million samples, with over 3 million generics and
1 million explicitly quantified sentences with 11
different quantifiers. All sentences are naturally oc-
curring and include the context document in which
they originally appear.

To motivate the design of MGEN, we conduct an
extensive review of datasets of generic sentences
and argue that existing datasets have many short-
falls: they are either small, rely on synthetic sam-
ples or have no context, despite theoretical works
showing the importance of context for the seman-
tics of generics (Sterken, 2015; Almotahari, 2023).

In order to mine generic sentences from massive
corpora, we introduce a two-step pipeline: a syn-
tactic filter detects bare plurals (this is the most
common syntax of the subject for generics, see §2)
with the required verb features and then a binary
classifier labels them as generic or not. We apply
this pipeline to a subset of the ZYDA (Tokpanov
et al., 2024) dataset (a language model pre-training
corpus) to collect a diverse and accurate (as per
human annotators) dataset of generic sentences.

We analyze the corpus-level characteristics of
MGEN and find that its generic sentences are longer
than those usually considered in the literature,
where running examples are much shorter than the
average 16.65 words in our dataset. Analysing the
word frequencies of our dataset, we find that speak-
ers use generics most often to generalize about
people.

Our contributions are: (i) MGEN, the largest
dataset of naturally occurring generics in context,
(ii) a pipeline for the extraction bare plural gener-
ics from textual sources, (iii) a review of existing
datasets of generics and (iv) a preliminary corpus-
level analysis of the characteristics of generic sen-
tences.

2 Background: generics & quantifiers

Generics have kind terms in their subject position
(i.e. words or phrases used to categorize or label
groups of entities) and their verbs are inflected
for third person plural present indicative. They
are used either to make claims about those kinds
(dinosaurs are extinct) or to attribute properties to
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Source Sentence

RefinedWeb Soybeans contain an inhibitor of trypsin, an enzyme important for digestion, but
it can be destroyed by cooking.

SlimPajama Cucumbers are high in an antioxidant called beta-carotene, which your body
turns into vitamin A. May ease muscle cramps.

The Pile Starving people grab the bread first and run with it.

arXiv Colexification networks encode affective meaning.

peS2o Car seats save lives.

Table 1: Examples of generic sentences from the different sources of MGEN. More examples in Appendix F.

individuals in those kinds (beetles have protective
wing covers).

Following most of the linguistics and philosophy
of language literature, we consider only bare plu-
ral generics (Carlson and Pelletier, 1995; Leslie,
2007a). Bare plurals have noun phrases in plu-
ral form without a definite or indefinite article1.
Throughout the paper, we will use bare plural sen-
tence to refer to sentences with the syntax of a bare
plural generic (i.e. with the same inflection of the
verb), even if those sentences are not generics.

The standard view in linguistics is that generics
are quantificational: there is an unpronounced oper-
ator GEN that takes a role similar to adverbial quan-
tifiers in the logical form of the sentence (Lewis,
1975; Carlson, 1977b; Carlson and Pelletier, 1995;
Cohen, 1999b; Kirkpatrick, 2024).

In contrast, recent influential accounts of gener-
ics have been non-quantificational: Leslie (2008)
gives generics the privileged role of expressing de-
fault or primitive generalisations, Sterken (2015)
argues that quantification cannot capture the full
context-sensitivity of generics and Nickel (2016)
relates generics to a notion of normality grounded
in explanatory considerations rather than the preva-
lence of the property in the kind.

The rich landscape of theories of generics, as
well as their far-reaching implications into fun-
damental aspects of human cognition, has made
the study of generic sentences a highly debated
topic in recent years (e.g., Cohen, 1999a; Tessler
and Goodman, 2016; Stovall, 2019; Nguyen, 2020;
Bosse, 2021; Almotahari, 2022; Kirkpatrick, 2023;
Neufeld et al., 2025)

In the field of natural language processing, re-
cent works study how language models deal with
aspects of genericity such as exceptions, property

1Tigers have stripes is a bare plural generic, which can
also be expressed in English with the definite (the tiger has
stripes) or indefinite (a tiger has stripes) articles.

inheritance (Allaway et al., 2024) and quantifica-
tion (Ralethe and Buys, 2022; Collacciani et al.,
2024). Cilleruelo et al. (2025) uses language mod-
els to study the semantics of generic sentences,
such as their implicit quantification.

3 Related work: datasets of generics

Several datasets exist that specifically target gener-
ics. We compare these datasets across four dimen-
sions (Table 2): total samples, quantified sentences,
context and origin (natural or synthetic).

We consider natural sentences to be only those
that have been extracted from human-written
sources and synthetic those have been either gen-
erated by language models, built with rule-based
methods or constructed by researchers or annota-
tors. We also include quantified sentences as a
requirement for datasets of generics as these are
a key contrast class. Similarly, context plays an
important role on the semantics of generics.

GENERICSKB (Bhakthavatsalam et al., 2020)
is a dataset that is composed of both naturally oc-
curring generic and quantified sentences in context
and synthetic examples derived from knowledge
bases.

To source the naturally occurring samples, 3.5M
candidate sentences are extracted from different
corpora (Wikipedia, ARC and Waterloo) through
27 hand-crafted lexico-semantic rules. A subset
of those are manually annotated and used to train
a BERT-based binary classifier (generic and not
generic).

This classifier is used to score the 3.5M can-
didate sentences to curate GENERICSKB-BEST:
a collection of the best-scoring naturally occur-
ring sentences (N = 774, 621) augmented with
synthetic generics derived from knowledge bases
(N = 246, 247). Some sentences are quantified
with all, most, some, many, every, much, more,
often, usually, always, sometimes, frequently.
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Dataset Scale Quantifiers Context Sources

MGEN (Ours) 4.1M Yes (11) Yes Natural (ZYDA)

GENERICSKB-BEST 1M Yes (13) Yes Natural (Waterloo, SimpleWiki, ARC)
(Bhakthavatsalam et al., 2020) Synthetic (WordNet, ConceptNet, TupleKB)

CONGEN (Cilleruelo et al., 2025) 2872 Yes (3) Yes Natural (DOLMA)

GEN-A-TOMIC > 8M Yes (3) No Synthetic (GPT2-XL with I2D2)
(Bhagavatula et al., 2023)

Animal generics 75,002 No No Mixed (GENERICSKB)
(Ralethe and Buys, 2022)

EXEMPLARS (generics) 16, 655 No No Mixed (GEN-A-TOMIC, Animal generics)
(Allaway et al., 2024)

Dataset in (Collacciani et al., 2024) 1837 Yes (5) No Synthetic (human annotations)

Norwegian generics 170 No Yes Natural (encyclopedia entries)
(Kurek-Przybilski and Adam, 2022)

Table 2: Comparison between existing datasets of generic sentences. MGEN is comparable in size with synthetic
datasets but is comprised of naturally occurring sentences in context.

Cilleruelo et al. (2025) introduce CONGEN, a
collection of 2873 naturally occurring generic and
quantified sentences in context. Because the dataset
is manually curated, it is small and only contains
data for 3 quantifiers (all, most and some).

The biggest dataset of synthetic generics is the
GEN-A-TOMIC corpus (Bhagavatula et al., 2023).
Sentences in GEN-A-TOMIC are generated by
GPT2-XL (Radford et al., 2019) through knowl-
edge distillation with self-imitation algorithm. Al-
though GEN-A-TOMIC has over 8 million utter-
ances, because they are generated with a small
language model, these are not in context and the
only quantifiers included are generally, typically
and usually.

Ralethe and Buys (2022) select generics and
quantified sentences from GENERICSKB by fil-
tering for animals, curating a subset of 75,002
generics. This collection of animal generics is
combined with examples from GEN-A-TOMIC

to create datasets of synthetic generics exemplars
(i.e. cases where the generic does and does not
hold) (Allaway et al., 2023, 2024), which contain
generic sentences, as well as their derived exem-
plars.

To conduct experiments on language models,
Collacciani et al. (2024) collect 1873 sentences
from three sources, all crafted either by researchers
or annotators (Herbelot and Vecchi, 2016; Urbach
and Kutas, 2010; Misra et al., 2023). Sentences
in this dataset are extremely short (average length
is 3.73± 1.03, median is 3) and all are annotated
with a quantifier (all, most, some, few, no).

All datasets considered so far, as well as MGEN,
are in English. In Norweigan, Kurek-Przybilski
and Adam (2022) manually extract 170 generics in
context from encyclopedic texts.

Table 2 compares the reviewed datasets of
generic sentences in terms of total samples, inclu-
sion of quantified sentences, context for the utter-
ances and data origin. Our dataset, MGEN, has the
scale of GENERICSKB and GEN-A-TOMIC, but
without the need of synthetic examples (whether
generated or constructed from knowledge bases)
and includes context documents for all generic as
well as quantified utterances.

4 Methodology

This section details the construction of the MGEN

dataset. We first describe the high-level objec-
tives for the creation of the dataset, based on the
generics literature and the shortcomings of existing
datasets. Then, we detail the extraction of gener-
ics and quantified sentences at scale from a large
corpus by leveraging syntactic (§4.4) and semantic
(§4.5) characteristics of generics.

4.1 Design choices
MGEN is built to include a massive, diverse amount
of naturally occurring generic sentences with their
respective contexts. In this section we go over the
principles that guide the construction of the dataset.

Naturally occurring. We focus on naturally oc-
curring generic sentences, as it would be hard to
assess the acceptability of synthetic samples with-
out assuming a theory of generics or conducting
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extensive human annotation studies, since the se-
mantics of generics are not well understood (§2).

Context. Many works argue that the context rad-
ically affects what generic sentences express, for
example, in terms of both quantificational strength
and flavor (Sterken, 2015; Almotahari, 2023). To
mine generic sentences, we choose a corpus struc-
tured in documents (more details in §4.2) and keep
the full context document of each sample.

Bare plurals. We focus on generics that are bare
plurals (§2) and only at the beginning of a sentence.
This makes detection at scale more tractable, by, for
example, omitting nested generics in that clauses
(e.g. she maintains that the belief that technology
improves education is widely accepted).

Quantifiers. Generics and quantified sentences
are closely related, as both are used to express gen-
eralisations. We collect quantified sentences with
the following structures: quantifier + bare plural
sentence, bare plural noun phrase + quantifier +
verb or bare plural noun phrase + verb + quan-
tifier. We consider the following 11 quantifiers:
all, most, many, some, few, no, often, generally,
typically, usually, normally.

4.2 Data sources
Training language models requires large collec-
tions of clean textual data, which can also be used
for data mining. We use ZYDA (Tokpanov et al.,
2024), an open-source dataset built by collecting
text from different high-quality sources and per-
forming uniform filtering and deduplication. We
run our generic extraction pipeline on the follow-
ing components of ZYDA (Appendix E; Table E.3):
RefinedWeb (Penedo et al., 2023), SlimPajama
(Soboleva et al., 2023), the Pile (Gao et al., 2021),
peS2o (Soldaini and Lo, 2023) and arXiv (Kenney,
2023).

RefinedWeb, SlimPajama and The Pile primarily
consist of data scraped from the web, while the
much smaller peS2o and arXiv are composed of
academic publications.

4.3 Generic sentence extraction
ZYDA is structured in documents: roughly the text
in a website, a scientific article or similar. Each
document is first split into sentences (blingfire2).
Then, a lightweight syntactic filtering step selects
sentences where either (i) the first word is one of

2https://github.com/microsoft/BlingFire

the quantifiers of interest, or (ii) there is a plural
noun in the first 4 words of the sentence (flair
(Akbik et al., 2019)).

These candidates are then run through two filter-
ing steps: a syntactic one that ensures these are bare
plurals with verbs inflected for third person present
indicative and a semantic one, that filters for sen-
tences that express generalizations. This latter step
is necessary as the bare plural generic syntactic con-
struction can also have existential readings, where
the subject refers to specific instances instead of
to a kind in general, e.g. tigers are in the front
lawn or blue arrows indicate acceleration (also see
Appendix F; Table F.6).

We detail the construction of each filtering step
in §4.4 and §4.5 respectively.

4.4 Syntactic filtering (bare plurals)
The syntactic filtering step in the pipeline receives
candidate sentences with plural nouns in the early
words and performs a more in-depth dependency
analysis to select only bare plural sentences.

The part-of-speech and dependency parsing of
the sentence is conducted with the stanza python
library (Qi et al., 2020). After parsing the sen-
tences, we keep those that meet the following three
conditions:

1. The nominal subject is a plural noun or a plu-
ral proper noun (nsubj or nsubj:pass in the
case of passives).

2. The root of the nominal subject is a verb or
an auxiliary (VERB or AUX). If there is a copula
(cop) or a passive (aux:pass), take that as the
verb.

3. The verb has present tense, indicative mood,
plural number and third person.

4.5 Semantic filtering (genericity)
The syntactic filtering step yields bare plural can-
didate sentences, but these include noisy and non-
generic samples. To get high quality generics from
these candidates, we apply a further step in which
a binary classifier scores whether the bare plurals
are generic or not.

This classifier is designed to filter out: (i) sen-
tences that although they may contain a generic
it is not at the beginning3, (ii) sentences that are

3A common occurrence are titles of paragraphs or sections
that get parsed at the beginning of the sentence, for exam-
ple: Gaussian Mixture Models Gaussian mixture models are
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ungrammatical or noisy and (iii) bare plurals that
have existential (non-generic) readings (Table F.6).

We use a ROBERTA model (Liu et al., 2019)
as the architecture for the classifer, which we
train on a small collection of generics and non-
generic bare plurals. The generics are sampled
from GENERICSKB-BEST and the non-generics
are generated by GPT-4 (OpenAI et al., 2024),
by iteratively finding missclassified examples to
make the training data more robust. The classifier
achieves over 0.97 F-1 score in a test set based on
CONGEN and synthetic non-generic bare plurals.
More details on classifier training and evaluation
are found in Appendix A.

In the case of sentences that start with a quanti-
fier, which are not bare plurals and are outside of
the training distribution of the generics classifier,
we remove the quantifier word and calculate the
score of the resulting bare plural. This ensures that
we pick out quantified sentences that are compa-
rable to generics in terms of being generalizations
as opposed to existential. We want to keep in the
dataset sentences like all tigers have stripes but not
all tigers in the cage are male.

Some quantified sentences begin with a bare plu-
ral rather than a quantifier (e.g. tigers are normally
striped). For these sentences, we check if there is
an adverbial quantifier that has as syntactic head
the root of the sentence, and label them with the
corresponding quantifier (if the quantifier is not in
the main clause, the sentence is labeled as generic).

We include sentences that receive a genericity
classifier score 0.8 or greater for the MGEN dataset.
This value is chosen by manual inspection of the
data. The full unfiltered bare plurals data is also
made publicly available.

5 MGEN: Statistics & Analysis

In this section we summarize the statistics of the
MGEN dataset (§5.1) and present two quality anal-
yses: human annotation to asses the genericity of
the collected sentences (§5.2) and a comparison in
terms of diversity with existing datasets (§5.3).

5.1 Statistics
We mine generics from a total of 50, 534, 844
ZYDA documents (23% of the corpus). After the
syntactic filtering of sentences for bare plurals,
we end up with 16, 771, 049 sentences, of which

formed by combining multivariate normal . . . . Note how the
title (Gaussian Mixture Models) makes it so that the generic
is not at the beginning.

Candidates Generalizations

GEN 14, 303, 840 3, 183, 293
All 502, 629 82, 752
Most 332, 698 173, 021
Many 389, 606 188, 419
Some 547, 308 225, 171
Few 22, 164 8, 085
No 47, 146 4, 121
Generally 116, 901 53, 015
Typically 124, 522 53, 046
Often 253, 306 107, 926
Usually 138, 207 59, 148
Normally 19, 969 8, 763

TOTAL 16, 771, 049 4, 146, 760

Table 3: Number of generics and quantified sentences
after syntactic (candidates) and semantic (generaliza-
tions) filtering during the construction of MGEN.

4,146,760 make up the final MGEN dataset after
receiving a score of 0.8 or higher by the generics
classifier.

Source composition. The final dataset contains
over 3 million sentences from internet crawls (Re-
finedWeb, The Pile and SlimPajama) and around
1 million sentences from academic sources, peS2o
and arXiv (Appendix E; Table E.4). Of the total
4.1 million samples, about 3 million are bare plu-
ral generics, while the rest is made up of the 11
quantifiers in different proportions (Table 3).

Context documents. For every sentence in
MGEN, we include the document from ZYDA that
contains it. These documents correspond to web-
sites or papers and are generally long, averaging
over 5000 words. For comparison, the context doc-
uments in the samples of GENERICSKB-BEST are
much shorter, with an average of 147 words.

Sentence length. We compute the length of sen-
tences in words by splitting sequences by whites-
paces. Figure 1 compares sentence length distri-
butions for the naturally occurring examples in
GENERICSKB-BEST, the generic (not quantified)
sentences in MGEN and the lengths in a sample of
20,000 context documents from MGEN (Figure 1).

Generic sentences in MGEN have an average
of 16.65 ± 8.2 words and a median of 15 words:
generics are often long sentences. Although gener-
ics are on average shorter than arbitrary sentences
from MGEN documents, the length distribution
contrasts with the prototypical examples in the lin-
guistics and philosophy literature, as well as many
synthetic examples in computational linguistics,
that usually have less than 5 words (for example,
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Text Label 1 Label 2 Score

Puppets are fun to include too. Particular Unclear 0.86

First thoughts are proverbially the best; at all events, they are the
bravest.

Unclear Generic 0.96

Pumps are used to circulate the water through collectors and into
your water tanks.

Particular Generic 0.97

Players get sets by asking another player for a specific card. Generic Particular 0.82

Table 4: Examples of annotator disagreements with classifier scores.
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Number of words
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MGen (documents)

MGen (generics)

Figure 1: Sentence length distribution in the gener-
ics and documents of MGEN and natural sentences in
GENERICSKB-BEST.

see Appendix F, Table F.7 and examples in the Dis-
cussion §6). Examples of sentences in MGEN with
lengths from 3 to 25 words are available in Table
F.9 (Appendix F).

Common words. The 50 most common words
(excluding stopwords and punctuation) in MGEN

also reveal interesting aspects of the use of generics
(Appendix E; Table E.5).

The most common word in MGEN generics is
people, with a big gap with respect to the second
and third most common words: also and cells. In
the generics of GENERICSKB-BEST, also is the
most common word, and water and one are both
more frequent than people, which is still fourth.

Following people, women and children are nouns
with many occurrences, as well as terms specific
to biology and medicine, such as cells and patients.
The most common verb is use (and used, from
passive constructions).

In contrast, we analyze the most common words
in 100, 000 context documents from MGEN and
find that people does not even appear in the top
50: it is almost 60 times less prevalent (16, 5384)
than the most common word, which is also with
942, 208 appearances.

These surface statistics of the sentences in the
dataset give clues as to how we use generic sen-
tences: to generalize about people and to express

what to use things for.
In biology and medicine academic domains,

which are well-represented in our dataset, we find a
widespread use of generic sentences, as can be seen
by the high frequency of some nouns particular to
those fields.

5.2 Human evaluation of MGEN

To evaluate the quality of samples in the MGEN

dataset in terms of genericty we use human annota-
tors.

We sample 300 sentences from MGEN which
get annotated by two annotators by labeling the
sentences as Generic, Particular (non-generic) or
Unclear. Annotator guidelines are available in Ap-
pendix D. Examples with both annotations and the
score of the ROBERTA classifier can be found in
Table 4 and Table F.8 (Appendix F).

Annotators label 87.17% sentences as Generic,
7.5% as Unclear and 5.33% as Particular, with an
82% of inter-annotator agreement. Table 4 contains
examples of disagreements. The human evaluation
results suggest that, even as the annotation of gener-
ics is done automatically by a rather small model,
the overall quality of the samples in MGEN is high,
making it a reliable source for generic sentences in
context.

5.3 Diversity

We evaluate the diversity of the MGEN dataset
using three different measures: cosine similarity of
sentence embeddings, distinct n-grams and distinct
lemmas at subject, verb and object head positions.

Diversity from cosine similarity. Tevet and Be-
rant (2021) introduce a transformation from pair-
wise sentence similarity to a diversity metric by
taking an average of the similarity across possible
sentence pairs (Eq. 1).

Given a corpus C and a 2-sentence similarity
metric msim(s1, s2) ∈ R; s1, s2 ∈ C, the corre-
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diversity-from-similarity distinct n-grams (1M tokens) head lemmas (200k sentences)
mcossim distinct-1 distinct-2 distinct-3 Subject Verb Object

MGEN −7.09± 0.13 31,554 396,923 700,782 18,836 7,131 15,935
GENERICSKB −8.27± 0.14 24, 130 308, 320 561, 549 14, 445 5, 133 11, 548
GEN-A-TOMIC −15.64± 0.2 19, 398 193, 618 357, 334 12, 120 3, 909 11, 093

Table 5: Diversity comparison of MGEN, GENERICSKB-BEST and GEN-A-TOMIC. In all scores higher is better.

sponding diversity-from-similarity metric as:

Dsim(C) = − 1(|C|
2

)
∑

si,sj∈C;i<j

msim(si, sj) (1)

We use as similarity function the cosine similarity
(mcossim) between sentence embeddings generated
with NV-EMBED-V2 (Lee et al., 2024), a state-
of-the-art model4 in the Massive Text Embedding
Benchmark (Muennighoff et al., 2023).

This diversity metric is computationally in-
tractable for datasets with millions of sentences,
we instead take 1000 samples of 1000 sentences
each from the different datasets and report average
diversity.

Diversity in distinct n-grams. We also consider
an n-gram based diversity score, the distinct-n
score (Li et al., 2015).

Given a corpus C with Nn n-grams and Un

unique n-grams. Then, the distinct-n score of C is
the number of distinct n-grams (Un) divided by the
total number of words (N1) in the corpus.

distinct-nC =
Un

N1
(2)

We sample sentences from the each dataset until
we reach 1 million tokens (as per the ROBERTA

tokenizer). For clarity, we report the number of dis-
tinct n-grams directly, without normalizing by N1,
as all samples have the same size in total tokens.

Diversity from head lemmas. Because sen-
tences in MGEN are naturally occurring, samples
may have relative, subordinated or conjunctive
clauses beyond the main bare plural generic, which
could artificially inflate the n-gram count.

To have a fair comparison in this regard we in-
troduce a score that counts the unique lemmatized
verbs and head nouns in the subject and object po-
sitions. For each generic sentence, we get at most 3
lemmas, regardless of any clauses or subordinated
sentences. For example, given bees in the forests
of Catalonia feed on lavender flowers, giving their

4As of December 2024.

honey a distinctive taste would be reduced to 3
lemmas: bee, feed and flower. This way we target
more directly the diversity in the generic sentences
of the dataset.

We sample 200, 000 sentences from each dataset
and report the total unique lemmas found.

MGEN is the most diverse generics dataset.
We compare MGEN to GENERICSKB-BEST and
GEN-A-TOMIC in terms of diversity by the three
previous measures (Table 5). To make the com-
parison fair, we leave out synthetic samples from
GENERICSKB-BEST, and use only the naturally
occurring sentences.

In all cases, MGEN is more diverse than the com-
parable datasets of generics, both in lexical (distinct
n-grams and head lemmas) and neural (cosine sim-
ilarity) measures. This shows that the ROBERTA

classifier, even if it is based on a relatively small
model, is able to label a wide range of generics.

6 Discussion

In recent years, the study of generic sentences has
focused on the careful consideration of a series of
prototypical examples that highlight different as-
pects of their semantics. Some notable generics
are typhoons arise in this part of the Pacific (Carl-
son, 1977b), mosquitoes carry the West Nile virus
(Leslie, 2008), ducks lay eggs (Leslie et al., 2011),
humans kill themselves (Sterken, 2015), dobermans
have floppy ears (Nickel, 2016) and many others.
Although these examples are effective at illustrat-
ing the semantics of generics, they are difficult to
leverage computationally.

With the introduction of MGEN, a massive
collection of naturally occurring generics in con-
text, we open the door for new computational and
corpus-level approaches to make progress in the
puzzle of generics.

MGEN consists of 3 million generics and 1 mil-
lion sentences explicitly quantified by 11 different
quantifiers. These have been mined from a diverse
pool of internet and academic documents, ensur-
ing that many of the ways in which speakers use
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generics are represented.
Our analysis shows that MGEN is the more di-

verse of the large-scale datasets of generics, and
human annotation suggests that, even as generics
are automatically filtered, the quality of the exam-
ples is high.

If we take MGEN as a representative sample
of generics, at least of some of the many ways in
which English speakers use them, the statistics of
the dataset say much about generics themselves.

The analysis of sentences in MGEN suggests
that generics are long. They have over 16 words
on average, with the most common sentence length
being 15. Even if some generics in the dataset
are long due to clauses and subordinate sentences,
this still suggest sentences that begin with a generic
express complex ideas. We also find many generics,
in scientific and medical domains (Peters et al.,
2024), that are not only long but contain many
technical terms.

The technicality and length of many generics in
MGEN contrasts with theories that link generics to
"thinking-fast" or System I (Kahneman, 2011) in
the dual-process theory of cognition (Leslie, 2007b;
Almotahari, 2023). Combining the intuitive and
unreflective use of generics, which speakers often
do, with some of the long and complex sentences
in MGEN is one of the open questions this dataset
could help resolve.

We believe MGEN can play a role in future re-
search on generics and quantifiers by providing
examples with long context documents across a
multiple sentence lengths (Appenix F; Table F.9)
and topics, from academic papers to internet fo-
rums. These could disclose different ways in which
speakers use generics. For example, that people is
the most common noun suggests that generics play
an important role on how humans understand each
other through language.

7 Conclusion

In this work we build MGEN, a massive collection
of generic and quantified sentences in context.

We mine generic sentences from ZYDA, a corpus
for language model training. Our two-step pipeline
first filters sentences by their syntactic features and
then uses a ROBERTA-based classifier to deter-
mine genericity.

The final dataset contains over 3 million bare
plural generics and 1 million quantified sentences
with 11 different quantifiers. We believe MGEN is

a valuable resource for future research on generic
sentences.

The MGEN dataset is open-source, available at
gustavocilleruelo.com/mgen.
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Limitations

Data contamination. This dataset is designed
as a corpus for the study of language, rather than
for any evaluation of the performance of language
models. The sources that conform ZYDA are com-
monly used in the training of language models,
which means any sort of performance evaluation
in this data would be compromised and should be
carefully carried out.

Generics classifier. The classifier that we use to
classify generics as such does only take information
from the sentence itself, we do not append any
context. Future versions of the pipeline could use
stronger models for selection of generics from bare
plural sentences.

Distribution of generics. Although MGEN has
millions of generics, it may not capture the full dis-
tribution of generic sentences: it only contains bare
plural generics at the beginning of the sentence.
Similarly, the quantified sentences we select are
within a limited range of structures.

Three main assumptions underlie the generics
of this dataset: (i) bare plurals (ii) at the beginning
of the sentence (iii) in English. Future work that
tries to capture more holistically generics across
languages should improve upon these.
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A Training and evaluation of the generics
classifier

Training. We build the generics classifier by
training a first iteration on generics from GENERIC-
SKB and then refining it iteratively. We make the
training set more complete by adding examples the
classifier struggles on from the candidate bare plu-
rals, thus covering difficult and corner cases. We
synthetically augment this challenging datapoints
with the prompts in Appendix B. Table A.1 shows
the final distribution of the training dataset, which
trains a classifier that reaches 0.97 F-1 score in our
3622 sentences evaluation set.

Origin Sentences

GENERICSKB (generics) 2500
Synthetic non-generics 2039
Non-generics from data 310
Generics from data 61

Table A.1: Composition of the ROBERTA classifier
training data.

Evaluation data. We evaluate the generics clas-
sifiers in CONGEN for positive examples and a
synthetic negative examples generated with GPT-4
(OpenAI et al., 2024). We include the quantified
sentences in CONGEN by removing the quantifier
(most tigers hunt rabbits becomes tigers hunt rab-
bits). The negative (non-generic) sentences are
designed to be challenging for a generics classifier
(details are available in Appendix B). The final test
set includes 3622 test sentences: 2873 generics and
749 non-generics.

B Synthetic adversarial non-generic bare
plurals generation

We combine variations of the following prompts
to generate synthetic data based on difficult exam-
ples in the data, where iterations of the generics
classifier struggle. We also focus on filtering out
some examples undetectable to the synthetic filter-
ing step, such as sentences with the title section
present (for example, Introduction Transformers
are function approximators). We use some of the
synthetic examples generated for the training and
some for the evaluation of the classifier.

Prompt#1. Task: generation of
declarative sentences indicative that
are not generic. The sentences generated
should not be generic sentences, even
if they share features with them. The
following examples are non-generic
sentences, or sentences that do not
begin with the generic sentence.

Examples:
{ list of examples}

Based on the previous examples, generate
100 non-generic sentences using a wide
range of vocabulary and basing the
generated sentences on the types of
syntax in the examples, and other varied
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syntactic constructions similar to bare
plurals, such as adding elements that
make it so that the generic sentence is
not at the beginning or is not grammatical.
The setences cannot begin with a generic,
such as "tigers have stripes" or "nerves
carry messages throughout the body", but
rather existentials, ungrammatical or
beginning with a section title. Generate
the examples in the format of a python
list of strings.

Prompt#2. Task: generate existential
sentences that syntactically resemble
bare plural generic sentences. For
examples are sentences that talk about
figures, equations, examples and studies
in scientific articles, such as "Blue
arrows indicate acceleration", "Examples
of this are equations 2 and 4" or "Studies
show this phenomena happens often". Can
you generate 100 sentences like these in
a python list sentence. Make them with
varied lengths and lexically varied, and
make sure they are clearly not generic,
for example by referencing figure numbers
etc.

Prompt#3. Generate 10 sentences that
have a similar structure than the
following example. Return the results in
the format of a python list.

Example: Processes are made of
repetitive...

C Sentence Length in MGEN

The 20,000 sampled documents sampled from
MGEN yield a total of 4,202,451 sentences.

Dataset Average Median

MGEN (generics) 16.65± 8.2 15
MGEN (documents) 24.75±29.3 21
GENERICSKB-BEST (natural) 9.66± 3.66 10

Table C.2: Average and median length across datasets.

D Annotation of MGEN

These are the instructions and examples annotators
received:

· Assign the label “Generic”, “Particular” or
“Unclear” to each sentence in your sheet.

· “Generic” sentences make a broad statement
that applies to members of a category or group
in general. For example, Birds fly, German
shepherds are loyal, Well-maintained public
parks attract visitors all year-round. Even if
the group is very specific, such as Red birds
with long beaks that live in the jungle fly, as
long as it does not appear like the text refers
to specific individuals in the context, label it
as a generic.

· “Particular” sentences talk about a specific set
of individuals or events. They usually provide
information about one or a few individuals
in a group: This bird can fly, Dogs are in the
front lawn. These are sentences that talk about
particular things in a context: Units are in kilo-
grams, Arrows indicate acceleration would
not be generics as they only make sense when
refering to a specific table or plot. German
shepherds outside the house are loyal is also
not a generic, as it refers to specific german
shepherds.

· In case of subsentences, focus only on the first
subsentence: Birds fly and this parrot speaks
would still count as generic even if "this parrot
speaks" is not a generic since it refers to a
particular parrot.

· Do not worry if you are unsure about whether
a sentence is “Generic” or “Particular”. In
this case, or if the sentence is grammatically
incorrect, please use the “Unclear” label. Use
also "Unclear" if you are not sure, you would
need more context to answer or if the first
words in the sentence are not a generic (for
example: In any case, birds fly)

· For more examples, have a look at the anno-
tated sentences in red. Thank you for your
participation!

They also had the following examples:

· Tigers have stripes. Generic

· Tigers have stripes, they are cats and the ones
we have here are violent. Generic

· Those tigers have stripes. Particular

· Tigers, which are part of the Felidae family,
have stripes. Generic

· Tigers in this zoo are violent. Particular
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· Tigers in zoos are violent. Generic

· Tigers are in the front lawn. Particular

· Tigers are also like this. Generic

· Tigers share that characteristic with lions.
Generic

Generic Unclear Particular

Annotator label

0.8

1

1.2

C
la
ss
ifi
er

sc
o
re

Figure D.1: Correspondence of human annotations with
ROBERTA classifier scores.

E Composition of the MGEN dataset

Table E.3 shows the millions of documents each
component of ZYDA has. Note that we only mine
generics from about 23% of the dataset. The final
amount of sentences in MGEN by source is in Table
E.4.

Finally, Table E.5 shows the top 50 common
words for generics in MGEN, naturally occurring
sentences in GENERICSKB-BEST and 100, 000
documents sampled from the contexts in MGEN.

Source Total Documents Origin

RefinedWeb 920.5M Internet
SlimPajama 142.3M Internet
The Pile 64.9M Varied
peS2o 35.7M Academic
arXiv 0.3M Academic

Table E.3: Information on the components of ZYDA we
run the generics pipeline on.

Source Sentences

RefinedWeb 1, 270, 280
The Pile 1, 019, 687
SlimPajama 993, 373
peS2o 796, 334
arXiv 67, 086

Table E.4: Combined statistics for MGEN by source.

F Data samples
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MGEN (generics) GENERICSKB-BEST MGEN (100k documents)
Word Count Word Count Word Count

people 200946 also 23933 also 942208
also 183012 water 20301 data 879361
cells 96700 one 18145 using 780702
used 96104 people 16598 one 767704
different 94097 many 12452 model 735504
use 92326 important 12417 used 727311
like 89778 life 11283 two 653421
one 84314 plants 10967 different 591577
make 74173 cause 10933 figure 587311
high 70107 common 10923 time 585129
many 70083 used 10715 study 584773
need 70010 body 10344 results 576442
women 68460 use 10074 may 568490
time 64141 different 10036 cells 539390
children 61270 food 9964 al. 535876
well 60362 animals 9315 however 477362
systems 60005 energy 8891 use 476105
tend 57323 human 8886 number 474336
important 56710 cells 8858 system 468788
provide 56523 form 8660 analysis 446709
work 55676 time 8478 first 445497
less 50941 children 7757 fig 438667
good 50521 women 7618 based 385968
much 48714 blood 7147 models 373924
get 47917 light 7109 high 372224
large 47588 small 7086 function 371581
small 47149 disease 6953 learning 370877
water 46181 world 6884 information 370467
way 45507 cancer 6653 case 356658
even 44487 natural 6583 set 351422
common 44330 like 6527 shown 349042
may 43538 part 6452 table 348287
patients 43443 often 6257 cell 341799
likely 43303 large 6220 new 334611
higher 43208 make 6199 given 330825
health 42758 high 6148 well 326821
help 41548 air 6017 studies 325837
men 40689 health 5982 patients 325434
system 40548 live 5889 research 321275
known 40036 two 5774 found 319645
play 39813 way 5503 could 317444
two 38604 well 5478 due 314760
human 38571 means 5464 see 312387
life 38428 occurs 5447 systems 306782
data 37663 process 5403 energy 304915
great 37612 soil 5397 thus 303428
form 37517 occur 5373 method 299352
new 37113 growth 5157 process 298258
n’t 36267 work 5145 group 290830
social 36212 system 5046 would 289965

Table E.5: Top 50 common words in generic sentences from MGEN and GENERICSKB-BEST.
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Bare plural Source

Solid lines are the analytical results (Eqs. arXiv

State police report 30 year old Kira Zink was headed south . . . SlimPajama

Svp binding sites are underlined. The Pile

COST: Entries start at $10; MORE INFO TUESDAY, DECEMBER 24. . . SlimPajama

Online master’s programs close on May 5th and August 19th. SlimPajama

Tickets cost £12 (students £5, under 18s go free). . . RefinedWeb

Table F.6: Examples of existential (non-generic) bare plurals from ZYDA. Dots (. . . ) indicate the example was
truncated.

Sentences Source

Horses are mammals (Carlson, 1977)

Horses are larger than mules (Carlson, 1977)

Elephants are easily trained (Carlson, 1977)

Mosquitoes carry the West Nile virus (Leslie, 2008)

Cats have whiskers (Leslie, 2008)

Peacocks have fabulous blue tails (Leslie, 2008)

Diamonds are valuable (Nickel, 2016)

Elephants live in Africa or Asia (Nickel, 2016)

Coke bottles have short necks (Nickel, 2016)

Cabs are yellow (Sterken, 2015)

Birds lay eggs, but mammals don’t. Mammals give birth to live young. (Sterken, 2015)

Lottery tickets are losers (Sterken, 2015)

Table F.7: Some generics that serve as running examples in the literature.
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Text Label 1 Label 2 Score

Textbooks provide templates for proper procedure: the who, why, what, and
where of the story.

Generic Generic 0.91

Flatforms are comfy because of the uniform thickness of the heel and at the same
time practical and easy to style in the morning with jeans and T-shirts and in the
evening with Oversized Dresses.

Generic Generic 0.90

Males have two sex organs, known as hemipenes, which are normally kept within
the body, but are everted from his vent for mating.

Unclear Generic 1.06

Cash crops are called commercial or commercial crops. Generic Generic 1.03
Oil-based primers are also very good remedies for covering staining on walls
and ceilings that have oil-based paints.

Generic Generic 1.02

Thin clients are less intelligent terminals that connect to applications hosted on a
remote computer.

Unclear Generic 1.03

Thicker greens such as romaine or bib lettuce are better for salads that will have
a lot of meat or chunky vegetables.

Generic Generic 1.07

JWs today have a similar command structure to promote uniformity rather than
truth and love, in every element of a Christians life.

Generic Generic 0.95

People realize that the best way to control their housing costs is ownership. Generic Generic 1.03
People who wish to argue against Spiritualism are quite sure, as a rule, that
media will descend to any trickery and cheating for the sake of gain.

Generic Generic 0.93

Red d’Anjou pears are excellent for fresh eating, poaching, cooking and all types
of baking.

Generic Generic 0.95

Powerful computing systems also require high speed access to large data storage
systems.

Generic Generic 0.95

Filipinos of Hispanic ancestry form a minority in the Philippine population. Generic Generic 1.06
IMTs operate in various ways. Generic Unclear 0.99
Weak institutions lead to weak coordination and fragmented interventions that
often prove ineffective.

Generic Generic 1.04

Ventilation flaps are used in the air ducts of heating and ventilation systems or
air conditioning systems in an automobile and are usually adjusted via Bowden
pull mechanisms or mechanical transmissions.

Generic Generic 1.05

Quantum computers promise to directly simulate systems governed by quantum
principles, such as molecules or materials, since the quantum bits themselves are
quantum objects.

Generic Generic 1.04

Pair bonds are monogamous and seasonal. 3–6 eggs are incubated by the female
only, but the chicks are usually brooded and fed by both birds.

Generic Generic 1.03

Puppets are fun to include too. Particular Unclear 0.86
Parenchyma cells are also responsible for healing in the plant - this tissue can go
through cell division and regenerate when needed.

Generic Generic 1.03

Conventional linear synchronous motors have issues of high manufacturing cost
of the stator and high magnetic loss.

Generic Generic 0.99

Traditions are a vital a part of the Italian culture and naturally, weddings have
their very own.

Generic Unclear 0.92

Calm dog breeds include Great Danes, Great Pyrenees, Basset Hounds, Shih
Tzus, and Pugs.

Unclear Unclear 0.84

First thoughts are proverbially the best; at all events, they are the bravest. Unclear Generic 0.96
Bursts are by definition variable, as temperature evolution due to thermonuclear
burning and then cooling drives the fast increase and then slower decrease in
X-ray flux.

Particular Generic 0.97

People are under pressure to make the systems efficient, but they are expected to
keep the system safe, which inevitably introduces inefficiencies.

Particular Generic 0.91

Police officers are human beings, and many of them understand that the pressures
of everyday life can sometimes lead good drivers to make bad decisions.

Generic Generic 1.11

Self-induction habits are oft described as a compulsive behavior, with magnetic-
like attraction to light sources commonly reported [9].

Generic Generic 0.88

Gastroenterologists, infectious disease specialists, hepatologists, and even some
nurse practitioners commonly manage cases of Hep C.

Unclear Generic 1.1

Natural degradable polymers and their composites are amongst these materials. Particular Generic 0.84
Involving surrounding tissue structures, tonsillar tumours often infiltrate the
soft palate, the base of the tongue, the lateral pharyngeal wall and medially the
parapharyngeal space as well as the vascular sheath.

Generic Unclear 0.83

Caries are understood to result from the accumulation of plaque on the teeth
and the production of organic acids (plaque acids) when plaque microorganisms
ferment sugars and starches in food.

Generic Generic 1.06

Female beetles deposit their eggs singly on the legume seeds. Generic Generic 1.06

Table F.8: 33 examples from MGEN generics with both annotations and scores.
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Length Generic Source Score
3 Words have power. RefinedWeb 0.98

4 Democrats are control freaks. The Pile 1.01

5 Children learn what they live. The Pile 1.08

6 Ghosts represent a post-death human consciousness. SlimPajama 1.02

7 Color and pictures are fun and vibrant. RefinedWeb 0.82

8 More complex bytecodes trap to a software routine. peS2o 0.85

9 Males tend to be more affected by the disease. SlimPajama 0.99

10 Triggers cause individuals to become ineffective and produce
negative energy.

The Pile 1.02

11 Professional massage therapists relieve tired muscles and allevi-
ate pain in customers.

RefinedWeb 0.97

12 American workers produce sophisticated goods or investment
opportunities at lower opportunity costs.

SlimPajama 1.06

13 Insurance companies reward property owners who personal their
house totally free and obvious.

RefinedWeb 1.0

14 Alkaline phosphatases carry out hydrolase/transferase reactions
on phosphate-containing substrates at a high pH optimum.

The Pile 1.0

15 Stimulants are substances that raise the levels of physiological
or nervous activity in the body.

RefinedWen 1.04

16 Areas along large rivers are commonly inhabited by baldcypress,
water tupelo, water elm, and bitter pecan.

The Pile 0.94

17 Sports fans are far more familiar with NBC Sports, which tele-
vises everything from Super Bowls to Olympics.

The Pile 0.96

18 Keto dieters love exogenous ketones because they help fight the
keto flu and get you quickly into ketosis.

The Pile 1.07

19 Insects evolve adaptations allowing them to eat specific species
of plants, while being unable to eat most other plants.

RefinedWeb 1.04

20 Extractive methods, such as lipoplasty (liposuction) or local
excision, are methods whereby fat is mechanically removed
from areas of interest.

The Pile 0.96

21 Factory-terminated systems are also the only viable solution to
the extremely low-loss systems that are required to support high-
speed optic links.

RefinedWeb 0.86

22 Small Business consultants typically develop relationships with
their customers and often correspond by e-mail with their cus-
tomers and return customers’ phone calls.

The Pile 0.99

23 Initial parton showers interact with the medium via collisional
and radiative processes that cause dissipation and redistribution
of energy inside the parton shower.

peS2o 0.93

24 Green superfoods have the highest concentrations of simply
digestible nutrients, fat burning compounds, nutritional vitamins
and minerals to safeguard and mend your body. !

RefinedWeb 0.87

25 Punitive damages are awarded to punish a defendant for partic-
ularly egregious conduct, and to serve as a deterrent to future
conduct of the same type.

The Pile 0.96

Table F.9: Examples of generics from MGEN at different sentence lengths.
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Abstract

This study views intonation as a quantifier-
free (QF) logical interpretation of a metrical
and prosodic structure. Under logical transduc-
tions, tones in intonational melodies can be in-
terpreted as literal copies of prosodic elements,
with their association to TBUs being a local pro-
cess. The head-prominence intonational pattern
in American English can be defined by copy-
ing both accented syllables (heads) and phrasal
boundaries, whereas the edge-prominence pat-
tern in Seoul Korean was defined by copying
only phrasal boundaries (edges). For Tokyo
Japanese, lexical pitch accents are defined by
copying accented moras, and post-lexical tones
by copying phrasal boundaries. This QF inter-
pretation of intonation structure enabled restric-
tive predictions about computational complex-
ity and typology of intonation.

1 Introduction

How can we define what it means to be a possible
intonational pattern in a precise way? Here we
view intonation as a quantifier-free (QF) logical
interpretation of a metrical and prosodic structure
(Chandlee and Lindell, to appear; Strother-Garcia,
2019). Importantly, in this framework, tones in
intonational melodies are viewed as literal copies
of elements in the metrical and prosodic structure,
such as accented syllables or phrasal boundaries,
and they are always linked locally to their tone-
bearing units (TBUs). Importantly, because QF is a
very weak logic, a theory of intonation built around
QF interpretations makes strong predictions about
what is a possible intonational pattern. We show
support for these predictions by showing that major
intonational patterns are QF interpretations.

In the Autosegmental-metrical (AM) theory of
intonation (e.g., Pierrehumbert, 1980), intonation
can be defined as a sequence of Highs (Hs) and
Lows (Ls). The tones in intonation are associated
with their TBUs within the nested prosodic do-

mains. Languages may vary depending on which
prosodic elements, such as prominent syllables
and/or phrasal boundaries, are used for intonation.

For example, in American English, intonational
tones are associated with metrically strong posi-
tions and phrasal boundaries in an utterance. (1)
shows an utterance ”an orange ball gown” produced
with intonation. Within an intermediate phrase (ip;
⋊φ/⋉φ), pitch accents (H∗) are associated with
accented syllables (σ∗) and a phrasal tone (L-) is
associated with the final syllable of the ip. Then,
within an Intonational Phrase (IP; ⋊ι/⋉ι), a bound-
ary tone (L%) is associated with the final syllable
of the IP.

(1) [[@n OôInÃ bOl gaUn]φ]ι
⋊ι ⋊φ

⋊ι ⋊φ

σ σ∗

H∗

σ σ∗

H∗

σ

L-

⋉φ ⋉ι

L%

.

⋉φ ⋉ι

Jardine (2017) showed that autosegmental rep-
resentation of lexical tones and their TBUs is an
interpretation of the toned syllables in the input
structure, using logical transductions (Courcelle,
1994; Engelfriet and Hoogeboom, 2001; Filiot and
Reynier, 2016). Also, the tone–TBU association
patterns in tonal languages have been studied in
terms of their local nature and computational com-
plexity (Chandlee and Jardine, 2019a; Chandlee
and Jardine, 2021; Koser et al., 2019). Then, how
can we define the autosegmental representation of
intonation using logical interpretation and what
does this say about the computational nature of
intonation?

We extend Jardine (2017) and Strother-Garcia
(2019) by viewing AM representations as addi-
tional structure imposed on an input string. In
doing so, we find that intonational tones and their
associations with TBUs are always local to accents
and boundaries if we make reference to a metrical
grid and a prosodic structure. That is, the accented
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syllables and boundaries in the input structure can
be interpreted as intonational tones in the output
structure, which are always linked to their TBUs
that are near the accents and boundaries.

Also, there exists another evidence supporting
the QF logical interpretation of intonation. Not
every logically possible intonational pattern is at-
tested. For example, there are no patterns like Mid-
point Pathology (Hyde, 2008; Eisner, 1997), in
which tones are associated to a center-most TBU,
for the intonational patterns. Computing such a
tonal sequence demands memory proportional to
the sequence length, exceeding the regular com-
plexity bound of phonology (Heinz and Idsardi,
2011; Johnson, 1972; Kaplan and Kay, 1994) and
thus far exceeding the power of QF.

Therefore, we can start with a hypothesis that
intonation can be a QF logical interpretation of a
metrical and prosodic structure, by examining three
different intonation patterns: a head-prominence
language, American English; an edge-prominence
language, Seoul Korean; a lexical pitch accent lan-
guage, Tokyo Japanese.

Based on this local nature of intonation, we can
posit a theory that makes restrictive predictions
about the intonational typology and measure the
complexity of intonational structures, as the con-
nections between logical interpretations and com-
putational complexity are well-studied (Filiot and
Reynier, 2016). This has been fruitfully applied to
the study of phonological representations (Strother-
Garcia, 2019; Jardine, 2017; Jardine et al., 2021).

2 Preliminaries

2.1 String models and logic

We define a finite alphabet of symbols as Σ and
the set of all strings over σ∗. We use two bound-
ary symbols ⋊,⋉ to indicate the beginning and
the end of strings. For example, for Σ = {C, V },
⋊CCV⋉ is a string over Σ delineated with bound-
aries.

We can describe strings and other structures
with models in the following way (Enderton,
2001; Libkin, 2004). A signature is a set
{R1, ..., Rm, f1, ..., fn} of named relation and
function symbols. (We do not use signatures with
constant symbols.) A model is thus an instantiation
⟨D;R1, ..., Rm, f1, ..., fn⟩ of this set of relations
and functions with a domain D of elements.

For example, in strings over an alphabet Σ, we
can describe them with a signature {Pσ ∈ Σ, p, s}.

where each Pσ∈Σ is a unary relation that refers to a
set of positions over the domain D for each σ in the
alphabet. The predecessor and successor functions
are p and s that return the immediately preceding
and immediately following element in the string, re-
spectively. For example, in {PC , PV , p, s}, PC and
PV refer to the sets of positions over the domain D
for C and V , respectively. With this signature the
string ⋊CCV⋉ can be defined with the following
string model:

⟨D = {0, 1, 2, 3, 4};
PC = {1, 2}, PV = {3}, P⋊ = {0}, P⋉ = {4};
p = {(0, 1), (1, 2), (2, 3), (3, 4)};
s = {(1, 0), (2, 1), (3, 2), (4, 3)}⟩

From a signature we immediately get a first order
(FO) predicate logic in the usual way. Briefly, x,
y, ... denoting variables that range over positions
in a string; σ(x) for each σ ∈ Σ denoting atomic
predicates which are true when x is interpreted
as positions in the unary relation Pσ of a model;
and FO formulae are are built recursively out of
the logical connectives ¬,∨,∧,→ and quantifiers
∃, ∀. A free variable is a variable not bound by a
quantifier. QF is the fragment of FO in which no
quantifiers appear.

2.2 Logical transductions

Based on the input string that we’ve just defined,
we can build a larger model using logical transduc-
tions (Courcelle, 1994; Engelfriet and Hoogeboom,
2001; Filiot and Reynier, 2016). We interpret the
input structure into a finite number of copies in the
output structure, using FO formulas. Via a logical
transduction τ , the domain of the input structure
(Σ) in the signature (Si) is extended in the out-
put structure (Γ) in the signature (So), which is
represented with copies (Cs) of the input domain.
Following Strother-Garcia (2019), we use syllable
structure as an example, as shown in Figure 1.

The output structure Γ is defined with relations
R′ satisfied for any transduction τ if ⟨D′; R′

1, ...,
R′

n⟩ is based on the input signature Si. For instance,

Co(x)
def
= Ci(x) means a consonant x appears in

the output if and only if it exists in the input.
The domain D′ of the output structure Γ is ex-

panded by copying input elements n times, creat-
ing n copies of each input element. Unary relations
R′ are represented as R′n for n ∈ C (e.g., C0

o (x)
denotes a consonant in the 0th copy). Binary re-
lations R′ are represented as R′m,n for m,n ∈ C
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(e.g., A0,1
o (x, y) denotes an association between x

in the 0th copy and y in the 1st copy). The order
po of the output structure Γ over the domain D′

is defined separately for the 0th copy and the 1st
to nth copies (n > 0), while preserving the order
of the input structure Σ over D for both copies,
following Chandlee and Jardine (2019b).

For the 0th copy, po(x0)
def
=pi(x), such that the

output order p of the elements in the 0th copy
of Γ works the same as that in the input struc-
ture Σ, just like an identity function. For all the
set of nth copies except for the 0th copy, po(dn)
def
=em(n,m > 0) if and only if (p(d) = e) ∨ (d ≈
e ∧ p(n) = m). That is, for any elements d, e ∈ D
and for the copies m,n ∈ C, the element em pre-
cedes the element dn in the output, with two con-
ditions. The first condition is that if there are two
distinct domain elements, we follow the order of
the elements, such that if the element e precedes
the element d in the input, the element em always
precedes the element dn in the output. However,
the second condition is that if there are two identi-
cal domain elements in different copies, we follow
the order of the copies such that if the mth copy
precedes nth copy, the element e in the mth copy
always precedes the element d in the nth copy.

From the ⋊CCV⋉ string, we can build a syl-
lable structure in the output, using logical trans-
ductions. The input strings are copied twice in the
output (C0, C1) and each node with a free FO vari-
able x is defined accordingly. The order of copies
in the input, as determined by the predecessor and
successor functions pi and si, is preserved in the
output using po and so.

C0
o (x) = Ci(x) V 0

o (x) = Vi(x)

⋊0
o(x) = ⋊i(x) ⋉0

o (x) = ⋉i(x)

σ1
o(x) = Vi(x)

A0,1
o (x, y) = Ci(x) ∧ Vi(y) ∧ y ≈ s(s(x))) ∨

(Ci(x) ∧ Vi(y) ∧ y ≈ s(x)) ∨
(Vi(x) ∧ Vi(y) ∧ y ≈ x)

In the first copy (C0), every C and every V in the
input has one copy with the same label in the output.
Also, boundaries in the output, ⋊0

o(x) and ⋉0
o(x)

are the same as in the input. Importantly, for the
second copy (C1), syllables in the output, σ1

o(x), is
defined from a vowel in the input, Vi(x), showing
that every syllable is a reflection of nucleus.

Then, we can establish some relations between
the output copies to build phonological structures.

(a) INPUT:

DOMAIN:

⋊i

0

Ci

1

Ci

2

Vi

3

⋉i

4

si

pi

(b) OUTPUT:
COPY 0 (C0): ⋊0

o C0
o C0

o V 0
o ⋉0

o

COPY 1 (C1):
σ1
o

so

po
A0,1(x, y)

Figure 1: The illustration of a logical transduction from
the input string ⋊CCV⋉ to the output syllable struc-
ture.

Aa,b
o (x, y) defines an association relationship be-

tween the output copies over two free variables x
and y, where a and b indicate the copies in the out-
put. A0,1

o (x, y) associates the two Cs and V in C0
with the syllable in C1, respectively. In this way,
phonological structure building can be seen as an
interpretation of a more basic structure.

Defining phonological processes with logical
transductions allows us to measure computational
complexity within the regular upper bound of
phonology. Chandlee (2014) and Chandlee and
Heinz (2018) showed that local phonological pro-
cesses can be defined using input strictly local (ISL)
functions, which are a proper subset of regular func-
tions and are characterized by quantifier-free (QF)
first-order logic. Chandlee and Jardine (2019b)
showed that the subsequential functions for both
local and long-distance phonological processes can
be better characterized using QF first-order logic
with a least fixed-point operator (QFLFP), further
restricting them to a subset of the subsequential
functions. As most phonological mappings are
ISL (Chandlee, 2014; Chandlee and Heinz, 2018)
and thus QF-definable (Chandlee and Lindell, to
appear), a strong initial hypothesis for tone-TBU
mappings in intonation is that they should be QF-
definable. We investigate this hypothesis below.

3 Intonation as quantifier-free
interpretation

Now turning to the intonational structures, we de-
fine a logical interpretation for intonation. Impor-
tantly, tones in intonational melodies are viewed
as copies of elements in the metrical and prosodic
structure, such as accented TBUs or boundaries.
The source of intonational melodies is computa-
tionally defined as prosodic elements, but they are
associated with their local TBUs in order to be
realized as the actual tones.
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Intonation involves two key stages of transduc-
tion: first, creating tonal slots with unspecified
tones (T s) via a melodic transduction, and second,
filling these slots with specified tonal sequence with
Hs and Ls via a declarative meaning transduction.
While this section primarily focuses on outlining
the properties and relations for melodic transduc-
tion, the details of the meaning transduction will
be specified for each intonational pattern following
the melodic stage.

For the melodic transduction, the input sig-
nature (Si) is {σ, σ∗,⋉φ,⋉ι,⋉φ,⋉ι, p, s, p

∗, s∗}
and the output signature (So) is {σ, σ∗, T, T ∗,
⋉φ,⋉ι,⋊φ,⋊ι,A, p, s, p∗, s∗}, where each prop-
erty and relation symbol in the signature is as fol-
lows: σ and σ∗ for TBUs; ⋊φ and ⋉φ for ip bound-
ary; ⋊ι and ⋉ι for IP boundary; T for tones other
than pitch accent tones (nonstarred tones); T ∗ for
pitch accent tones (starred tones). A is a binary
association relation for tone and TBU.

For the unary relations, we can find the set of
positions for each symbol with a variable x in the
input structure. For example, σ(x) is true when x
is a syllable; T (x) is true when x is a tone, etc.

As for the binary relations, in addition to p and s,
we also define special predecessor and successor
functions, p∗ and s∗, to define the relations in the
tier that is projected from the set of the selected el-
ements such as metrically strong TBUs and phrasal
boundaries. We use two tiers to represent a metri-
cal grid: one for all the strings and the other for the
starred elements and phrasal boundaries, as shown
in Table 1. While the nonstarred function p(x)
works locally on the first tier, the starred function
p∗(x) works locally in the second tier. Similarly,
s(x) and s∗(x) work the same way but in different
directions.

p∗(x) ⋊ι ⋊φ σ∗ σ∗ ⋉φ ⋉ι

p(x) ⋊ι ⋊φ σ σ σ σ σ ⋉φ ⋉ι

⋊ι ⋊φ @n O∗ ôInÃ bOl∗ gaUn ⋉φ ⋉ι

Table 1: A metrical grid using a tier-based representa-
tion.

Now, we will now look at three case studies,
each focusing on a different intonational pattern.

3.1 American English

3.1.1 Basic intonational pattern
American English is a head-prominence into-
national language (Beckman and Pierrehumbert,

1986), where metrically strong positions receive
pitch accents in a phrase. For example, as shown in
(2), the accented syllables (σ∗) are associated with
pitch accents (H∗) within an ip. A phrase tone (L-)
is also associated at the right edge of the ip. Within
an IP, the largest prosodic domain, a boundary tone
(L%) is also associated with the right edge of the
IP. The actual f0 contour of an English declarative
for (2) is provided in Figure 2.

(2) ⋊ι ⋊φ σ σ∗

H∗

σ σ∗

H∗

σ

L-

⋉φ

L%

⋉ι

Figure 2: An actual f0 contour of a declarative into-
national pattern in American English, extracted from
Beckman and Pierrehumbert (1986).

3.1.2 Melodic transduction

Step 1: Copying The input is a string that
consists of syllables (σ, σ∗) and boundaries
(⋊ι/⋉ι,⋊φ/⋉φ). As defined in the formulas be-
low, the outputs are four copies of the input, which
are also illustrated in Figure 3. For the first copy
(C0), everything in the input is copied such that
syllables and ip and IP boundaries in the output are
interpreted the same as those in the input.

σ0
o(x)

def
= σi(x) σ∗0

o (x)
def
= σ∗

i (x)

⋊0
φo
(x)

def
= ⋊0

φi
(x) ⋉0

φo
(x)

def
= ⋉0

φi
(x)

⋊0
ιo(x)

def
= ⋊0

ιi(x) ⋉0
ιo(x)

def
= ⋉0

ιo(x)

In the formulas for the remaining copies (C1-
C3) below, only starred syllables and boundaries
are copied and interpreted as tones, reflecting the
head-prominence characteristics of American En-
glish intonational patterns. In C1, starred syllables
in the input, σ∗

i (x), are realized as pitch accents
in the output, T ∗1

o (x). In C2, ip boundary at the
right edge, ⋉φi(x), is realized as a phrasal tone,
T 2
o (x). In C3, IP boundaries at the left or right

edge, ⋉ιi(x) ∨ ⋊ιi(x), are realized as boundary
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INPUT ⋊ι ⋊φ σ σ∗ σ σ∗ σ ⋉φ ⋉ι

OUTPUT
COPY 0:

⋊ι ⋊φ σ σ∗ σ σ∗ σ ⋉φ ⋉ι

COPY 1: T∗ T∗

COPY 2: T

COPY 3: T T

A0,3
o (x, y)

A0,1
o (x, y)

A0,2
o (x, y)

Figure 3: Melodic transduction of American English
intonation.

tones, T 3
o (x).

T ∗1
o (x)

def
= σ∗

i (x)

T 2
o (x)

def
= ⋉φi(x)

T 3
o (x)

def
= ⋉ιi(x) ∨⋊ιi(x)

Thus, tones in American English are direct copies
of starred syllables and phrasal boundaries.

Step 2: Tone-TBU association Importantly,
tones in the melodic tiers (C1-C3) are associated
with syllables in the segmental tier (C0), as defined
below. A0,1

o (x, y) specifies the association between
pitch accents in C1 and their TBUs in C0 if they
are at the same position in the input. For phrasal
and boundary tones, tones are linked to syllables
near boundaries. Specifically, A0,2

o (x, y) defines
the association between phrasal tones at the right
edge and the phrase-final syllables just before that
edge. Similarly, A0,3

o (x, y) links boundary tones to
their TBUs: tones from the left edge are linked to
the first syllable, while those from the right edge
are linked to the last syllable in an utterance. Thus,
tone-TBU association is computed using only pre-
decessor or successor functions, showing a local
logical characterization without quantifiers.

A0,1
o (x, y)

def
= x ≈ y

A0,2
o (x, y)

def
= σi(x) ∧⋉φi(y) ∧ y ≈ s(x)

A0,3
o (x, y)

def
= (σi(x) ∧⋊ιi(y) ∧ y ≈ p(p(x)))

∨ (σi(x) ∧⋉ιi(y) ∧ y ≈ s(s(x)))

3.1.3 Declarative meaning transduction

In the melodic transduction, we have made the slots
for the tones that are associated with their TBUs.
The remaining step is to compute the meaning of a
declarative sentence in English, which is specified
as H∗ H∗ L- L% tonal sequence in Figure 2. As
shown Figure 4, we use another simple transduc-

tion that changes the unspecified tones (T /T ∗) into
actual tones (H∗/L), using these simple formulas:
H∗

o (x) = T ∗
i (x) and Lo(x) = Ti(x).

INPUT: ⋊ι ⋊φ σ σ∗

T∗

σ σ∗

T∗

σ

T

⋉φ

T

⋉ι

OUTPUT: ⋊ι ⋊φ σ σ∗

H∗

σ σ∗

H∗

σ

L

⋉φ

L

⋉ι

Figure 4: Declarative meaning transduction of Ameri-
can English intonation.

With these melodic and declarative transduc-
tions, we can logically define the intonational tones
associated with their TBUs in the output based on
the strings in the input.

3.1.4 Summary
Results showed that American English intonation
can be defined as a QF logical interpretation of
a metrical and prosodic structure. The melodies
in the output were copies of starred syllables and
boundaries in the input. Crucially, copying the
starred syllables was able to capture the head-
prominence characteristic in American English
intonation, showing that the pitch accents in the
melodies were the direct reflections of the heads
of the prosodic unit – starred syllables. Also, the
tone-TBU associations were defined locally from
the input structure without using any quantifiers.

3.2 Seoul Korean

3.2.1 Basic intonational pattern
Seoul Korean is an edge-prominence intonational
language (Jun, 2006), where phrasal boundaries
are marked with prominence without any pitch ac-
cents. Basically, a typical tonal pattern is LH...LH
in an Accentual Phrase (AP). But when the initial
segment of an AP is an aspirated or a tense conso-
nant, the tonal pattern is HH...LH. An Intonational
Phrase (IP) consists of more than one AP.

In (3), LH tones are associated with the first two
and last two syllables. However, in the final AP,
the L% boundary tone overrides the phrase-final
H tone at the end of an utterance. If a phrase has
fewer than four syllables, one of the tones may not
be realized. Edge tones—LH at the left edge and
LH at the right edge—plays a crucial role in the
intonational pattern of Seoul Korean. An actual f0
contour of a Korean declarative for (3) is provided
in Figure 5.
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(3)
⋊ι ⋊α

L

σ σ

H

σ

L

σ ⋉α

H

⋊α

L

σ σ

L

σ ⋉α

H

⋊α

L

σ σ

H

σ

L

σ ⋉α

L

⋉ι

Figure 5: An actual f0 contour of one of the declarative
intonational patterns in Seoul Korean, extracted from
Jun (2006).

3.2.2 Melodic transduction
Step 1: Copying The input is a string that con-
sists of syllables and boundaries. The outputs are
four copies of the input, defined in the formula be-
low. As shown in Figure 6, for C0, everything in
the input is copied such that syllables and bound-
aries in the output is interpreted the same as those
in the input. In Seoul Korean, the stiffness feature
for aspirated or tense consonants ([+stiff]) is speci-
fied in the syllable, allowing retrieval during tonal
contour computation (e.g., HH...LH).

σ0
o(x) = σi(x) σ0

Fo
(x) = σFi(x) (F = [+stiff])

⋉0
αo
(x) = ⋉0

αi
(x) ⋉0

ιo(x) = ⋉0
ιi(x)

⋊0
αo
(x) = ⋊0

αi
(x) ⋊0

ιo(x) = ⋊0
ιi(x)

As for C1-C3, only boundaries are copied and
interpreted as tones, showing a crucial characteris-
tic for the edge-prominence intonational property.
Both C1 and C2 shows that AP boundaries at the
left or right edge in the input, ⋊αi(x)∨⋉αi(x), are
realized as tones in the output, T 1

o (x) and T 2
o (x).

A boundary at the end of an utterance, ⋉ιi(x), is
realized as a boundary tone, T 3

o (x).

T 1
o (x) = ⋊αi(x) ∨⋉αi(x)

T 2
o (x) = ⋊αi(x) ∨⋉αi(x)

T 3
o (x) = ⋉ιi(x)

Thus, tones in Seoul Korean are simply direct
copies of elements in the prosodic structure, which
are only phrasal boundaries.

Step 2: Tone-TBU association The tones in the
melodic tiers (C1-C3) are linked to the syllables in

the segmental tier (C0). First, A0,1
o (x, y)associates

a phrasal tone in C1 with either the first syllable of
an AP or the second-to-last syllable of an AP in C0.
A0,2

o (x, y) links a phrasal tone in C2 to the second
syllable of an AP, if it is preceded by a left edge
of an AP or followed by the last syllable of an AP
in C0. Finally, A0,3

o (x, y) links a boundary tone in
C3 to the last syllable before the boundary. The
boundary tone in C3 overrides the AP-final phrasal
tone in C2, reflecting the hierarchy of boundary
tones over phrasal tones.

A0,1
o (x, y) = σ(x) ∧ (⋊α(y) ∧ y ≈ p(x))

∨ (⋉α(y) ∧ y ≈ s(s(x)))

A0,2
o (x, y) = σ(x) ∧ ¬(⋉ι(y) ∧ y ≈ s(s(x)))

∧ (⋊α(y) ∧ y ≈ p(p(x)))

∨ (⋊α(y) ∧ y ≈ s(s(x)))

A0,3
o (x, y) = σ(x) ∧⋉ι(y) ∧ y ≈ s(s(x))

3.2.3 Declarative meaning transduction
After the melodic transduction, the unspecified
tones (T s) are filled with Hs and Ls for the declara-
tive in Seoul Korean, as shown in Figure 7. The in-
put signatures are {σ,⋉φ,⋉ι,⋊φ,⋊ι, T} and the
output signatures are {σ,⋉φ,⋉ι,⋊φ,⋊ι, H, L}.
The formulas are as follows: Lo(x) = Ti(x) ∧
(⋊α(p(x)) ∨⋉α(s(s(x)))) and Ho(x) = Ti(x) ∧
(⋊α(p(p(x))) ∧ ¬H(s(x))) ∨⋉α(s(x)).

INPUT:

⋊ι ⋊α

T

σ σ

T

σ

T

σ ⋉α

T

⋊α

T

σ σ

T

σ ⋉α

T

⋊α

T

σ σ

T

σ

T

σ ⋉α

T

⋉ι

OUTPUT:

⋊ι ⋊α

L

σ σ

H

σ

L

σ ⋉α

H

⋊α

L

σ σ

L

σ ⋉α

H

⋊α

L

σ σ

H

σ

L

σ ⋉α

L

⋉ι

Figure 7: Declarative meaning transduction of Seoul
Korean intonation.

3.2.4 Summary
Seoul Korean intonational pattern can be defined
using logical interpretation of a prosodic struc-
ture. The melodies in the output were copies of
only boundaries from the input, capturing the edge-
prominence characteristic of Seoul Korean intona-
tion. This reflects the edge tones as direct repre-
sentations of phrasal edges. Similar to American
English, the tone-TBU associations were defined
locally from the input without quantifiers.
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INPUT ⋊
ι

⋊
α

σ
F σ σ σ σ σ ⋉

α
⋊

α
σ σ σ σ σ ⋉

α
⋊

α
σ σ σ ⋉

α
⋉

ι

OUTPUT
C0:

⋊
ι

⋊
α

σ
F σ σ σ σ σ ⋉

α
⋊

α
σ σ σ σ σ ⋉

α
⋊

α
σ σ σ ⋉

α
⋉

ι

C1: T T T T T T

C2: T T T T T T

C3: T

A0,1
o (x, y)

A0,2
o (x, y)

A0,3
o (x, y)

Figure 6: Melodic transduction of intonation in Seoul Korean

3.3 Tokyo Japanese

3.3.1 Basic intonational pattern
Tokyo Japanese is a lexical pitch accent language
(Beckman and Pierrehumbert, 1986), where tones
are lexically specified for particular moras, while
other tones are defined in the phrase-level. The
typical intonational pattern in Tokyo Japanese is
a rising pitch pattern at the beginning of an Ac-
centual Phrase (AP), which depends on where the
lexical pitch accent H∗L is realized. The actual f0
contour of a Japanese declarative for (4) is shown
in Figure 9.

(4)
⋊ι ⋊α

L

µ

H∗

µ

L

µ µ µ µ µ µ ⋉α

L

⋊ι ⋊α µ

H∗

µ

L

µ µ µ µ ⋉α

L

⋉ι

Figure 9: An f0 contour for a declarative intonation in
Tokyo Japanese, extracted from Beckman and Pierre-
humbert (1986).

When the first syllable of the first lexical item
in an AP is accented, H∗L is associated to the first
mora of the accented syllable, with H∗ realized on
the first mora and L on the second. This realization
prevents an L% boundary tone and a phrasal H tone
from associating with the first and second moras
of the AP. Instead, the L% boundary tone of the
preceding AP is linked to its final mora rather than
the first mora of the current AP.

When the first syllable of the first lexical item
in an AP unaccented (e.g., omáwarisan), a phrasal
H tone is usually linked to the second sonorant
mora and L% boundary tone of the preceding AP
is associated to the first mora of the following AP.

Lastly, L% boundary tone is inserted at the be-
ginning of the utterance as a whole. A postlexical
rule deletes all accents after the first accent in an
AP, which is known as deaccentuation.

3.3.2 Melodic transduction
Step 1: Copying The input is a string that
consists of moras (µ, µ∗) and boundaries (⋊ι/⋉ι,
⋊α/⋉α), as defined below. The outputs are five
copies of the input, as shown in Figure 5. For C0,
everything in the input is copied such that moras
and boundaries in the output are interpreted the
same as those in the input.

µ0
o(x) = µi(x) µ∗0

o (x) = µ∗
i (x)

⋉0
αo
(x) = ⋉0

ιi(x) ⋉0
ιo(x) = ⋉0

ιi(x)

⋊0
αo
(x) = ⋊0

αi
(x) ⋊0

ιo(x) = ⋊0
ιi(x)

H∗1
o (x) = µ∗

i (x) L2
o(x) = µ∗

i (x)

T 3
o (x) = ⋊αi(x) T 4

o (x) = ⋊ιi(x) ∧⋉αi(x)

In C1 and C2, the HL lexical pitch accents
(H∗1

o (x) and L2
o(x)) in the output are derived di-

rectly from the starred moras (µ∗
i (x)) in the input,

as they are lexically specified. This allows the ac-
tual HL tones to be computed in the output without
creating unspecified tone slots like T . In C3 and
C4, phrasal tones (T 3

o (x)) are derived from the left
edge of an AP boundary (⋊αi(x)), while boundary
tones (T 4

o (x)) are derived from the left edge of an
IP boundary (⋊ιi(x)) or the right edge of an AP
boundary (⋉αi(x)). This direct mapping of input
moras to lexical pitch accents and unspecified tones
to post-lexical tones reflects Tokyo Japanese’s pitch
accent patterns.

Step 2: Tone-TBU association The tones in the
melodic tiers (C1-C4) are associated with moras in
the segmental tier (C0). For lexical pitch accents
in the last AP, only the first pitch accent sequence
(H∗ in C1 and L in C2) is realized, while oth-
ers are deaccented. This association is defined by
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INPUT ⋊ι ⋊φ µ µ µ ⋉α ⋊α µ µ µ µ∗ µ µ ⋉α ⋊α µ∗ µ µ µ∗ µ µ ⋉α

OUTPUT
C0

⋊ι ⋊α µ µ µ ⋉α ⋊α µ µ µ µ∗ µ µ ⋉α ⋊α µ∗ µ µ µ∗ µ µ ⋉α

C1 H∗ H∗ H∗

C2 L L L

C3 T T T

C4:
T T T T

A0,4
o (x, y)

A0,3
o (x, y)

A0,1
o (x, y)

A0,2
o (x, y)

Figure 8: Melodic transduction of Tokyo Japanese intonation.

A0,1
o (x, y), linking the first starred mora after the

left edge of an AP boundary with the H∗ using
the p∗ function. Similarly, A0,2

o (x, y) links L to
the next mora. Subsequent pitch accent sequences
in the last AP are not associated with their TBUs.
A0,3

o (x, y) associates the phrasal tones with the sec-
ond mora in an AP only when not followed by a
lexical pitch accent. Therefore, if the following
elements are the lexical pitch accents, the phrasal
tones cannot be realized. As for the boundary tones,
Ao

0,4(x, y) associates the boundary tones with the
first mora in an AP or with the last mora of the
preceding AP or the final AP.

A0,1
o (x, y) = µ∗

i (x) ∧⋊αi(y) ∧ y ≈ p∗(x)

A0,2
o (x, y) = µi(x) ∧⋊αi(y) ∧ y ≈ p∗(x)

A0,3
o (x, y) = µi(x) ∧ (⋊αi(y) ∧ y ≈ s(s(x))) ∧

¬(µ∗(y) ∧ y ≈ s(x))

A0,4
o (x, y) = µi(x) ∧ (⋊ιi(y) ∨⋊αi(y) ∧

y ≈ p(p(x))) ∨ (⋉αi(y) ∧ y ≈ s(x))

3.3.3 Declarative meaning transduction

After the melodic transduction, the unspecified
post-lexical tones (T s) are filled with Hs and Ls
for the declarative in Tokyo Japanese in Figure 10.
Note that the lexical pitch accents are already
filled with H∗ and L. The input signatures are
{µ, µ∗,⋉α,⋉ι,⋊α,⋊ι, T,H

∗, L} and the output
signatures are {µ, µ∗,⋉α,⋉ι,⋊α,⋊ι, H

∗, H, L}.
The formula is as follows: Lo(x) = Ti(x).
INPUT:
⋊ι ⋊α

T

µ

H∗

µ

L

µ µ µ µ µ µ ⋉α

T

⋊ι ⋊α µ

H∗

µ

L

µ µ µ µ ⋉α

T

⋉ι

OUTPUT:
⋊ι ⋊α

L

µ

H∗

µ

L

µ µ µ µ µ µ ⋉α

L

⋊ι ⋊α µ

H∗

µ

L

µ µ µ µ ⋉α

L

⋉ι

Figure 10: Declarative meaning transduction of Tokyo
Japanese intonation.

3.3.4 Summary

Results showed that the intonational pattern in
Tokyo Japanese can be defined using a QF log-
ical interpretation of a prosodic structure. Un-
like the post-lexical (head-prominence and edge-
prominence) intonational patterns in American En-
glish and Seoul Korean, copying starred moras di-
rectly to specified tones—H∗ and L—was able to
capture the lexically specified pitch accent in Tokyo
Japanese. Also, copying boundaries was able to
capture the realization of post-lexical (phrasal)
tones. This process reflects the typical initial ris-
ing pitch in an AP in Tokyo Japanese. Even with
deaccentuation, where only the first lexical pitch
accent in an AP is realized, tone-TBU associations
were defined locally without quantifiers, by making
reference to tier-based representation.

4 Discussion

By defining the intonational structure as a QF logi-
cal interpretation of a metrical and prosodic struc-
ture that are ISL, we were able to create an intona-
tional theory that is restrictive enough to character-
ize different intonational patterns.

From the typological view of intonation, the
head-prominence intonational pattern in American
English was defined with the copies of both starred
syllables (i.e., heads) and boundaries, whereas
the edge-prominence pattern in Seoul Korean was
defined with the copies of only boundaries (i.e.,
edges). The lexical pitch accent pattern in Tokyo
Japanese was defined with both copies of starred
moras for the lexical pitch accent and copies of
phrasal boundaries for the post-lexical tones.

This suggests that the prosodic elements in the
input strings are not realized the same way, but
the way they are logically interpreted leads to the
characterization of different metrical and prosodic
realizations in intonation.

Crucially, the computational nature of intona-
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tional tone-TBU association patterns found to be
characterized as QF logical interpretations. As
for the Melodic Transduction, the tone-TBU as-
sociations in both American English and Seoul
Korean were analyzed in a strictly local manner,
without the need of quantifiers. Even in the case
of Tokyo Japanese, where prosodic elements like
starred TBUs and boundaries may appear non-local,
the QF logical interpretations are achieved by pre-
serving the input order in the output (Chandlee and
Jardine, 2019b) and using tier-based predecessor
and successor functions (p∗, s∗). Furthermore, the
use of these starred ordering functions captures the
hierarchical structure of TBUs, reflecting their rela-
tive prominence, in line with the AM theory’s view.
Even within the class of QF logical interpretations,
typological distinctions can be observed (Danis,
2025). The intonational patterns of Tokyo Japanese
are found to be more complex, requiring the use of
p∗ and s∗, whereas those of American English and
Seoul Korean can be captured without using such
functions.

As for the Declarative Transduction, at least
for American English, Seoul Korean, and Tokyo
Japanese, H and L sequences were defined using
FO logic without quantifiers. Notably, no case re-
quired even-numbered starred syllables to be H
tones. This result can be extended to Question
Transduction with similar tonal sequence except
for an H boundary tone at the end of an IP. This QF
logical characterization confirmed that intonational
patterns are also ISL functions like most of other
phonological mappings within the regular upper
bound of phonology (Chandlee, 2014; Chandlee
and Jardine, 2019b; Chandlee and Lindell, to ap-
pear).

Based on these results, we may able to ask sev-
eral questions to predict the intonational patterns:
1) what kind of prosodic elements are being copied
in the output? Is it a head of a constituent? Is it
a phrasal boundary? Or are they both?; 2) when
are the tones specified during the derivation from
the input to the output? Is it directly specified from
the input to the output in a melodic transduction?
Or is it specified during the meaning transduction?
These questions can provide valuable predictions
of possible intonational patterns in the typology.

Further research is needed to generalize the local-
ity of intonational patterns by examining more lan-
guages within the same intonational categories. For
instance, Spanish is another head-prominence in-
tonational language (Beckman et al., 2002), where

the stressed syllable receives pitch accents (e.g., H∗,
L∗+H) within an ip, and boundary tones (L%, H%)
are realized at the end of an IP. The intonational
pattern in Spanish may possibly seem to function
similarly to that in American English, as the heads
of constituents serve as main prosodic elements.
In contrast, French is known for marking promi-
nence at the edges of an AP (/LHiLH∗/ (Jun and
Fougeron, 2000), where the phrase-final H∗ on the
last full vowel signals the edge of an AP, while the
initial accent Hi is optionally realized. Boundary
tones (H%, L%) are realized on the final syllable
of an IP. The phrase-final edge-prominence prop-
erties in French can be compared to those in other
edge-prominence languages like Seoul Korean.

As for lexical pitch accent patterns, Lekeitio
Basque may exhibit similar patterns as in Tokyo
Japanese. That is, in Lekeitio Basque, a H∗+L lex-
ical pitch accent is realized in an AP and a %L
boundary tone is realized on the first syllable of
an AP (Elordieta, 1998). An IP begins and ends
with boundary tones (L%, H%). Due to the ab-
sence of a deaccentuation pattern, tonal computa-
tion in Lekeitio Basque may be less complex than
in Tokyo Japanese. Likewise, we need further anal-
yses on the intonational pattern of other languages
to generalize our results that intonation is a QF
logical interpretation of a metrical and prosodic
structure that are defined locally. But in this way,
we can provide a theory of intonation that makes
restrictive predictions about the typology of into-
nation and measure the complexity of intonational
structures.

5 Conclusion

The present study explored how the tone-TBU asso-
ciation patterns in intonation can be defined using a
QF logical interpretation of a metrical and prosodic
structure. Tones were construed as literal copies
of prosodic elements, such as starred syllables or
boundaries, and their associations with TBUs were
defined locally without quantifiers. Head-and edge-
prominence intonational patterns were QF metrical
grids, whereas lexical pitch accent patterns were
more complex. By defining intonation as a logi-
cal interpretation, we were able to understand the
computational nature of intonation and predict the
typology of intonation, contributing the theory of
intonational and computational phonology.
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Abstract

Our research provides empirical support that
LLM’s contextualized word embeddings have
captured deep and hierarchical syntactic struc-
ture. In 2019, Hewitt and Manning found ev-
idence that LLMs have captured features of
structural dependency parses within their word
representations; we extend this work by deploy-
ing their methodology on sentence structures
that are differentiated only in a constituency-
based account like Minimalism rather than a
dependency-based account. Our novel work
creates a dataset containing several carefully
selected sentence structures whose dependency
parses are identical, but whose constituency
trees differ due to to the size of the complement
(vP versus TP versus CP). We find differences
in the probe’s predicted distances that can only
be explained if the embeddings have indeed
captured some Minimalist structural difference
between these sentence types. The impact of
our work helps to realize Linzen (2019)’s ar-
gument that linguists can further the study and
understanding of LLMs and that the field of
NLP provides novel tools for further linguistic
research.

1 Introduction

Since the release of BERT (Devlin et al., 2019),
much research has been done to test and expand
the impressive performance of large language mod-
els. A subset of research interest lays in under-
standing what linguistic structures and knowledge
these models have acquired (Jawahar et al., 2019;
Belinkov and Glass, 2019; He et al., 2024; Waldis
et al., 2024; Kallini et al., 2024), including syntac-
tic (Clark et al., 2019; Chi et al., 2020; Kulmizev
et al., 2020; Maudslay and Cotterell, 2021; Arps
et al., 2022), morphological (Coleman, 2020; Anh
et al., 2024), and semantic knowledge (Nikolaev
and Padó, 2023; Kamath et al., 2024).

Our work extends this body of research by utiliz-
ing a probe method developed by (Hewitt and Man-

ning, 2019), which finds that a dependency parse
can be recovered solely from the contextualized
vector embeddings of a pretrained language model
like BERT (Devlin et al., 2019). We further these
findings by deploying the probe on sentence struc-
tures whose dependency parse is invariant (i.e., the
distance between a head and its dependent is always
1, see Section 2.1 for explanation), but whose hier-
archical distances vary depending upon the size of
a phrasal complement in a Minimalist constituency
framework (see Section 3.2 for details). In doing so,
we seek to discover whether large language models
like BERT have captured the complex hierarchies
and subsurface structures postulated by syntacti-
cians in the Minimalist Program. This work thus
follows in the research vein of Linzen (2019), who
argues that linguists and NLP researchers stand in
a unique position for collaboration to leverage the
skills and tools of their respective fields to better
understand, test, and develop the two bodies of
research.

2 Background

2.1 Syntactic Theories

In the field of NLP, there are two main approaches
to syntax that a researcher can utilize: a Depen-
dency Grammar (DG) approach or a constituency
grammar (CG), also known as a phrase-structure
grammar. In brief, Dependency Grammar focuses
more on the relationship between constituents with-
out needing to represent a sentence’s linearized
word-order, making it popular for work on lan-
guages with freer word order (Müller, 2019).1

The core of the theory centers around the concept
of valence, which indicates which words govern

1Various schools of thought in the theory have proposed
different mechanisms to derive linear order from a dependency
structure, including the idea that linear order is dictated by
surface syntactic rules (Müller, 2019). The author of this
approach, Ulrich Engel, published in 2014 in (Öhl, 2015),
though the original source is in German.
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(1) Dependency Tree

What did he eat yesterday

dobj
aux

nsubj tmod

root

Figure 1: An example of the dependency tree for the
sentence "What did he eat?" Note the flatter structure,
the one-to-one mapping of words to nodes in the tree,
and how each word has one and only incoming arc,
excepting the root.

which words in a sentence. The governing word in
a phrasal pair is considered the "head" and the gov-
erned word is its "dependent," sometimes called
its "valence" (Müller, 2019). Each sentence will
have one and only one "root," which is typically
the matrix verb of the sentence, that will have no
head itself. Thus, in a dependency tree, all words—
except the root—will have one and only one in-
coming arc from its head. Though a word itself
can head several other words, it itself can only be
headed by one other word (see Example (1)).

On the other hand, constituency grammars are
popular amongst many syntacticians and linguists
who have built theories off of the work of Chom-
sky and others who have refined various aspects
of phrase-structure/constituency-based grammars
(Chomsky, 1957, 1981, 1986, 1995). Phrase-
structure grammars are based around X-bar the-
ory and operations of Merge and Move (Chomsky,
1995) and their consequent traces (Chomsky, 1973;
Fiengo, 1977) (such as question formations where
"He ate chicken" transforms into "What did he
eat?"). After all syntactic operations are applied
and all relevant nodes have been moved and/or
merged, the end result is the sentence’s lineariza-
tion, meaning the final locations of the words in the
hierarchy should match what is actually uttered if
the tree is read from left to right (see Example (2)).
Constituency-based grammars (CGs) thus result in
trees with deep and complex hierarchies wherein
empty nodes must be inferred as the traces and
remnants of previous operations.

Like DG, many constituency theories incorpo-
rate the concept of valence, albeit with some modi-
fications. Some of Chomsky’s earlier work in the
theory of Government-Binding (Chomsky, 1981)
stipulates that certain categories (particularly the
lexical categories of Verb, Noun, Adjective/Adverb,
and Preposition in addition to the functional cat-
egory of Tense) head/govern/dominate other con-

(2) Constituency Tree

Figure 2: An example of a constituency tree for the
sentence "What did he eat?" Note the depth of the tree
and the movement of elements.

stituents.2 Later theories (Chomsky, 1995) refined
this by defining specific operations, such as Merge,
where the head element provides the properties
of the combined result (e.g., Verb eat + Noun
chicken = VerbPhrase eat chicken, not NounPhrase
eat chicken), and which enables the recursive fea-
ture of language (e.g., "The old lady swallowed
a fly that was then caught by a spider she later
swallowed that was...."), thus allowing for infinite
embeddings.

In short, both theories postulate a primitive build-
ing operation that allows for the combination of
two elements into a single, new element whose fea-
tures are determined by the head word, enabling
the recursive nature of language to appear. For DG,
this is through the dependency relationship, which
establishes the head; for CG, this is through the
Merge operation, which assigns the features of the
phrase by referring to the phrase’s head. The core
differences, meanwhile, can be summed up as:

1. Dependency Grammars use a one-to-one map-
ping between words and nodes in the tree.
Constituency Grammars more often use a one-
to-many mapping between nodes in the tree,

2A constituent A can govern another constituent C iff C
does not govern A, and there is no intervening element B that
governs A but not C.
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postulating branches and nodes that are not
overtly present in the spell-out.

2. Dependency Grammars root at the verb. In
Constituency Grammars, generally the Com-
plementizer Phrase (CP) or Tense Phrase
(TP)3 exists as the highest level, though it
is true that all sentences must have a verb in
order to valid.

3. Structurally, Dependency Grammars do not
distinguish between a head’s arguments (e.g.,
the subject or object of a verb) and its adjuncts
(e.g., modifiers, such as an adverb or prepo-
sitional phrase modifying the verb). The dif-
ference is left to the dependency label, but the
structure remains changed. In contrast, Con-
stituency Grammars, particularly Minimalism,
structurally distinguish between the two, and
even between argument types.

4. Dependency Grammars opt for reduced, flat-
ter, more horizontal representation of word-
to-word relationships. Constituency Gram-
mars opt for a more hierarchically complex,
vertically-organized representation.

When syntax is leveraged in NLP, the framework
adopted tends to be DG rather than CG (compare
14,900 ACL papers on Dependency Grammar as
opposed to only 3,630 on Constituency Grammar).
There are several reasons for this: DG’s trees are
simpler (nodes are in a one-to-one relationship with
words), DG is more static (dependencies are as-
sessed in-situ, meaning one needs not be concerned
whether or not an element moved to its location or
base-generated there), DG utilizes flatter represen-
tations (because elements are assessed in-situ, there
is no need to postulate more complex and empty hi-
erarchies that might explain how or why the word is
currently where it is), and its simplicity and avoid-
ance of contentious theoretical debates—such as
those in Minimalism—allow for faster and more
consistent inter-annotator agreement.

The DG framework is appealing to many in NLP
as it is relatively easy to learn and its compact and
efficient representation has proven to be salutary
to downstream tasks, such as question-answering,
relation extraction, summary (de Marneffe et al.,
2006), spam detection (Milner, 2024), sentiment

3Some languages do not include tense, like Chinese, and so
the top level is often represented as IP for Inflectional Phrase.

analysis (Liang et al., 2021), sentence classifica-
tion and matching as well as sequence labeling and
machine translation (Zhang et al., 2021), and more.
However, the theory fails to capture linear order,
nor does it explain the patterns and restrictions that
form licit sentences and their interpretations, and
it furthermore entirely skirts the issues of the deep
and complex hierarchies that have been argued for
in Minimalism. In this vein, we seek to investi-
gate to what extent LLMs have captured the deeper
and more complex syntactic structures proposed by
constituency grammar frameworks, such as Mini-
malism.

2.2 Probes
Since LLMs took the world by storm with their
impressive performance in multiple language tasks,
researchers have sought to understand what lin-
guistic properties LLMs have actually acquired. A
popular method is the probe method, first proposed
by Shi et al. (2016), which used the embeddings
from neural machine translation encoders to train
a logistic regression classifier in order to identify
what syntactic features were acquired by the mod-
els. This field of research and these probe models
are not concerned with improving state-of-the-art
performance; rather, they seek to investigate, or
"probe", what latent linguistic features a language
model has acquired.

The tasks specified by probes depend on the lin-
guistic feature under investigation (e.g., semantics,
syntax, etc.), but often utilize a pretrained language
model’s latent features, such as their vector rep-
resentations (Conneau et al., 2018; Jawahar et al.,
2019; Tenney et al., 2019b,a; Starace et al., 2023)
or attention mechanisms (Clark et al., 2019; Man-
ning et al., 2020).

One form of structural probe, developed by He-
witt and Manning (2019), found that the pretrained
contextualized embeddings of BERT (Devlin et al.,
2019) and ELMo (Peters et al., 2018) could be used
to recover dependency trees from those vector rep-
resentation of words. To find this, Hewitt and Man-
ning trained a linear transformation matrix to take
the contextualized word embeddings and project
them into a subspace where the squared Euclidean
distance between word nodes ultimately recovers
a dependency parse. That is to say, their probe’s
training objective was to learn to map words’ con-
textualized embeddings to new positions within
a subspace where the probe’s predicted squared
Euclidean distance between each head and its de-
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pendent is approximately 1.4

While Hewitt and Manning (2019) and others
(Chi et al., 2020; Kulmizev et al., 2020; Müller-
Eberstein et al., 2022; Eisape et al., 2022) have
found evidence that dependency structures are en-
coded within the contextualized vector representa-
tions, it remains unclear whether LLMs have ac-
quired the deep, hierarchically-complex structures
of constituency grammars such as those proposed
in the Minimalist framework. To this end, we uti-
lize the structural probe of Hewitt and Manning
and test sentence types whose hierarchical distance
varies in a constituency/Minimalist account, but
whose head-dependency distance does not vary in a
Dependency Grammar account. If the probe is sen-
sitive to the nuances of a constituency account, this
indicates that not only have the language models
captured something of the hierarchically complex
and subsurface structures of Minimalism, but that a
probe trained only to recover a dependency parses
is capturing constituency syntax for free.

3 Methods

Our work is not the first research to probe at con-
stituencies (Tenney et al., 2019b; Arps et al., 2022;
Kallini et al., 2024). However, these previous meth-
ods either focus solely at the phrase-level by seek-
ing to train a probe to recover a phrase’s boundaries
(Tenney et al., 2019b; Kallini et al., 2024) or by
training on the English Penn Treebank for their
probe (Arps et al., 2022). While constituency trees
represented in the English Penn Treebank (Marcus
et al., 1993) are deeper than their equivalent de-
pendency trees, they do not adhere to the binary
branching requirement postulated in Minimalism
and do not capture Merge and Move operations.
As such, the representations are not as rich nor as
complex as those which have been posited in the
Minimalist constituency framework.

For this reason, we opt for the novel approach of
utilizing the original Hewitt and Manning (2019)
structural probe that was trained to recover depen-
dency trees to probe for variations in constituency
hierarchies. To that end, our stimuli involve sen-
tences wherein the distance between a head and
its dependent is invariant in a DG account, but
whose hierarchical distance depends upon the sen-
tence structure as captured in the Minimalist frame-
work. The choice to probe for a dependency parse

4The specific mathematics and model information can be
found in Section 3.1.

as opposed to a constituency in fact allows us to
avoid several potential pitfalls of constituency trees:
namely that constituency trees make assumptions
about the underlying structure and may predispose
the probe to recover the constituency parses uti-
lized in the training data rather than probing for a
latent representation of constituency hierarchies as
captured by the model.

3.1 Computational Model
The structural probe by (Hewitt and Manning,
2019) stipulates a model M that produces a se-
quence of vector representations hl

1:n from an in-
put sequence of n words wl

1:n where l identifies
the sentence. A linear transformation B ∈ Rk×n

parameterizes the parse tree-encoding distances:

dB(hl
i,hl

j)
2 = (B(hl

i − hl
j))

T (B(hl
i − hl

j))

where i and j are the words in the sentence and
where the matrix B is trained to reproduce the gold
parse distances between each pair of words (wl

i,
wl
j) in each sentence for all the sentences within

the parsed training corpus T l.5 This training is ac-
complished through the gradient descent objective:

min
B

∑

l

1

| sl |2
∑

i,j

| dT l(wl
i, w

l
j)− dB(h

l
i, h

l
j)

2 |

In doing so, the objective seeks to approximate
the matrix that most closely reproduces distances
that align with the gold-standard distances. | sl |
is the length of the sentences, and the function
normalizes using the square of the sentence’s length
since each sentence contains | sl |2 pairs of words.

Hewitt and Manning (2019) trained their struc-
tural probe using BERT-large (cased) with 1024
dimensionality for all 24 layers. The probe was
trained with the objective of minimizing the L1
loss of the predicted squared distance with respect
to the true distance (i.e., the distance between a
head and its dependent should be 1; the distance
between the dependent of a dependent of a head
should be 2; and so on). They used Adam opti-
mizer (Kingma and Ba, 2014) with an initialized
learning rate of 0.001 with β = 0.9, β2 = 0.999,
and ϵ = 10−2 and an epoch maximum of 40 or
to convergence with a batch size of 20. Dev loss

5The authors found that training on squared distances and
using the square root to retrieve the final distance performed
better than using the direct distance. Hewitt and Manning
(2019) left the possible reasoning for this for future work.
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was calculated at each epoch; if the dev loss was
not a new low for the model, the optimizer was
reset with an initial learning rate multiplied by 0.1.
The probe was implemented using DyNet (Neubig
et al., 2017) and PyTorch (Paszke et al., 2019).

Probe evaluation was based on how closely the
predicted distances between word pairs align with
the gold parse structures, which were created by
converting the constituency trees from the English
Penn Treebank (Marcus et al., 1993) into depen-
dency parses.6 To measure this, the authors cal-
culated the minimum spanning tree for each sen-
tence’s predicted distances and scored the undi-
rected, unlabeled attachment score (UUAS), which
merely measures whether or not the proper word-
pairs are in a dependency relationship, ignoring
the matter of directionality (which indicates which
word is the head and which is the dependent in a
head-dependent pair) and labels.

3.2 Linguistic Data

To probe whether vector embeddings encode the
hierarchical distances captured by Minimalist con-
stituency trees, we utilize the filler-gap dependen-
cies that result from wh-question formation of
sentences with embedded sentential complements
(e.g., "What did she see [him eat __]"). By varying
the size of the complement taken by the matrix verb
and extracting out of that embedded complement,
we can vary the constituency tree’s hierarchical
distance while keeping dependency distances con-
stant.7

In traditional Minimalism, there is an accepted
order to the hierarchy of phrases. At the highest
level is the complementizer phrase, which intro-
duces whether the clause is interrogative or declara-

6It is important to note here that the constituency trees of
the Penn Treebank are not the binary branch trees with Merge
and Move operations as postulated in Minimalism.

7While our experiment utilizes filler-gap dependencies,
our probe method can be applied to any sentence structure
types whose constituency tree varies but whose relevant de-
pendency parse does not. Hewitt and Manning (2019) probe’s
training objective allows for flexibility in possible Minimalist
structures. Its training objective is such that a parent-child
relationship between a head and its dependent should return
a distance of approximately 1, while a "grandparent"-child
relationship (the dependent of a dependent of a head) should
return a distance of approximately 2, and so on. Using this fea-
ture, Kennedy (2025) deploys our probing method on declara-
tive Subject-Raising and Subject-Control constructions—the
former of which is argued to take a smaller TP complement
compared the latter’s larger CP complement—and finds that
the predicted Euclidean distance between matrix elements and
embedded elements are larger in the Subject-Control condition
despite the two structures having identical dependency parses.

tive; under the CP is the tense phrase, which hosts
tense information; the TP nests a verb phrase,
which can further be subdivided into a small verb
phrase (vP) also known as a voice phrase that takes
a VP complement itself (Adger, 2003).

Different verbs can vary in the type and size of
the complement they can take. At the largest level,
a verb can take an entire finite clause as its comple-
ment (see Example (3)). Examples of such verbs
include think, believe, suspect, claim, etc., which
can all optionally include an overt complementizer
like that or who.

(3) Full CP Complement
a. I think [CP (that) he ate the chicken]

The next smallest complement size is a non-finite
complement. The easiest one to discuss is the in-
finitive complement in sentences known as excep-
tionally case marked (ECM) (see Example (4)),
which include matrix verbs that take TP comple-
ments (Adger, 2003). ECMs are called exception-
ally marked because the subject of the embedded
clause receives its accusative case (rather than the
typical nominative case) from the matrix verb.

(4) ECM TP Complement
a. I expect [TP him to eat the chicken]

Another small subset of verbs in English allow for
phrasal complementation. This subset of verbs in-
clude causatives (e.g., make, let) and perception
verbs (e.g., see, hear, watch, feel) that take bare in-
finitives (see Example (5)). We follow in the steps
of (Sheehan and Cyrino, 2023) in analyzing these
as vPs, which we dub "bare vPs" to emphasize that
the nonfiniteness is not overtly realized with an
infinitival to as it is in ECMs.

(5) Bare Infinitive Complement
a. I saw [TP/vP him eat the chicken]

For our experimental design, we specifically
needed sentence structures in which the depen-
dency parse remained consistent, but the con-
stituency parse yielded differing distances between
two elements. For this reason, we leveraged the
ability for verbs to take complements of differing
sizes (vP, TP, and CP) and created wh-questions
(e.g., what did you see him eat/what did you expect
him to eat/what did you think he ate). Wh-question
structure was specifically selected as the distance
between the embedded verbal head (e.g., eat) and
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its dependent (e.g., what) is consistently 1 in all
conditions; however, in a Minimalist account, the
hierarchical distance between embedded verb and
its moved object depends on the size of the comple-
ment taken (vP, TP, or CP). For visualization, see
the trees in Appendix B, Examples (6)-(9).

To add further complexity, two more sets of
sentences were constructed that took advantage of
the recursive property by creating sets for double-
nested ECMs (e.g., What did you expect her to
want him to eat) and double-nested full-CP com-
plements (e.g., What did you believe she suspected
he ate).

Using only pronouns for the subjects, the min-
imum linear distance (meaning the number of
intervening words) between the extracted wh-
constituent and the embedded verb ranged from 5
(bare vP and single CP) to 6 (single TP) to 7 (dou-
ble CP) to 9 (double TP). Because the sentences
could not be started at identical linear distances due
to the presence of necessary words (such as to in
ECMs), the linear distance was increased incremen-
tally through the change of a pronoun (e.g., you) to
a nominal phrase (e.g., the professor) to a modified
nominal phrase (e.g., the brilliant professor) to a
possessive nominal (e.g., the brilliant professor’s
friend) to the inclusion of an adverb.8

Using the above schema, we created a total of
18,252 carefully constructed sentences that strictly
conformed to one of the five specific syntactic con-
structions that are well-accepted in traditional syn-
tax as demonstrating different syntactic hierarchies.

4 Experiment

For our experiment, we used the best-performing
pretrained probe from Hewitt and Manning (2019),
which they found to be the probe for Layer 16
and which they released and made publicly avail-
able on their Github.9 Our methodology sought to
discover whether the probe’s predicted squared Eu-
clidean distances between head-dependent words
were sensitive to hierarchical depth as postulated in
a Minimalist framework. In a DG framework, the
distance between a head and its dependent should
always be 1 across our five conditions. However, in
a Minimalist account, the size of the complements
(vP, TP, CP, TP-TP, and CP-CP) yields longer and
longer hierarchical distances between the moved

8For more detail on our dataset creation, see Appendix A.
9https://github.com/john-hewitt/

structural-probes

wh-object and the embedded verbs.
The contextualized embedding representations

of our 18,252 sentences were fed into the pretrained
probe, and we extracted the squared Euclidean dis-
tances between the new projections of the wh-word
and the embedded verb if and only if the mini-
mum spanning tree correctly established a head-
dependent relationship between moved wh-word
(the first word) and the in-situ embedded verb (the
last word). As our experimental design rests upon
comparing the predicted squared Euclidean dis-
tance of a dependency probe when given sentences
whose structures vary only in a constituency Min-
imalist account, we were only interested in sen-
tences in which the probe correctly identified the
head-dependent relationship because there is lit-
tle point in comparing the predicted dependency
distances of an incorrect dependency parse.10

4.1 Predictions

The structural probe was trained only to recover la-
tent dependency representations captured by the
pretrained BERT model. Thus, the probe has
no specific or overt reason to show sensitivity to
constituency-based distances. If the probe is sensi-
tive only to dependency representations, then the
five conditions should show no difference in dis-
tances predicted by the model. Alternatively, it is
possible that the contextualized vector representa-
tions have captured Minimalist-like syntax, but that
the dependency-trained probe is insensitive to such
features.

The more interesting outcome, however, would
be if the model’s predicted distances are affected by
the constituency distances. If predicted distances
are reflective of an influence of constituency dis-
tances, this would suggest 1. that the model itself
captures some representation of Minimalist-like
constituency in addition to dependency, and 2. that
the dependency representations themselves are sen-
sitive to constituency differences. Such findings
would have implications for modeling this distinc-
tion in the theory of Dependency Grammar.

If it is found that the probe is able to pick up on
constituency hierarchies, then we would anticipate
that embedded verbs with CP complements should
have the highest predicted distance as it has the
highest number of hierarchical nodes between the

10While the fail cases are of interest for further research and
investigation, for our current purposes, robust analysis could
only be conducted when the probe achieved its trained gold
parse.
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extracted wh-object and the embedded verb within
the constituency tree. ECM verbs that take TP
complements and perception verbs that take either
bare vP complements should trail behind this.

4.1.1 Dependency vs Constituency for Probes
As mentioned, our probe is intentionally trained
to recover dependency parses as opposed to con-
stituency trees. While it may seem intuitive to
utilize a probe trained to recover constituency trees
like Arps et al. (2022), we argue that using a depen-
dency probe for Minimalist constituency structures
actually has several advantages.

The logic behind linguistic probes is that in or-
der for them to be successful, the embedding rep-
resentation (or attention scores for some probes)
must encode some feature(s) of that linguistic phe-
nomenon in order for the probe to be able to solve
the task. However, one critique of probing meth-
ods is the concern that the probe may simply be
learning the linguistic task rather than revealing
latent features encoded within the representation
(Hewitt and Liang, 2019). Our stance is that using
a dependency probe to test for constituency-based
hierarchical distances avoids this possible liability.

The Hewitt and Manning (2019) probe is trained
to recover only head-dependency relationships such
that the distance between a head and its depen-
dent is approximately 1. While the constituency
trees for our stimuli will vary in the number of in-
tervening nodes between the extracted wh- word
and its verb (with the hierarchical distance being
largest with a CP complement followed by a TP
complement followed by a vP complement), the
dependency parses have an invariant distance of 1
(see examples (6)–(9) in Appendix B for visualiza-
tion). Because the probe isn’t trained to predict a
syntactic size difference between the complement
types, the predicted squared Euclidean distances
shouldn’t vary unless the probe is picking up on
some additional linguistic feature within the vector
representation. The training objective is naive to a
difference in the complement sizesm, and because
of this, the training objective cannot bias the probe
to output a desired structural difference. Therefore,
if the probe’s distances do vary in theoretically-
predicted ways, we can have a greater confidence
in significant results that constituency hierarchical
distances are captured within vector representations
and that such representations are utilized to some
extent to recover dependency parses. In this regard,
our methodology helps to address issues raised

by Maudslay et al. (2020) that an overly powerful
probe blurs the line between probe and parser.

The second benefit of using a dependency-
trained probe as opposed to a constituency-trained
probe is that we can avoid biasing certain de-
bated syntactic analyses. Kuznetsov and Gurevych
(2020) finds that the linguistic formalism utilized
can impact how a probe performs, both in its ac-
curacy scores and in the means through which
it makes predictions (e.g., which attention lay-
ers are utilized). A probe that seeks to recover
constituency parses will inevitably need to pick a
"gold" standard tree that includes structure whose
syntactic analysis varies even within the Minimalist
framework.

For example, we mentioned how perception
verbs are debated to take either a vP (Sheehan and
Cyrino, 2023) or bare TP (Felser, 1998) comple-
ment. Were we to train a constituency probe, we
would need to overtly pick one side of the argument
and would include training data that reflects one
analyses, thus risking biasing the probe towards
that particular analysis. Dependency parses, mean-
while, are minimalistic (but not Minimalist) in that
they make few theoretical assumptions with the
most important being that there exists a dominance
relationship between a head and its dependent. Us-
ing a probe trained for minimalistic dependency
parses lets us to remain as theoretically-agnostic as
possible within the general Minimalist framework
and allows us to probe for models’ representational
differences as opposed to imposing debated syntac-
tic structures upon the probe.

5 Results

Of the 18,252 sentences fed to the probe, 4,034
properly established a dependency relationship be-
tween the wh-word and the embedded verb.11 A
linear mixed effect model was then fit using the
constituency hierarchical representation (Embed-
Type), the linear distance between the target words
(LinDist), and the interaction of the two as pre-
dictors. EmbedType was a categorical predictor
that included perception verbs (BareVP), singu-
lar ECMs (SingTP), singular CP complements
(SingCP), double ECMs (DoubTP), and double
CP complements (DoubCP), which were all simple
coded with BareVP as the reference level. Linear
distance was a discrete variable. A by-Verb (the

11As mentioned, overall probe performance on these edge-
case sentences is not the focus of this research, but discussion
can be found in Appendix D.
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Figure 3: Scatterplot of projected distances as a function of linear distance (LinDist) and size of the verbal
complement (EmbedType). There exists a stark difference between the larger CP complements and VP/TP
complements. Statistical analysis reveals a significant difference between all conditions when considering their
interactive effective with linear distance.

most deeply embedded verb; "eat" in our previous
examples) uncorrelated random slope was added to
the model.

In general, we can observe that as linear distance
increases, so does the projected distance (see Fig-
ure 3). This is not surprising as it is well known that
longer linear spans between dependencies tends to
worsen performance as the number of intervening
tokens are more likely to exceed that which is ob-
served in training (Tenney et al., 2019b). More
interesting is the clear divide in projected distances
for the CP-levels versus the TP and vP levels.

The linear mixed effect model revealed signifi-
cant main effects for singular TP and double CP em-
beddings (SingTP and DoubCP) compared to per-
ception verb embeddings (BareVP) (see Table 1).
That both SingTP and DoubCP reported projected
distances that were significantly longer than the
perception verb condition suggests that the probe
is sensitive to constituency size.12

Additionally, increases in linear distance signifi-
cantly corresponded to larger projected distances,
though this was anticipated. Furthermore, signif-
icant interactions were found between linear dis-
tance and SingTP, linear distance and SingCP, and
linear distance and DoubCP. The interaction be-
tween linear distance and DoubTP did not achieve

12That SingTP is significantly longer than BareVP but not
DoubTP likely comes down to DoubTP having a much smaller
sample size as this particular construction is more rare in natu-
ral data and yielded some of the lowest performance results
by the probe.

significance, but that may be due to the notably
fewer examples due to low UUAS performance.

Follow-up models were run on all categori-
cal predictors (BareVP, SingTP, SingCP, DoubTP,
DoubCP) to investigate interactions with linear dis-
tance. For all constructions, linear distance was
a significant factor and the projected distances of
all constructions, except DoubTP, increased with
linear distance. This is expected as the greater lin-
ear distances between the two target words yielded
poorer parse accuracy by the probe. That DoubTP
does not conform to this behavior is likely due to
it being a rare construction with few samples in
our statistical analysis as the probe struggled to cor-
rectly establish the proper dependency relationship
for this sentence structure.

6 Discussion & Conclusion

When linear distance is taken into account, a pic-
ture emerges in which the size of the complement
(vP vs TP vs CP) is distinctly captured by the
probe’s correlatively larger projected distances (for
further discussion, see Appendix C). These find-
ings reveal to us several important conclusions:

1. The significant and correlative differences in
projected distances between the different com-
plement types suggest that pretrained models
like BERT have learned representations that
approximate in some capacity this hierarchi-
cal distinction between different complement
sizes. Or, at the very least, it has picked up on
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Fixed Effects
Coefficient β̂ SE(β̂) t df p
Intercept 1.462e+00 2.915e-02 8.458e+01 50.144 2e-16
SingTP -1.692e-01 3.583e-02 9.217e+01 -4.723 8.30e-06
SingCP -2.437e-02 2.521e-02 9.242e+01 -0.967 0.336258
DoubTP -1.208e-01 9.775e-02 1.166e+03 -1.236 0.216882
DoubCP -1.474e-01 4.091e-02 1.752e+02 -3.602 0.000411
LinDist 3.918e-02 2.399e-03 3.214e+03 16.332 2e-16
SingTP:LinDist 2.387e-02 3.383e-03 3.855e+03 7.055 2.04e-12
SingCP:LinDist 2.804e-02 2.595e-03 3.942e+03 10.805 2e-16
DoubTP:LinDist 1.893e-02 1.083e-02 2.703e+03 1.747 0.080677
DoubCP:LinDist 4.480e-02 4.361e-03 3.657e+03 10.275 2e-16

Random Effects
Group Term Variance Std.Dev Corr.
Verb Intercept 0.009815 0.09907

SingTP 0.030851 0.17564 -0.03
SingCP 0.039091 0.19772 0.10 0.82
DoubTP 0.008259 0.09088 -0.34 -0.30 -0.35
DoubCP 0.036986 0.19232 -0.24 0.72 0.82 -0.12

Residual 0.010048 0.10024

Table 1: Number of observations: 4034. Groups: Verb
(26). P-values/df calculated using the Satterthwaite
approximation. Model formula: ProjDist Embed-
Type*LinDist + (1 + EmbedType | Verb). Marginal
R2 = 0.2735, Conditional R2 = 0.6487.

some quality of these constructions (e.g., fi-
nite vs non-finite) that corresponds to a greater
or lesser extent with a distance in which fi-
nite constructions establish further distances
from their moved object and their embedded
verb when compared to non-finite counter-
parts.13 This benefits the field of NLP by
helping to better understand what qualities
and features of languages these models have
implicitly learned.

2. That a probe, specifically one trained only to
recover dependencies, shows a sensitivity cor-
responding to a constituency-based analysis
indicates to us that the theory of Dependency
Grammar may have reason to specifically ac-
count for these relative distances. At the very
least, we must postulate that this dependency
probe is sensitive to finite constructions in that
they show longer dependencies compared to
non-finite constructions. The possibility of
needing to account for some nested hierarchy
in Dependency Grammar has already been
proposed in order to explain certain syntactic
patterns (Müller, 2019).

3. If pretrained models have indeed implicitly
learned constituency representations in some
capacity (or some parallel measure), then it
may be that for the purpose of further NLP
work, we do not need to incorporate the far

13Such coincidences already would be suspicious enough,
and warrant further investigation to draw more conclusive
interpretations.

denser and more complex constituency-based
grammatical representations. While such the-
ory has advantages and we find support for its
analysis as a means to explain our data, the
fact remains that the representations are ex-
tensive, requiring many branches, movement,
empty nodes, and redundancies. The struc-
tures, though detailed, are too cumbersome to
be easily implemented in NLP architectures,
nor is it as accessible of a theory to utilize;
scientists from other disciplines will have an
easier time quickly learning and easily repre-
senting a dependency structure rather than a
phrase structure. And if the dependency repre-
sentations themselves are already affected by
some constituency elements, then there may
be less of an impetus to require computer sci-
entists to learn an interesting and detailed but
laborious representation when the nuances of
the structures are already gotten for free in
the models’ geometries of their dependency
representations.

The findings of this work have implications for
the NLP field and the field of theoretical syntax.
Not only does this work find evidence for the rich,
subsurface syntax postulated by constituency theo-
ries such as Minimalism, but it furthermore finds
evidence that LLMs are not only capable captur-
ing generative Minimalist syntactic structures, but
that they already do so to some extent. Our results
also show support for the continuation of work like
Müller (2019), who proposes utilizing nested hi-
erarchies in Dependency Grammar to account for
the structures captured by Minimalism and now by
LLMs, too. Furthermore, the work teases as the
possibility of utilizing LLMs for linguistic research.
If these models are capturing theories postulated in
syntax, might they not also be suitable as a means
of testing theories when paired with human-based
judgments? Already, our results suggest that BERT
may favor (Sheehan and Cyrino, 2023)’s vP analy-
sis over bare TP accounts as the probe’s distances
are significantly shorter than ECM’s TP distances.

For the field of NLP, this provides evidence that
the linguistic properties captured by LLMs are
richer and more complex than previously realized,
and that utilizing a dependency framework is still
adequate as it appears that methods using dependen-
cies are likely capturing constituency hierarchies
for free. Overall, this work helps to realize Linzen
(2019)’s claim that the skillsets and knowledge of
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the fields of NLP and Linguistics complement each
other, and that the collaboration of two can help to
further the respective fields.
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A Stimuli

Our dataset utilized five structure conditions (Bare
vP, Singular TP, Singular CP, Double TP, and Dou-
ble CP). Our key verbs for the five conditions in-
cluded:

1. Bare vP: see, hear, watch

2. Singular TP: require, allow, want

3. Singular CP: think, suspect, claim

4. Double TP: expect + {require, allow, want}

5. Double CP: believe + {think, suspect, claim}

Additionally, we varied the subjects for our sen-
tences in order to vary the linear distance between
the wh-word and the embedded verb. These sub-
jects included:

1. Pronouns: you/I/she/he/they

2. Nouns: the {teacher/student/woman/man/
people}

3. Modified Nouns: the {brilliant teacher/new
student/clever woman/smart man/rowdy peo-
ple}

4. Possessive Noun: {the modified noun}’s
friend14

B Minimalist Trees

For illustrative purposes, we have utilized verb-
flavors and roots from the school of Distributed
Morphology. However, this is not of importance to
the hierarchical distance as it is calculated from the
merged result of the root and verb flavor. Other the-
oretical representation choices are a consequence
of personal ideology, but does not impact the criti-
cal distinction that CP > TP > vP/VP. Two analyses
for perception verbs are provided: one which uti-
lizes a bare vP à la Sheehan and Cyrino (2023)
(Example (9)) and one which utilizes a bare TP like
Felser (1998) proposes (Example (8)). Our work fa-
vored the bare vP analysis—and furthermore found
support for such an analysis—but a discussion on
the two approaches can be found in Appendix C.

While not included, DoubTP and DoubCP trees
contained hierarchical distance of approximately
18 and 22 and follow the same tree diagramming
as illustrated in Examples (6)-(9).

14When necessary for BareVP and SingCP, an adverb was
inserted before the mostly deeply embedded verb.

(6) CP Complement ("what" and "eat" constit
dist ≈ 15; dep dist = 1)

What did she think he ate

dobj

aux
nsubj nsubj

ccomp
root

(7) ECM TP Complement ("what" and "eat"
constit dist ≈ 13; dep dist = 1)

What did she expect him to eat

dobj

aux
nsubj dobj mark

xcomproot

283



(8) Bare TP Complement ("what" and "eat"
constit dist ≈ 13; dep dist = 1)

What did she see him eat

dobj

aux
nsubj dobj

xcomp
root

(9) Bare vP Complement ("what" and "eat"
constit dist ≈ 11; dep dist = 1)

What did she see him eat

dobj

aux
nsubj dobj

xcomp
root

C Further Analyses

Examining only TP and BareVP’s difference from
CP complements may not fully suggest that con-
stituency structures are captured by pretrained lan-
guage models. If we look only at vP/TP versus CP,
it is possible that it is simply that BERT and the de-
pendency probe are sensitive to finiteness, with CP
being a finite phrase and vP/TP being non-finite.

Even under this possible interpretation, the im-
plications for Dependency Grammar would be sig-
nificant. Various theories of Dependency Grammar
have postulated different treatments of the matter
of finiteness; Lexicase (Starosta, 1988) and Word
Grammar (Hudson, 1984) incorporate case rela-
tions in order constrain case assignment, which
helps to assist in determining finiteness in English
since finite verbs are generally conceived of as
assigning nominative case in addition to incorporat-
ing features that help to distinguish the two struc-
tures (Starosta, 1997). However, the distinction
between the two is not well discussed, and there
exists no discussion that would explain why a verb
embedded under a finite CP complement would be
represented as being further away from a moved
wh-constituent compared to a nonfinite TP or vP
complement in the Chomskyan syntax. That CP
complements show a further distance from their
non-finite counterparts is already well captured and
explained in constituency-based theories; that the
dependency probe is sensitive to such distinctions
in their representation is worth pursuing in the De-
pendency Grammar framework in order to explain
this new data.

Additionally, the complements of perception
verbs have been debated amongst constituent lin-
guists (see Felser (1998) for bare infinitival TP
argument and see Sheehan and Cyrino (2023) for
bare vP argument analysis). Looking only at Fig-
ure 3, the distances for perception verb condi-
tion and singular ECM appear similar. However,
analyses reveal statistically significant behavior in
which ECMs showed significantly longer distances.
Given that neither are finite, it becomes difficult
to posit that the difference is due to some non-
finite quality. This leads us to suspect that such
differences are perhaps linked to a constituency-
based analysis in which perception verbs take a
complement whose size is smaller than that of the
well-established TP phrase in ECM constructions,
which lends support for the analysis in Sheehan
and Cyrino (2023).
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D Extra Figures and Results

The probe model frequently did not establish a de-
pendency relationship between the direct object
(the wh-question word) and the most deeply em-
bedded verb, achieving undirected unlabeled accu-
racy scores far lower than those reported in Hewitt
and Manning (2019), which ranged from 79.8%-
82.5%, depending on the model probed. This low
accuracy is likely due to various elements, such as
the linear distance being a negative factor (accu-
racy worsens with increased linear distance, which
is a well-known feature, or bug rather, of LLMs
and their bottle-neck struggle to handle long-range
dependencies) as well as questions being poorly
represented in probe’s training data and therefore
more prone to inaccurate parsing. The probe’s per-
formance on the various conditions can be seen in
Table 2.

In general, DoubTP achieves consistently low
performance, even at the first initial and simplest it-
eration (0.218 for a sentence such as "What did you
expect her to require him to eat?"), which is perhaps
unsurprising as this construction is rather rare in
natural data and is unattested in the probe’s training
data from the Penn Treebank (Marcus et al., 1993),
which utilizes newspaper articles, which is inher-
ently less likely to include questions, particularly
those that are extracted out of doubly-embedded
clauses. Similar performance appears—likely for
similar reasons—with the doubly-embedded CP
(DoubCP) which likewise performs poorly even at
the simplest form (0.167 for a sentence like "What
do you believe she thought he ate?"). Improving
performance on these structures is worth further
research.
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LinDist BarevP SingTP SingCP DoubTP DoubCP
4 Total 416 520

Corr. 144 285
Acc. 0.3462 0.5481

5 Total 832 312 520
Corr. 185 150 137
Acc. 0.2224 0.4808 0.2635

6 Total 728 312 624 840
Corr. 148 104 199 140
Acc. 0.2033 0.3333 0.3189 0.1667

7 Total 728 312 624 858
Corr. 128 95 195 114
Acc. 0.1758 0.3045 0.3125 0.1329

8 Total 728 624 624 702 858
Corr. 58 261 88 153 114
Acc. 0.0797 0.4183 0.1410 0.2179 0.1329

9 Total 728 624 624 702 858
Corr. 178 160 180 68 141
Acc. 0.2445 0.2564 0.2885 0.0969 0.1643

10 Total 728 624 624 702 858
Corr. 174 134 172 47 82
Acc. 0.2390 0.2147 0.2756 0.0670 0.0956

Table 2: The total number of sentences generated (Total) per condition per linear distance for the structural probe
experiment. The number of sentences that correctly established a dependency between the wh-question word and
the deepest embedded verb is also listed (Corr). Additional sentences were added as needed in order to achieve at
least approximately 50 sentences. The percentage of sentences that correctly established the proper dependency
relationship is also recorded (Acc.).
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Abstract

While work on the linguistic ability of language
models (LMs) is driven by a variety of aims,
one dominant motivation is using LMs to deter-
mine what linguistic knowledge can be learned
from unstructured text. The current work aims
to evaluate LMs on discourse sensitivity—the
capability to distinguish between content that
is more relevant and important to the discourse
and that which is less so. We ground our
evaluation of LMs by leveraging an existing
psycholinguistics study on the number agree-
ment attraction effect, one of the well-studied
measures of human language comprehension.
Based on human empirical findings on the mod-
ulation of the attraction effect by discourse, we
establish three tests that LMs should pass if
they demonstrate discourse sensitivity. A to-
tal of 25 models were evaluated that vary in (i)
model size (small or large) and (ii) training type
(dialogue-based, plain, and instruction-based).
The models showed systematicity in discourse
sensitivity, though in ways dissimilar to hu-
mans, either by over-relying on structural cues
or overusing discourse cues. Notably, models
that patterned most similarly to human perfor-
mance were predominantly smaller and those
trained on dialogue-targeted data. We discuss
the implications of these findings and insights
into human language processing.

1 Introduction

A growing body of work has investigated the lin-
guistic capabilities of language models (LMs), tack-
ling aspects of syntax, semantics, and pragmatics
(for a survey, see Chang and Bergen, 2024). While
work on the linguistic ability of LMs is driven by a
variety of aims, one dominant motivation is using
LMs to determine what linguistic knowledge can
be learned from unstructured text (Linzen and Ba-
roni, 2021). Some work has claimed LMs obtain
abstract linguistic knowledge, resolving complex
syntactic (e.g., Wilcox et al., 2024) and anaphoric

dependencies (e.g., Hu et al., 2020), and exhibit-
ing signs of pragmatic skills (e.g., Hu et al., 2023),
though there is nuance in what can be inferred from
these types of results (for a case study in the limita-
tions of inferring full grammatical knowledge from
overlap in behavior, see Lan et al., 2024).

Much of the work on linguistic evaluations of
LMs focuses on linguistic phenomena treated in
isolation. For example, linguistic knowledge bench-
marks like BLiMP (Warstadt et al., 2020) and Syn-
taxGym (Gauthier et al., 2020) explore linguistic
phenomena separately (e.g., subject-verb agree-
ment, argument structure) rather than the interac-
tion of multiple processes (e.g., interactions be-
tween argument structure and agreement; for dis-
cussion see Davis (2022b)). The current study aims
to expand on this body of work by investigating
the interaction of discourse structure with syntactic
dependencies. We ask whether exposure to a mas-
sive amount of text and differing forms of training
(e.g., instruction finetuning) yields “knowledge” of
discourse.

Building on a large body of work investigat-
ing subject-verb agreement in language models
(Linzen et al., 2016; Arehalli and Linzen, 2020;
Warstadt et al., 2020; Yedetore and Kim, 2024,
a.o.), we focus on structures like the following:

(1) The waitress who sat near the girls was
unhappy.

In (1), the agreement between the main verb (was)
and the subject (The waitress) can be made diffi-
cult because of an interfering noun, girls, which, if
misidentified as the subject, would yield a different
agreement pattern (e.g., were). This influence of
interfering nouns, when the subject-verb agreement
needs to be resolved, leads to an interference effect
and has been widely used in both human studies
(e.g., Wagers et al., 2009) and evaluations of lan-
guage models (e.g., Arehalli and Linzen, 2020).
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In our study, we manipulate the discourse sta-
tus of the relative clause containing the interfering
noun. In (1), the relative clause (who sat near the
girls) is a restrictive relative clause. Restrictive
relative clauses conventionally convey essential in-
formation to the discourse (as they function as se-
lecting a specific referent). By adding commas
surrounding the relative clause (i.e., The waitress,
who sat near the girls, was unhappy), we can sig-
nal an appositive relative clause, which conveys
side-commentary information and are not part of
the main assertion (Potts, 2005; AnderBois et al.,
2015; Syrett and Koev, 2015; Koev, 2022; cf. Potts,
2012). We make use of this contrast in discourse
status between the two structures to examine the
interaction of discourse structure and syntactic de-
pendencies, specifically cases where human pro-
cessing of subject-verb agreement is modulated by
discourse status.

As argued for in Suijkerbuijk et al. (2024), we
ground our evaluation of language models via
comparison to an existing psycholinguistic study
demonstrating human discourse sensitivity (Kim
and Xiang, 2024). Drawing on the same materials,
we established three tests that LMs should pass to
exhibit human-like behavior. Concretely, we in-
vestigated 25 models, including plain (base) and
instruction-tuned models, and models trained on
dialogue and conversational goal-oriented datasets,
and those that vary in model size (small or large).

To preview the findings, the results suggest that
(i) models trained on datasets with dialogue and
goal-oriented conversations outperform other mod-
els, (ii) larger models do not yield human-like dis-
course sensitivity, and (iii) instruction-based train-
ing does not necessarily benefit models compared
to base training. Taking these findings, we sug-
gest that the qualitative nature of training data (e.g.,
genre and the specific types of constructions) is
critical in the success of discourse sensitivity. We
conclude by discussing insights into human lan-
guage processing from evaluating language models
and why instruction-tuned models underperform
compared to base models, despite their seemingly
advantageous training.

2 Background

2.1 Discourse structure: the division of more
and less important information

Discourse can be defined in multiple different ways.
It can be illustrated as a coherence relation (Hobbs,

1985; Kehler, 2002), the conversational moves for
a successful discourse (Lewis, 1979; Farkas and
Bruce, 2010), a hierarchically structured represen-
tation of discourse units (Polanyi, 1988; Asher and
Lascarides, 2003; Jasinskaja, 2016), or a set of
organized question and answer pairs to the conver-
sational topic (Roberts, 2012), to name a few.

Regardless of the approaches to analyzing dis-
course, however, a shared notion of discourse is
that certain parts of discourse are more important
than others—some components of discourse are
more relevant to the discourse topic, and others
are less so. The examples in (2) demonstrate this
contrast, realized at a sentence level:

(2) a. The waitress who sat near the girl was
unhappy. [RRC]

b. The waitress, who sat near the girl,
was unhappy. [ARC]

The same content, that the waitress sat near the
girl is primary discourse information in (2a), es-
sential to specify the very waitress that is being
discussed, whereas it is secondary information in
(2b), adding side-commentary details to the dis-
course. This division is expressed with the contrast
of restrictive (RRC) (2a) and appositive relative
clauses (ARC) (2b). Throughout the paper, we use
these two structures to distinguish between differ-
ent types of discourse status, serving as stand-ins
for discourse structure at the sentence level.

2.2 Human sensitivity to discourse
Theoretical and experimental studies have shown
that humans are highly sensitive to distinctions in
information status (Potts, 2005; Syrett and Koev,
2015). In ongoing discourse, content that is part
of the main discourse structure is judged to be a
more natural continuation than content belonging
to a non-main or subordinate discourse structure,
such as information in an appositive relative clause
(Syrett and Koev, 2015; Göbel, 2019). Discourse
salience, topichood, and coherence have also been
shown to affect real-time language comprehension
and production. Entities that are salient in dis-
course are easier to recall and retrieved (e.g., Birch
and Garnsey, 1995; Sturt et al., 2004), those in top-
ical or focused sentential positions are more likely
to be selected as antecedents of pronouns (e.g.,
Arnold, 1998; Kaiser, 2011; Rohde and Kehler,
2014; Colonna et al., 2012), and discourse topic
(or Question under Discussion) modulates the ease
of comprehension (e.g., Clifton and Frazier, 2012;
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Kehler and Rohde, 2017; Clifton and Frazier, 2018)
and the resolution of syntactic ambiguity (e.g.,
Kehler, 2015). Additionally, these distinctions
have immediate effects on processing, with studies
demonstrating their active use in real-time language
comprehension. For instance, when linguistic ma-
terials known to lead to processing difficulty (e.g.,
long embedded relative clauses) are part of less
important discourse, they result in reduced process-
ing difficulty (Dillon et al., 2014, 2017; Kroll and
Wagers, 2019; Duff et al., 2023).

2.3 Language model sensitivity to discourse

While the linguistic evaluations of language mod-
els have been dominated by syntactic contrasts (for
a survey, see Chang and Bergen, 2024), there has
been a growing body focusing on discourse knowl-
edge. This includes work on the interaction of
discourse structure and pronouns (e.g., Davis and
van Schijndel, 2020), discourse structure and at-
issueness (e.g., Kim et al., 2022), implicatures and
presuppositions (e.g., Jeretic et al., 2020), and dis-
course connectives (e.g., Cong et al., 2023; Pandia
et al., 2021). Broadly, pre-trained language models
appear to capture some contextual effects. How-
ever, there are still notable differences between
model and human behavior, suggesting differences
in their processing of discourse. More recently,
the impact of instruction-tuning on the linguistic
knowledge of models has been investigated, with
some results showing that such fine-tuning results
in models with a worse fit to human behavioral
measures (Kuribayashi et al., 2024). Moreover,
the exact fine-tuning strategy directly impacts the
ability of models on discourse tasks, with some
strategies yielding models with better pragmatic
abilities (Ruis et al., 2024). These results suggest
that, while instruction-tuning was proposed to align
models with human discourse preferences, it may
not always align with the linguistic behavior of hu-
mans. The present study finds additional support
for this misalignment.

3 Metrics

3.1 Interference effect

To evaluate model performance on its discourse
sensitivity, we compare the interference effect, a
common way to show the cognitive process that un-
derlies human language comprehension (Van Dyke
and Lewis, 2003; Lewis and Vasishth, 2005). For
example, the interference effect is observed in the

different degrees of acceptance of the two sentences
in (3), even when both are ungrammatical. Studies
have found that (3b) is considered more acceptable
than (3a), and reading times at the verb (were) are
commonly found to be faster in (3b) compared to
(3a) (Wagers et al., 2009; Parker and An, 2018, a.o).
Such a difference between the two ungrammatical
sentences derives from the interfering linguistic
unit, the girl(s), where the plural (number) feature
of the girls matches the feature of the verb (were)—
leading to a number agreement attraction effect.

(3) a. *The waitress who sat near the girl
were unhappy.

b. *The waitress who sat near the girls
were unhappy.

Empirical findings suggest that this effect primar-
ily occurs in ungrammatical sentences—when the
subject and verb do not match (e.g., the waitress...
were instead of was) (e.g., Wagers et al., 2009; cf.
Jäger et al., 2017)—commonly referred to as the
standard number agreement attraction effect.

Interference effect in human reading times In
this study, we use the number agreement attraction
effect as a signal of human processing, typically
measured by the difference in reading time (RT) be-
tween the singular (3a) and plural (3b) conditions,
subtracting the singular from the plural condition:

Interference effect = RTplural −RTsingular
(Eq. 1)

Interference effect in models Following previ-
ous work (e.g., van Schijndel and Linzen, 2021),
we used language model surprisal in correspon-
dence to human reading time. Surprisal (Hale,
2001) is defined as (Eq. 2), calculated at the critical
verb position given prior context left of the verb.
The surprisal was calculated from the logits of the
model.1

Surprisal = − logP (verb | left context) (Eq. 2)

In examining the number agreement attraction
effect, we evaluated the difference in surprisal at
the verb between the context with a plural distractor
(i.e., plural context) and a singular distractor (i.e.,
singular context), as shown in (Eq. 3). For example,
the difference in surprisal for the verb were when
the left context was The waitress who sat near the

1For GODEL-based models, we calculated the surprisal
using the decoder of the encoder-decoder model.
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girls and when the left context was The waitress
who sat near the girl was calculated.

∆Surprisal(verb) =

− logP (verb | plural context)

− (− logP (verb | sigular context))
(Eq. 3)

For each model, the presence or absence of
the effect was determined by comparing the boot-
strapped 95% confidence interval (CI) of the aver-
age interference effect as in (Eq. 4).2

Average Interference Effect =

1

N

N∑

i=1

∆Surprisali(verb),

where N is the number of samples.

(Eq. 4)

The absence of an interference effect was deter-
mined by whether the CI overlapped with zero (i.e.,
there was no difference between the plural and sin-
gular conditions).

3.2 Evaluation of discourse sensitivity
The attraction effect has been reported to be ro-
bustly found when the distractor noun is linearly
close to the verb (the girls ... were as in (4a)) and
even when it is distant (the musicians ... praise as
in (5a)) (e.g., Wagers et al., 2009). Studies have
further found that the attraction effect, however,
can be modulated by the discourse status of the
distractor noun, where in one case, the standard
attraction effect disappears (4b) (Ng and Husband,
2017; McInnerney and Atkinson, 2020; Duff et al.,
2023; Kim and Xiang, 2024) but it sustains in the
other (5b) (Kim and Xiang, 2024).

(4) a. *The waitress who sat near the girls
were unhappy.

b. *The waitress, who sat near the girls,
were unhappy.

(5) a. *The musicians who the reviewer
praise highly will win a Grammy.

b. *The musicians, who the reviewer
praise highly, will win a Grammy.

When the distractor (e.g., the girls) is part of sec-
ondary information as in (4b), it does not interfere
when the subject-verb dependency needs to be re-
solved, and hence the number agreement attraction
effect is absent. On the contrary, when the distrac-
tor (e.g., the musicians) is related to the discourse

2Bootstrapping was done with 1000 samples and resam-
pling.

topic (or Question under Discussion as in Roberts
(2012)) at retrieval (e.g., praise) in (5b)), the dis-
tractor interferes and leads to a number agreement
attraction effect (Kim and Xiang, 2024). This mod-
ulation of the interference effect due to the dis-
course status of the distractor noun will be used as
a signal for discourse sensitivity.

Discourse sensitivity in human reading times
The key aspects of discourse sensitivity in humans
in interference effects are summarized in Table 1.
First, in both constructions (Experiments 1 and
2), a standard attraction effect is found with the
baseline RRC condition. This is identified by sig-
nificant reading differences between the singular
and plural distractor conditions in the ungrammati-
cal condition but not in the grammatical condition
(Eq. 5).

Standard number agreement attraction effect =
{
RTplural −RTsingular < 0 if ungrammatical,
RTplural −RTsingular ≃ 0 if grammatical.

(Eq. 5)

Secondly, the standard attraction effect should be
present in structures as in (4b) (Experiment 1) but
absent in structures as in (5b) (Experiment 2).

Discourse sensitivity in models Using the above-
mentioned human reading time results identifying
discourse sensitivity as a baseline (Kim and Xiang,
2024), we evaluate model outputs based on the
three following tests:3

• Discourse Attraction. In Experiment 1, the
standard attraction effect is exhibited in the
RRC structure (4a) but not in the ARC struc-
ture (4b). For RRCs, the average difference in
surprisal between the plural distractor and the
singular distractor should be negative, indicat-
ing that plural distractors lower the surprisal
of plural verbs. ARCs should be significantly
different from RRCs with RRCs exhibiting a
larger interference effect (i.e., more negative).

• Standard Attraction. In Experiment 2, the
standard effect is exhibited in both the RRC
(5b) and ARC (5b) structures. The average
difference in surprisal should be negative,
indicating that plural distractors lower the
surprisal of plural verbs. More specifically,

3For code and data: https://github.com/sangheek16/
discourse-sensitivity-attraction-effect.git.
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Exp. Clause Grammaticality Input (subject-verb is bold-faced; distractor is underlined) Effect
1 RRC Grammatical The waitress who sat near the girl(s) was unhappy. ✗

1 RRC Ungrammatical The waitress who sat near the girl(s) were unhappy. ✓

1 ARC Grammatical The waitress, who sat near the girl(s), was unhappy. ✗

1 ARC Ungrammatical The waitress, who sat near the girl(s), were unhappy. ✗

2 RRC Grammatical The musician(s) who the reviewer praises will win a Grammy. ✗

2 RRC Ungrammatical The musician(s) who the reviewer praise will win a Grammy. ✓

2 ARC Grammatical The musician(s), who the reviewer praises, will win a Grammy. ✗

2 ARC Ungrammatical The musician(s), who the reviewer praise, will win a Grammy. ✓

Table 1: Human baseline: presence (✓) vs. absence (✗) of interference effect (Kim and Xiang, 2024).

we divide this test into two subcases. With
the stronger version of this test (Standard
Attraction-Strong), the magnitude of the
interference effect between RRC and ARC
should be comparable. In the weaker version
(Standard Attraction-Weak), the size of the
interference effect does not matter as long as
both exhibit an attraction effect.

• Grammatical Asymmetry. As a signal for a
standard number agreement attraction effect,
there should be no interference effect (i.e.,
no difference based on whether the distrac-
tor is singular or plural) in all grammatical
conditions, regardless of clause type and ex-
periment.4

4 Model selection

We tested 25 models for evaluation, either base-
trained or involving instruction-based tuning, and
varying in size and type of training data. Models
are categorized below and summarized in Table 2.

Categorization 1: Based on the number of pa-
rameters First, we compared models that vary
in their number of parameters. Specifically, we ex-
amined whether larger models yield performance
similar to that of humans. Given the current empha-
sis in the field of scale, we might straightforwardly

4We acknowledge prior findings showing that the gram-
matical asymmetry in attraction effects—typically observed
in ungrammatical conditions—can be influenced by task fac-
tors such as response bias and answer ratios (e.g., Hammerly
et al., 2019; Laurinavichyute and von der Malsburg, 2024).
These studies found that the asymmetry is masked when the
response bias is neutralized. However, in the study by Kim
and Xiang (2024), which provides the human reading time
data used for model evaluation in the current work, the task
was explicitly designed to neutralize response bias. Therefore,
while we recognize this as a general concern in the literature,
we suspect it is less likely to impact the interpretation of our
current results.

predict that bigger models are more likely to pass
the tests. However, some empirical results suggest
that scale does not necessarily mean better predic-
tion of human behavior (e.g., Oh and Schuler, 2023;
Oh et al., 2024; Shain et al., 2024; Wilcox et al.,
2024). As Oh et al. suggest, LLMs make good
predictions on words with low frequency, which in
turn is not what is expected in human data. If the
same type of counter-advantage of large models
applies to examining discourse sensitivity, then we
could see better performance with smaller models.

Categorization 2: Based on the genre of data
Second, we also examine whether the genre of data
would affect the performance of LMs in discourse
sensitivity. Earlier work has shown that models
outperform others in dialogue and discourse set-
tings when trained on data with conversation and
naturalistic data (Wolf et al., 2019; Bao et al., 2020;
Henderson et al., 2020; Wu et al., 2020; Zhang
et al., 2020; Gu et al., 2021; Thoppilan et al., 2022).
We acknowledge that the comparison of the genre
of data between models is not totally straightfor-
ward, especially given the lack of accessibility to
LLMs’ training data. For example, the training
data used for some LLMs may include the data
used for the “dialogue-based models.” However,
we believe a useful comparison can still be sus-
tained. If the dialogue-based models outperform
the models trained on a variety of genres, then we
take this as evidence that training data primarily
composed of discourse-goal and dialogue-oriented
data is of better quality, for alignment with human
linguistic behavior, than a larger composition of
varied genres and styles.

Categorization 3: Based on tuning/training type
Finally, we also examine whether instruction mod-
els outperform base models in discourse sensitivity.
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Given that instruction-tuned models are arguably
better at capturing the user’s (or the interlocutor’s)
needs and goals (see Zhang et al. (2023) for an
overview), we speculate that models could bene-
fit from such training methods to achieve better
performance in discourse sensitivity, similar to un-
derstanding discourse goals. They could demon-
strate patterns that align well with human expec-
tations in discourse and dialogue settings. Yet,
there is only little work on investigating how well
instruction-based models align with human behav-
ior. While instruction tuning can result in greater
alignment at the high-level representation (e.g., be-
tween the LLM internal representation and human
neural activity, see Aw et al., 2024), findings also
suggest that at the behavioral level, there is no
model-human alignment such as in human reading
times or judgment tasks (Zhang et al., 2023; Kauf
et al., 2024; Aw et al., 2024). Given that discourse
sensitivity in the current work is measured through
surprisal and is compared against human reading
time data, it is possible that instruction-based mod-
els would not outperform the base models.

5 Results

Table 2 shows the list of models we evaluated and
the results.

5.1 By each test

Discourse Attraction. With only one exception
of DialoGPT-small, all dialogue-based models
passed this test. While GPT-Neo-125M, GPT-Neo-
2.7B, and Mistral-7B-v0.3 passed Discourse At-
traction, the remaining models did not, showing no
systematic correlation with training type or size.

Standard Attraction. All but three models
passed Standard Attraction-Weak. The models
that did not pass this test are all small dialogue-
based models: DialoGPT-large, GODEL-base, and
GODEL-large. When a stronger version (Standard
Attraction-Strong) was applied, four additional
models failed to pass: GPT-J-6B, Mistral-7B-v0.1,
Mistral-7B-v0.3, and Mistral-7B-Instruct-v0.3.

Grammatical Asymmetry. None of the models
passed Grammatical Asymmetry. All models ex-
hibited an interference effect in the grammatical
condition of at least one of the clause types in at
least one of the experiments.

5.2 By combined tests
To better understand the results, we analyze them
by each of the four combinations that can be found
in passing Discourse Attraction and Standard At-
traction. The models’ failure to pass Grammatical
Asymmetry is discussed in Section 6.

Discourse Attraction:✓, Standard Attraction:✓.
This is a case where models were most sensitive
to discourse division. Passing both of these tests
signals a division of primary versus secondary in-
formation driven by the syntactic difference be-
tween RRC and ARC structures—as in Discourse
Attraction—while not simply making distinctions
between RRC and ARC structures based on their
syntactic form—as in Standard Attraction. Models:
DialoGPT-medium, GPT2-small, GPT-Neo-125M,
and GPT-Neo-2.7B. The models that passed both
of these tests (Discourse Attraction and Standard
Attraction-Strong) were all small GPT-based mod-
els.

Discourse Attraction:✓, Standard Attraction:✗.
This is a case where models were sensitive to the
division between RRC and ARC and were apply-
ing the same division to resolving the linguistic
dependency in Experiment 2. However, as we have
seen in human performance, it is not simply the
syntactic division between RRC and ARC to pass
Standard Attraction; the interference effect with
the ARC condition that was absent in Experiment 1
should be present in Experiment 2. The models
under this category did not exhibit that contrast,
suggesting that while they have grasped the syn-
tactic division, the nuanced discourse division was
not captured. Models: DialoGPT-large, GODEL-
base, GODEL-large. These models were exclu-
sively small, dialogue-based models.

Discourse Attraction:✗, Standard Attraction:✓.
This is a case where models exhibited an interfer-
ence effect in both experiments in both clauses.
While all models showed the baseline interference
effect in the RRC condition, the failure to pass
Discourse Attraction was driven by the presence
of the interference effect in the ARC condition.
The results can be interpreted in that while the
models showed an interference effect, they lacked
discourse or syntactic division. Models: DialoGPT-
small, GPT2-medium, GPT2-large, GPT2-XL,
GPT-Neo-1.3B, GPT-J-6B, Llama-2-7B, Llama-2-
13B, Llama-3-8B, Llama-3.1-8B, Mistral-7B-v0.1,
Llama-2-7B-Chat, Llama-2-13B-Chat, Llama-3-
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Training Type Size Model Size Discourse Standard-weak Standard-strong Grammatical

Dialogue

Small

DialoGPT-small 117M ✗ ✓ ✓ ✗

DialoGPT-medium 345M ✓ ✓ ✓ ✗

DialoGPT-large 762M ✓ ✗ ✗ ✗

GODEL-base 220M ✓ ✗ ✗ ✗

GODEL-large 770M ✓ ✗ ✗ ✗

Plain

GPT2-small 124M ✓ ✓ ✓ ✗

GPT2-medium 355M ✗ ✓ ✓ ✗

GPT2-large 774M ✗ ✓ ✓ ✗

GPT2-XL 1.5B ✗ ✓ ✓ ✗

GPT-Neo-125M 125M ✓ ✓ ✓ ✗

GPT-Neo-1.3B 1.3B ✗ ✓ ✓ ✗

GPT-Neo-2.7B 2.7B ✓ ✓ ✓ ✗

GPT-J-6B 6B ✗ ✓ ✗ ✗

Large

Llama-2-7B 7B ✗ ✓ ✓ ✗

Llama-2-13B 13B ✗ ✓ ✓ ✗

Llama-3-8B 8B ✗ ✓ ✓ ✗

Llama-3.1-8B 8B ✗ ✓ ✓ ✗

Mistral-7B-v0.1 7B ✗ ✓ ✗ ✗

Mistral-7B-v0.3 7B ✓ ✓ ✗ ✗

Instruction

Llama-2-7B-Chat 7B ✗ ✓ ✓ ✗

Llama-2-13B-Chat 13B ✗ ✓ ✓ ✗

Llama-3-8B-Instruct 8B ✗ ✓ ✓ ✗

Llama-3.1-8B-Instruct 8B ✗ ✓ ✓ ✗

Mistral-7B-Instruct-v0.1 7B ✗ ✓ ✓ ✗

Mistral-7B-Instruct-v0.3 7B ✗ ✓ ✗ ✗

Table 2: Model comparison: passed (✓) vs. failed (✗) the test.

8B-Instruct, Llama-3.1-8B-Instruct, Mistral-7B-
Instruct-v0.1, Mistral-7B-Instruct-v0.3. These in-
clude all the instruction-based models, most of the
large models, and most of the small plain models.

Discourse Attraction:✗, Standard Attraction:✗.
This would be the case where models demonstrated
no interference effect. No model exhibited this
behavior, which confirms that they were influenced
by the presence of a distractor noun in at least some
conditions. All models demonstrated the baseline
effect of interference in the ungrammatical RRC
condition. Models: None.

6 Discussion

No models passed all three tests. However, all
models were influenced by distractors, facilitat-
ing the use of interference effects to test whether
discourse structure influenced model’s predictions.
While the models did not pass all three tests, they
showed systematicity in their performance on Dis-
course Attraction and Standard Attraction. In one

case ({Discourse Attraction: ✗, Standard Attrac-
tion: ✓}), the presence of a distractor led to an
interference effect, but this effect was not modu-
lated by discourse division. In the other case ({Dis-
course Attraction: ✓, Standard Attraction: ✗}), the
models were guided by the discourse, or the syn-
tactic division of RRC and ARC, but they were
overapplying this division. Four of the tested mod-
els performed in the most principled way, where
they passed Discourse Attraction and Standard At-
traction: DialoGPT-medium, GPT2-small, GPT-
Neo-125M, and GPT-Neo-2.7B. In the following,
we elaborate on the less principled models.

Lack of discourse division (Discourse: ✗, Stan-
dard: ✓). This is a systematic pattern where the
models show the standard number agreement attrac-
tion effect without showing sensitivity to discourse
division. Models showed the attraction effect in all
constructions in (4)–(5), indicating that the differ-
ent discourse status of the distractor in (5b) was
not considered. This pattern was prevalent in most
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of the models, except for the small dialogue-based
models. This is in line with earlier studies that
have shown cases where grammatically irrelevant
words modulate the surprisal at the critical word
(in subject-verb agreement (Ryu and Lewis, 2021;
Arehalli and Linzen, 2020) as well as reflexive
pronoun resolution (Ryu and Lewis, 2021; Davis,
2022a). The influence of linearly closer, but gram-
matically irrelevant words, remains a feature of
even the larger models. That is, increases in scale
and other training approaches have not made mod-
els robust to interference effects.

Heavy reliance on syntactic/discourse division
(Discourse: ✓, Standard: ✗). In line with the
finding discussed above, it is still the case that all
models under this category have exhibited the stan-
dard number agreement attraction effect in the base-
line RRC condition (as in (4a) & (5a)). Nonethe-
less, the effect was not present with the ARC struc-
ture in both Experiment 1 (as in (4b)) and Exper-
iment 2 (as in (5b)), suggesting that it is possible
that models heavily relied on the linguistic cue that
distinguishes the main content from the subordi-
nate content in the sentences with the ARC struc-
ture. Earlier work using a probing task showed
that LMs successfully classify (with greater than
99% accuracy) the main content differently from
the subordinate content (Kim et al., 2022). Hence,
it is possible that the structural difference (or even
simply the presence of commas) of ARCs com-
pared to RRCs has resulted in the absence of the
attraction effect.

However, there is another possibility beyond the
models tracking the superficial cues or the syntactic
representation: the models were (overly) applying
discourse division cues. Recall that the only three
models that fell under this category are DialoGPT-
large, GODEL-base, and GODEL-large, all trained
on dialogue-based data. We conjecture that it is not
coincidental that the overapplication of the division
of main versus subordinate content to attraction ef-
fect was only found in the dialogue-based models.
We speculate that the specific training process has
led to an effect of models exhibiting abstract signals
about discourse structure, either (a) naturally fol-
lowing from the abstract structural representation
through training, or (b) demonstrating a separate
pattern that is learned in addition to the abstract
structural representation.

Given the promising performance of recent
instruction-based models, it is perhaps unexpected

that they fall short in exhibiting the level of dis-
course sensitivity in humans. This discrepancy may
stem from the training methods of these instruction-
based models, which are optimized for extract-
ing and producing the most relevant information
efficiently and concisely. During training, they
are directed to perform tasks such as summariza-
tion and a clear question and answering (Zhang
et al., 2023). However, human discourse includes
purposeful digressions—often for the richness of
conversation—and layers of primary (main) and
secondary (subordinate) information. The different
conversational goal perhaps accounts for the rea-
son why instruction-based models diverge from the
discourse division that humans show.

Why didn’t any of the models pass Grammat-
ical Asymmetry? Grammatical Asymmetry ex-
amined whether models exhibit the standard num-
ber agreement attraction effect, i.e., whether the
attraction effect is found only in the ungrammati-
cal and not in the grammatical condition. One of
the ways to account for the asymmetric attraction
effect in humans is an error-driven process, where
the interference effect is realized only when there
is a mismatch between the retrieval target (i.e., sub-
ject) and the retrieval site (i.e., verb)—that is, when
the sentence is ungrammatical (Wagers et al., 2009;
Lago et al., 2015; Schlueter et al., 2019). However,
such an error-driven process seems unlikely for the
models. As we saw in the results with Grammatical
Asymmetry, the presence of the distractor in the
subject-verb dependency led to an attraction effect,
even when the subject and the verb agreed—that
is, when the sentence was grammatical, and hence
there were no “errors.”

The contrast between human and model perfor-
mance has implications for interpreting the mod-
els, where the distractor does not have an equal
status in language processing. Humans may be ap-
plying a top-down approach (by incorporating the
discourse status of distractors) (e.g., Kutas et al.,
2011) while incorporating bottom-up linguistic in-
formation (Momma and Phillips, 2018) (such as
number information). While prediction and expec-
tation on the verb that agrees with the subject are
formed in real time in humans, models are strongly
driven by a bottom-up incremental process, where
the linear sequence of the incoming linguistic units
is influential on the retrieval process.
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7 Conclusion

The current work examined the discourse sensitiv-
ity of language models by investigating the interac-
tion between discourse structure and syntactic de-
pendency. Leveraging findings from human exper-
iments on the number agreement attraction effect,
we compared language model behavior to human
behavior. Critically, the pattern we targeted was the
presence of a standard attraction effect in Experi-
ment 1 (Discourse Attraction), its absence in Ex-
periment 2 (Standard Attraction), and the presence
of a grammatical asymmetry (Grammatical Asym-
metry). As discussed in Kim and Xiang (2024),
humans show a modulated attraction effect across
the two experimental setups, driven by their sen-
sitivity to the active discourse question (akin to
the Question Under Discussion).5 None of the 25
models fully overlapped with humans: some mod-
els associated structural cues with discourse, while
others overapplied discourse cues. Larger models
exhibited the attraction effect in both Experiment 1
and Experiment 2, indicating insensitivity to the nu-
anced discourse status of distractor and target noun
phrases. In contrast, smaller models trained on
dialogue-based data showed the best performance—
even outperforming large, instruction-based mod-
els. These smaller models exhibited a modulated
attraction effect, suggesting they may have learned
some abstract representation of discourse, though
not fully matching human retrieval patterns, as
shown by their failure in Grammatical Asymmetry.
As discussed in the Discussion section, we conjec-
ture that larger models may underperform relative
to smaller models in capturing human-like patterns
due to the scale of their training data. Furthermore,
instruction-tuned models may lack alignment with
human discourse goals and conversational dynam-
ics given their training objective.

Future work could solidify these claims by sur-
veying a larger variety of instruction-tuning ap-
proaches and carefully controlling the training data
to tease apart the effect of data quality on model
performance (as in Misra and Mahowald, 2024).
Ultimately, the contrast between language process-
ing in humans and machines highlights a discon-
nect in their abilities to integrate multiple sources
of information. While humans combine syntac-
tic and discourse information, and top-down and

5See Kim and Xiang (2024) for a detailed explanation of
how the discourse question modulates retrieval processes that
leads to the observed attraction effect.

bottom-up linguistic signals, models overrely on
one of these sources.

8 Limitations

The current study used a discrete categorization
based on the absence or presence of the number
agreement attraction effect. While this approach of-
fers ease of interpretation, we acknowledge that it
limits the ability to perform more quantitative eval-
uations. Future work could adopt a quantitative ap-
proach to compare the magnitude of the attraction
effect in human reading times and surprisal across
experiments. Furthermore, we focused on one spe-
cific case study to investigate models’ discourse
sensitivity, rather than a suite of tests. As such, the
conclusions drawn from the current findings may
be limited to this particular form of discourse sen-
sitivity. The authors are developing broader tests
to evaluate discourse sensitivity beyond the modu-
lated attraction effect to assess the generalizability
of the current findings.
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Abstract

In this paper, we investigate the cross-genre
variation in how discourse relations are sig-
naled in the Georgetown University Mutilayer
(GUM) Corpus, an English language corpus
which contains 16 different genres of texts
with various linguistic annotations, including
Rhetorical Structure Theory (RST) style dis-
course annotations. We look at the proportions
of discourse signals in each genre, and then we
conduct an analysis of which discourse rela-
tions display the most inter-genre variation in
how they are signaled, providing a methodol-
ogy for ranking the inter-genre variability of
the signaling of individual discourse relations.
Although the way in which individual discourse
relations are signaled in GUM is relatively sta-
ble across genres, we are able still to produce
stable rankings, finding that organization,
restatement, and explanation relations dis-
play the most inter-genre variation. However,
we find that genre specific graphical norms can
account for a large portion of the observed vari-
ation.

1 Introduction

Discourse relations are used to describe the mean-
ing that arises from the combination of multi-
ple linguistic units in a discourse. In computa-
tional discourse analysis, there have been multiple
linguistic formalisms proposed regarding how to
annotate this phenomenon, each with their own
unique inventories of discourse relations. One such
prominent formalism is Rhetorical Structure The-
ory (RST; Mann and Thompson, 1988), which as-
signs relation labels on a pragmatic basis, without
reference to particular linguistic signals. Despite
this, previous work on signaling in RST data has
found that over 90% of RST discourse relations are
signaled in some way (Das and Taboada, 2018b).
This includes overt discourse markers, as shown
in Figure 1 with the explicit discourse marker be-
cause, as well as other more implicit discourse sig-

Figure 1: Example from the GUM corpus of a causal
discourse relation, overtly signaled by the explicit dis-
course marker (dm) because.

nals. As such, we many wonder if there are patterns
in the distributions of which types of discourse sig-
nals appear with different discourse relations, and
if so, how these patterns appear across different
genres. Answers to such questions will provide
insight into whether a pragmatic formalism like
RST also displays structural patterns in its anno-
tation, which would not necessarily be expected
as there are not sturctural criteria in the annota-
tion of RST discourse relations. Such investigation
will also provide insights for describing genre dif-
ferences, particularly regarding how genres use
different structural means to achieve a particular
discourse purpose.

In this paper, we see that different RST relations
do in fact co-occur with different proportions of
discourse signal types (Figure 2), and we focus
in on the question of how different genres signal
the same discourse relations. We then consider
which individual RST relations display the most
inter-genre variation in how they are signaled. In or-
der to investigate this, we introduce an inter-genre
variation ranking metric: average pairwise Jensen-
Shannon distance (Avg. Pairwise JSD), the details
of which are given in Section 4. After we use this
metric to obtain an inter-genre variation ranking for
different discourse relations, we explore the rela-
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tions with the most variability to see what this can
tell us about the characteristics of different genres.

Overall, we find that while there is clearly inter-
relation variation in the distributions of discourse
signals, the means of signaling individual RST
relations remain relatively consistent across gen-
res. This indicates a general stability in the man-
ner of signaling individual discourse relations,
which we would not necessarily expect consid-
ering that RST is a pragmatic formalism. How-
ever, by utilizing the Avg. Pairwise JSD metric,
we are still able to produce stable rankings for
which discourse relations show the most cross-
genre variation how they are signaled, finding that
organization, restatement, and explanation
relations display the most inter-genre variation, and
that evaluation and adversative relations show
the least inter-genre variation. Code and visualiza-
tions for this paper are available on GitHub1.

2 Previous Work

While relation signaling in the RST formalism is
a relatively new area of interest, there are several
foundational works which we draw upon in this in-
vestigation. Firstly, a major resource for RST data
in English is the RST Discourse Treebank (RST-
DT), which consists of 385 Wall Street Journal
articles (Carlson et al., 2002). In 2013, Taboada
and Das subsequently added an additional layer of
signaling annotations to a portion of this corpus,
and later the entire RST-DT corpus, creating the
RST Signalling Corpus (RST-SC; Das and Taboada,
2018a). This work provided the first available RST
data with signaling information, and established a
manageable taxonomy of signal types, including
not only overt discourse markers, but various im-
plicit discourse signals as well. Since its creation,
the RST-SC has been used for various corpus analy-
ses of relation signaling (Das and Taboada, 2018b;
Das, 2019; Egg and Das, 2022).

There have also been a number of efforts aimed
at extending the application of the relation sig-
naling framework created by Taboada and Das.
As RST-SC does not indicate which tokens are
aligned with the signal type annotations, Liu and
Zeldes (2019) made efforts to anchor signaling in-
formation directly to tokens in a text. Additionally,
Gessler et al. (2019) created an online annotation
tool for adding signaling information directly onto

1https://github.com/lauren-lizzy-levine/
gum-genre-signaling

existing RST annotations. Both of these efforts
were further leveraged in the creation of signaling
annotations in data for Enhanced Rhetorical Struc-
ture Theory (eRST), an extension of the theoretical
RST framework which added a means to account
for "tree-breaking, nonprojective and concurrent
relations" in discourse relation graphs (Zeldes et al.,
2024). The eRST project follows the relation sig-
naling taxonomy from Taboada and Das, dividing
relation signals into the following categories: dis-
course markers, graphical, lexical, morphological,
numerical, reference, semantic, and syntactic. The
corpus analysis we conduct in this paper is focused
on the signaling annotations added to the GUM
RST treebank from the eRST project.

3 Data

For this investigation, we use GUM Version 102,
a 228k token corpus of English, which is com-
posed of 235 documents, divided approximately
evenly across 16 different genres: academic, bi-
ographies, courtroom, conversation, essay, fiction,
interview, letters, news, podcasts, speeches, text-
books, travel, vlogs, how-to and Reddit forum dis-
cussions (Zeldes, 2017). As mentioned in the pre-
vious section, the GUM corpus has signaling an-
notations consistent with the form established for
the eRST formalism, extended from the taxonomy
created by Taboada and Das.

For this analysis, we only consider discourse
relations which co-occur with at least one signal
annotation (at all levels of the eRST tree). There
are a total of 30,774 discourse relation annotations
in GUM v10, 69.35% of which (21,343 instances)
occur with one or more signaling annotation. The
eRST annotations in GUM leverage a two-tiered
relation inventory, where the coarse relation and
the fine-grained subtype are connected with "-"
(e.g., causal is the coarse relation type for the
fine-grained relation causal-cause). The full re-
lation inventory of 15 coarse relations and 32 fine-
grained relations is shown in Appendix A. For each
relation signal annotation, we extract the signal
type and signal subtype, the RST relation type
and RST relation subtype (e.g., elaboration and
elaboration-attribute), and the genre in which
it occurs from the GUM corpus. This means that a
single relation will be extracted multiple times if it
occurs with multiple signals. And while we extract
both the signal type and the signal subtype, in order

2https://github.com/amir-zeldes/gum
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to have enough instances in each signal category
to analyze statistically, we limit our investigation
to the higher level signal types: discourse markers
(dm), graphical (grf), lexical (lex), morphological
(mrf), numerical (num), reference (ref), semantic
(sem), and syntactic (syn). For reference, the com-
plete signal inventory from Zeldes et al. (2024) is
included in Appendix A. For RST discourse re-
lations, we investigate at the level of both coarse
relations (e.g., elaboration) and fine-grained re-
lations (e.g., elaboration-attribute) from the
RST relation inventory.

4 Methods

In order to investigate the inter-genre variability of
signaling for individual relations, we need a means
of quantifying how different the distributions of
relation signals are between a pair of genres for a
particular relation. We adopt the Jensen-Shannon
Distance3 as metric for this purpose.

The Jensen-Shannon Divergence (JS-Div) is a
symmetric measure of the similarity of two prob-
ability distributions. This metric is bounded, 0 ≤
JS-Div ≤ 1, where 0 indicates the distributions
are identical, and 1 indicates they are completely
different. The Jensen-Shannon Distance (JSD) is
the square root of the JS-Div, and it is commonly
used to assess the similarity of probability distri-
butions. In order to apply JSD as a metric to our
relation signaling data, we make the assumption
that the frequency counts of the signal types used
to indicate a relation in a specific genre can be used
to approximate the probability distribution of how
that relation is signaled in that genre4.

For each relation (e.g., explanation), this gives
us per genre probability distributions of signal
types which we can compare using JSD. We can
then calculate the JSD scores between all possible
pairs of genres (e.g., (’reddit’, ’academic’): 0.63,
(’interview’, ’academic’): 0.59, etc.). We use these
scores for two purposes: First, we construct a dis-
tance matrix for genre pairs which can be used as
input for clustering/dendrograms of genre similar-
ity (with respect to signaling). Secondly, we can
take an average of these scores to create a single
number that represents the inter-genre variability

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.distance.jensenshannon.
html

4This assumption means that you take the frequency counts
to be a representative distribution of the categories of signal
types. This may not be a valid assumption if the data is sparse.

Rank Correlation Metric Relation Type
Coarse Fine-grained

Avg. Kendall’s Tau 0.82 0.76
Avg. Spearman Rank 0.93 0.90
Avg. Pearson Correlation 0.95 0.92

Table 1: Averages of correlation metrics from compar-
ing rankings of inter-genre variation for the signaling
of individual RST relations, computed from randomly
sampled subsets of the GUM corpus.

score for the individual relation (e.g., 0.35). We
refer to this metric for quantifying inter-domain
variation as the average pairwise Jensen-Shannon
Distance (Avg. Pairwise JSD). We note that while
in this study we specifically use the metric to inves-
tigation the inter-genre variation in how individual
discourse relations are signaled, it can be thought
of as a more general metric. Genre, relation, and
signal type may be swapped out for other categories
as the context requires.

The inter-genre variability score for a discourse
relation R using Avg. Pairwise JSD is defined as:

Avg.PairwiseJSD(R) =

∑
i,j∈G JSD(SDi(R), SDj(R))

(|G|
2

)

where G is the set of genres, JSD is the Jensen-
Shannon Distance, and SDx(R) is the frequency
distribution of relation signal types for relation R
in genre x.

For the fine-grained relations, the frequency dis-
tribution of the relation signal types is approxi-
mated by the raw frequency counts in the data. For
the coarse relations, we normalize the frequency
distribution by the proportions of sub-relations
composing the coarse relation. We treat each sub-
relation as an independent class within the coarse
relation, and we take the macro-average of the dis-
tributions for the individual classes to be frequency
distribution for the coarse relation.

Once the Avg. Pairwise JSD scores are calcu-
lated, they can be sorted to give a relative ranking
of inter-genre variability of signaling amongst indi-
vidual relations. In order to establish how reliably
the Avg. Pairwise JSD is able to construct this rel-
ative ranking, we compare the rankings that this
methodology produces when applied to different
subsets of the data. For each genre, we randomly
sample 5 documents, and we compute the rela-
tive rankings of inter-genre variability as described
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Figure 2: Proportions of relation signal types for coarse
RST relations in the GUM corpus. The total number of
occurrences of a relation type co-occuring with a signal
is included in parentheses.

above. We repeat this process 50 times, so there
are 50 independent rankings (each with Avg. Pair-
wise JSD scores) for both coarse and fine-grained
RST relations. For each pair of rankings in this
50 run sequence (1225 pairs), we calculate the fol-
lowing correlation metrics between the rankings:
Kendall’s Tau, Spearman Rank and Pearson Corre-
lation, and then we average the resulting scores for
each.

We report the averages for the rank correlation
metrics Table 1. For all of these metrics, the closer
the score is to 1, the closer the correspondence be-
tween the rankings/scores being compared. We see
that all the metrics are quite high, and that the met-
rics for coarse relation ranking averages are higher
than those for the fine-grained relation rankings.
The strength of the correlation coefficients shows
that the rankings are relatively stable, even when
data is randomly sampled. We take this to be a
reasonable indication that Avg. Pairwise JSD can
be used to reliably construct a relative ranking of
inter-genre variation for individual relations.

5 Results

To begin our analysis, we investigate the variation
in signal types used for different relations in the
GUM corpus. Figure 2 visualizes the proportions
of signal types used with each coarse RST rela-
tion in the GUM corpus. We see that there is
a considerable amount of inter-relation variation,
and there are some interesting observations to be
made from this visualization alone: evaluation

Figure 3: Proportions of relation signal types for the
genres in the GUM corpus. The total number of occur-
rences of relations co-occuring with a signal in the given
genre is included in parentheses.

relations are signaled exclusively by lexical fea-
tures, adversative, causal, and contingency re-
lations are dominated by overt discourse markers,
etc.

However, as this investigation is focused on the
inter-genre variation of individual relations, we
shift our focus to explore the distribution of re-
lations signals across the different genres in the
GUM corpus. We provide a visualization for this
analysis in Figure 3, which shows the proportions
of signals present in each genre, adjusted for the
relative frequencies of the relations present in that
genre5.

In Figure 3, we see that the signal proportions are
surprisingly consistent across the various genres of
the GUM corpus. We face the possibility that indi-
vidual relations do not display a substantial amount
of inter-genre variation overall, and, as such, we
need to focus in on the areas of our data which
display the most inter-genre variation for investi-
gation. To this end, we create a relative ranking
of the inter-genre variability of signaling amongst
individual relations via the methods described in
Section 4. The inter-genre variation ranking for the
coarse RST relations is shown in Figure 4, and the
inter-genre variation ranking for the fine-grained
RST relations is shown in Figure 5.

Looking at the ranking for coarse rela-
5The signal type proportions for each fine-grained rela-

tion attested in the genre are calculated separately and each
one considered a separate class. The macro-average of these
classes is then taken and reported in Figure 3 as the signal
distribution of the genre.
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Figure 4: (Top) Ranking of inter-genre variation of relation signal distributions for coarse RST relations (based on
Avg. Pairwise JSD). Proportions of relation signals across genres for: (bottom left) the coarse relation showing the
most variation: organization, (bottom middle) the coarse relation showing the median variation: causal, and
(bottom right) the coarse relation showing the least variation: evaluation.

tions in Figure 4, we see that organization,
restatement, and explanation relations display
the most inter-genre variation, while attribution,
adversative, and evaluation relations display
the least inter-genre variation. In the bottom sec-
tion of Figure 4, we also show the signal type dis-
tributions across genres for the relations whose
Avg. Pairwise JSD indicated that they show the
most (organization), median (causal), and low-
est (evaluation) inter-genre variation. As we can
see from the visualizations, Avg. Pairwise JSD
seems to accurately reflect the relative inter-genre
variation of the relations.

Looking at the ranking for fine-grained relations
in Figure 5, we see that explanation-evidence,
restatement-partial, and restatement-
repetition relations display the most inter-
genre variation, while elaboration-attribute,
explanation-justify, and evaluation-
comment relations display the least inter-genre
variation. In the bottom section of Figure
5, we again show the signal type distribu-
tions across genres for the relations whose

Avg. Pairwise JSD indicated that they show
the most (explanation-evidence), median
(adversative-antithesis), and lowest
(evaluation-comment) inter-genre variation.
As we can again see from these visualizations,
Avg. Pairwise JSD accurately reflects the relative
inter-genre variation of the relations.

Now that we have rankings of the inter-genre
variability for relations, we will take a look at some
of the individual relations which displayed the most
variation: organization and explanation. First,
consider Figure 6. The left side of the figure shows
the distribution of relation signal types across gen-
res for the organization relation. The right side
of the figure is a dendrogram showing the signaling
similarity between genres for the organization
relation (based on a distance matrix of JSD scores
between genre pairs).

Looking at the dendrogram in Figure 6, we see
that there is a relatively clear split between spo-
ken genres and written genres. This means, per-
haps unsurprisingly, that written genres and spoken
genres are relatively distinct in how they signal
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Figure 5: (Top) Ranking of inter-genre variation of relation signal distributions for fine-grained RST relations
(based on Avg. Pairwise JSD). Proportions of relation signals across genres for: (bottom left) the fine-grained
relation showing the most variation: explanation-evidence, (bottom middle) the fine-grained relation showing
the median variation: adversative-antithesis, and (bottom right) the fine-grained relation showing the least
variation: evaluation-comment.

organization relations. If we look at the graph
on the left side of Figure 6, we see that spoken
genres, such as conversation and podcast, have a
much smaller proportion of graphical signals than
the written genres. This is intuitive, as there are
many graphical signals, such as headings, that are
commonly used in written genres for organizational
purposes, which cannot be used in spoken genres.
Instead, we see that the lexical signal type com-
pensates for the lack of graphical signals in spoken
genres.

Now consider Figure 7. On the left, we have the
distribution of relation signal types across genres
for the explanation relation. On the right, we
have a genre signaling similarity dendrogram, this
time for the explanation relation. In this dendro-
gram, we can see that there is a clear split between
academic, biographies and wiki-how, and the rest
of the genres. If we look at the graph on the left of
Figure 7, we once again see that different propor-
tions of graphical signals are largely responsible
for this divergence. Upon qualitative examination

of the data, we see that this is largely due to paren-
theses being used for citations, a practice which
is common in academic writing, biographies, and
wiki articles.

6 Discussion

In the results of our investigation, we saw that
the inter-genre signaling of individual discourse
relations is relatively stable. In two of the
coarse relations which showed the most inter-
genre variation in their signaling, organization
and explanation, genre specific graphical norms
seemed to contribute more to the existing variation
than the language content. As such, if there is a
large variation in the signal types used in two gen-
res that goes beyond graphical norms, it may be
because those genres call for different relations to
be used, rather than because the genre is signaling
the same relations differently.

It is somewhat surprising that we see such lim-
ited variation in the signaling of individual relations
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Figure 6: (Left) Proportions of relation signal types across genres for the organization relation. (Right) Dendro-
gram showing the signaling similarity between genres for the organization relation.

across genres, particularly considering that RST is
a pragmatic formalism, and thus does not have re-
strictions on the structural components that must be
present in order apply a specific discourse relation.
Our results suggests that, despite being pragmat-
ically defined, the discourse relations in the RST
relation inventory display some degree of structural
consistency in their manner of signaling. However,
it is also worth noting that many of the signaling
annotations from the GUM corpus which we are
analyzing were automatically annotated by NLP
tools/scripts. These automatic processes rely on
restrictive heuristics, which may artificially limit
the signaling variation being captured by the anno-
tations. In future work, it would be beneficial to
consider the specific limitations being imposed by
such automatic annotations.

7 Conclusion

In this paper, we explored the cross-genre vari-
ation in how discourse relations are signaled in
the GUM Corpus. We looked at the proportions
of discourse signals in each genre, and we saw
that there is a relative stability in how discourse
relations are signaled across genres. We then con-
ducted an analysis of which discourse relations
display the most inter-genre variation in how they
are signaled, using as a pairwise average of the
JSD scores between different genres (Avg. Pair-
wise JSD) a metric of the inter-genre variability
of individual discourse relations. We found that
organization, restatement, and explanation
relations display the most inter-genre variation, and
that evaluation and adversative relations show
the least inter-genre variation. Amongst the re-

lations displaying the most inter-genre variation,
we saw that the divide between spoken genres and
written genres, and the accompanying divergence
in graphical norms between the two modalities, is
salient in accounting for the observed variation.
Overall, we found that the RST discourse relations
in GUM are signaled in a relatively stable manner
across genres, and that the variation that does exist
seem to largely come from differences in graphical
norms, rather than differences in linguistic content.

Limitations

As noted in Section 4, using JDS as a metric for
inter-genre variation relies on there being enough
data to satisfy the assumption that the frequency of
occurrence of signals is representative for the way
that a relation is signaled in that genre. However,
not all of the genres in the GUM corpus have the
same number of documents, and for those with less
documents, such as essay, which only has 5 docu-
ments, it is less sure that the assumption is sound.
Still, the results from our correlation metrics in
Section 4 in suggest that 5 documents is sufficient
to give a reasonably stable ranking.

Additionally, as noted the Section 6, many of the
signal annotations in the GUM corpus were auto-
matically generated with NLP tools/scripts, which
may limit the observable degree of inter-genre vari-
ation for relation signaling. A greater understand-
ing of the inter-genre variation for relation signal-
ing could be had from looking at a larger number
of manual annotations, or by better accounting for
the biases introduced by the automatic annotation
tools.
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Figure 7: (Left) Proportions of relation signal types across genres for the explanation relation. (Right) Dendrogram
showing the signaling similarity between genres for the explanation relation.
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A RST Relation Inventory and eRST
Signal Inventory in GUM v10

In Table 2 we include the RST relation inventory
used in GUM v10, listing both coarse and fine-
grained relations. For reference, in Figure 8 we
include the eRST signaling inventory presented in
Zeldes et al. (2024).
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RST Relation Inventory

Coarse Fine-grained Coarse Fine-grained

ADVERSATIVE

ADVERSATIVE-ANTITHESIS

JOINT

JOINT-DISJUNCTION

ADVERSATIVE-CONCESSION JOINT-LIST

ADVERSATIVE-CONTRAST JOINT-SEQUENCE

ATTRIBUTION
ATTRIBUTION-POSITIVE JOINT-OTHER

ATTRIBUTION-NEGATIVE
MODE

MODE-MANNER

CAUSAL
CAUSAL-CAUSE MODE-MEANS

CAUSAL-RESULT

ORGANIZATION

ORGANIZATION-HEADING

CONTEXT
CONTEXT-BACKGROUND ORGANIZATION-PHATIC

CONTEXT-CIRCUMSTANCE ORGANIZATION-PREPARATION

CONTINGENCY CONTINGENCY-CONDITION
PURPOSE

PURPOSE-ATTRIBUTE

ELABORATION
ELABORATION-ATTRIBUTE PURPOSE-GOAL

ELABORATION-ADDITIONAL
RESTATEMENT

RESTATEMENT-PARTIAL

EXPLANATION

EXPLANATION-EVIDENCE RESTATEMENT-REPETITION

EXPLANATION-JUSTIFY
TOPIC

TOPIC-QUESTION

EXPLANATION-MOTIVATION TOPIC-SOLUTIONHOOD

EVALUATION EVALUATION-COMMENT SAME-UNIT SAME-UNIT

Table 2: RST Relation Inventory in GUM v10.

Figure 8: Signal inventory for eRST given in Zeldes et al. (2024): "Non-DM signal types and subtypes, with
examples highlighting in red the signal tokens which indicate the relation of the unit in square brackets."
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Abstract

Ensuring that semantic representations capture
the actual meanings of sentences to the exclu-
sion of extraneous features remains a difficult
challenge despite the amazing performance of
representations like sBERT. We compare and
contrast the semantic-encoding behaviours of
sentence embeddings as well as influence func-
tions, a resurgent method in the field of lan-
guage model intepretability, using meaning-
preserving grammatical transformations. Un-
der the two tasks of sentence similarity and a
new task called entity invariance, we seek to
understand how these two measures of seman-
tics warp under surface-level syntactic changes.
Invariance to meaning-preserving transforma-
tions is an important aspect in which sentence
embeddings and influence functions seem to
differ. Nevertheless, our experiments find that
across all our tasks and transformations, sen-
tence embeddings and influence functions are
highly correlated. We conclude that there is
evidence that influence functions point towards
a deeper encoding of semantics.

1 Introduction

A major concern with neural language models is
their lack of transparency. In addition to the ex-
pense of even functionally observing the predic-
tions of a model, there is the additional concern
of why it happened. A number of recent attempts
at probing or interpreting language-model predic-
tions have relied upon either misbegotten charac-
terizations of linguistic theory in relation to those
predictions, or naıve metaphorical proxies for lin-
guistic theory, such as the retrieval of knowledge
from a computer’s memory, or assigning distribu-
tions to sentences as points in a discrete set of out-
comes, rather than as points in a continuous, albeit
inscrutable, latent semantic space.

A case in point is the resurgence of the notion
of an "influence function" (Hampel, 1974), which
attempts to assign weight to training sentences that

an erroneous, indiscreet or salacious output can
then be traced back to. Until very recently, the use
of influence functions in LLMs was not computa-
tionally feasible. Now that it is somewhat feasible,
the question is what it makes sense to do with them.
In particular, the authors of these several papers on
optimization and approximation of influence func-
tions apparently never considered whether influ-
ence was merely a direct consequence of semantic
similarity, a topic with a long history of proposed
quantitative methods.

The central claim of this paper is that a better
understanding of the potential of influence func-
tions is attainable with a slightly less superficial
understanding of linguistic theory. In particular, as
a complement to the task of directly computing the
semantic similarity of two expressions, we intro-
duce the task of entity invariance, in which two
related sentences are examined relative to a seman-
tic argument that they share. The relation between
these two sentences is composed of grammatical
transformations, a now rather antiquated term for
regular, meaning-preserving correspondences (at
least in a reading that equates meaning with the-
matic role assignment) between syntactic forms.
Passivization, topicalization and clefting are exam-
ples of transformations. (Chomsky, 1965) (Lam-
brecht, 2001) (Aelbrecht and Haegeman, 2012).

We describe a series of experiments and descrip-
tive hypothesis tests which demonstrate that, un-
der certain conditions, influence functions have a
greater potential for invariance to syntactic trans-
formations than conventional sentence embeddings
in large-dimensional vector spaces. Just as in com-
puter vision, where the ability to identify a shape
is naturally tested for translation and rotation in-
variance, we assert that a semantic representation
should be tested for invariance to diathesis and
other syntactic transformations that ostensibly pre-
serve meaning.
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2 Methods

2.1 Sentence-BERT

As a canonical example of sentence embed-
dings, we select all-mpnet-base-v2 (Reimers and
Gurevych, 2019), a sentence-transformer model
that encodes sentences into a 768-dimensional
dense vector space. The underlying model is the
Microsoft mpnet-base model, pre-trained with the
MPNet objective function (Song et al., 2020):

Ez∈Z
n∑

t=c+1

logP (xzt |xz≤c
,Mz>c ; θ) (1)

This is a unified pre-training objective for both
Masked Language Modeling (Devlin et al., 2019)
and Permuted Language Modeling (Yang et al.,
2019), inheriting the strengths of both. A sequence
is permuted, and its right-most tokens are masked.
The goal is then to predict the value of the masked
token conditioned on all tokens preceding it, xz≤c

,
and the positions of the other masked tokens Mz>c .

The model is then contrastively fine-tuned be-
tween sentence pairs in batches by computing the
cosine similarities of their embeddings and com-
paring the cross-entropy loss with true pairs. The
cosine similarities produce a value from -1 to 1.
The cross-entropy loss then encourages the true
pairs to have a larger value (closer to 1) while the
non-pairs have a smaller one (closer to -1).

The resulting model accepts a sentence or para-
graph and produces a vector encoding that captures
some semantically relevant information.

2.2 Influence Functions

Influence functions are an older idea from statis-
tics, re-introduced only recently to deep learning
(Koh and Liang, 2017). Suppose there is a training
dataset D = {zi}Ni=1 and a model with parameters
θ ∈ RD, fit using a loss function L:

θ∗ = argmin
θ∈RD

J (θ,D) = argmin
θ∈RD

1

N

N∑

i=1

L(zi, θ).

(2)
With this, we would like to investigate the effect

of adding or removing a single training example zm
on the optimal parameters θ∗. By weighting that
new training example by ϵ, we can describe the
new optimal parameters with an additional training

example as:

θ∗(ϵ) = argmin
θ∈RD

J (θ,Dϵ) (3)

= argmin
θ∈RD

1

N

N∑

i=1

L(zi, θ) + ϵL(zm, θ).

(4)

Influence is defined as the first-order Taylor ap-
proximation to this function evaluated at ϵ = 0.
Using the Implicit Function Theorem, this is:

Iθ∗(zm) = −H−1∇θL(zm, θ∗) (5)

where H = ∇2
θJ (θ∗, D) is the Hessian of the

empirical-loss function with the original dataset.
Since Iθ∗ is the linear approximation at 0, we

can approximate the change in parameters as fol-
lows:

θ∗(ϵ)− θ∗ ≈ Iθ∗(zm)ϵ (6)

= −H−1∇θL(zm, θ∗)ϵ (7)

Now, when we set ϵ = − 1
N for some datapoint

zm already in the dataset, this corresponds to the
effect of removing that datapoint.

Lastly, a change in parameters is difficult to in-
terpret, so typically influence is measured on a
more meaningful quantity such as validation loss
or perplexity. Luckily, this can easily be done for
any quantity f(θ) using the chain rule. For any
meaningful measure f :

If (zm) = ∇θf(θ
∗)TIθ∗(zm) (8)

= −∇θf(θ
∗)TH−1∇θL(zm, θ∗) (9)

Applying If (zm) in the same way as before, we can
approximate the change in this measure f due to the
addition/removal of a datapoint with the following:

f(θ∗(ϵ))− f(θ∗) ≈ If (zm)ϵ (10)

= −∇θf(θ
∗)TH−1∇θL(zm, θ∗)ϵ. (11)

2.2.1 Influence in the Domain of LLMs
While influence functions are an old idea, numer-
ous limitations kept them from being practical
when examining neural-network-based architec-
tures (Bae et al., 2024) (Zhang and Zhang, 2022)
(Basu et al., 2021).

• Loss landscapes are not fully convex, meaning
that the Hessian can be singular (thus it has
no inverse).

310



• Even if the loss landscape were convex, the
formulation of these objective functions im-
plicitly assumes the model is trained to full
convergence, which is almost never the case.

• Even if neither of these were an issue, the
task of inverting the Hessian is by itself time-
consuming.

These limitations have, over time, been ad-
dressed (Martens and Grosse, 2015) (George et al.,
2018) (Martens, 2020) (Bae et al., 2024), mainly
with clever approximations. The final result is then
a reasonably efficient method for calculating influ-
ence for analyzing even large language models (Li
et al., 2024), which we employ for our experiments.
For a more detailed explanation, we refer the reader
to (Grosse et al., 2023).

2.2.2 Influence for Language Modeling and
Transformers

To use influence on the language-modelling task,
we simply set the quantity f to be the following:

f(θ) = log p(zc; θ) (12)

where zc is the model’s output and θ are the param-
eters of the transformer model. We follow previous
work and use GPT2 (Radford et al., 2019) as the
model to analyze, for which this log-likelihood de-
composes using Bayes’s Rule. Then the influence
function approximates the instantaneous change
in log-likelihood of generating an output zc when
removing or adding a piece of training data. For ex-
ample, when a model generates, "Pythagoras was
a ...", the presence of a training datapoint like "the
Pythagorean theorem ..." is intuitively more impor-
tant to this prediction than something less related
like "The doctor suggested ...". Influence allows us
to quantify the effect of a single datapoint from the
training set by ablating it.

3 Problem Description

We investigate two capacities that we conjecture to
be desirable of any model that aspires to true se-
mantic reasoning: the now very well-studied ability
to calculate the similarity in meaning between two
sentences, and an invariance to meaning-preserving
syntactic transformations.

In particular, we define entity invariance as a
three-way comparison in which the congruence
of the (now, usually a vector) representation of
a fixed referring expression is calculated with a

sentence that uses it, but relative to a baseline in
which the same congruence is calculated between
the same referring expression and a different but
closely related sentence. For example, while the
precise geometric relationship between the desig-
nator John and John threw the ball may be mostly
inscrutable within modern neural vector represen-
tations of word and sentence meaning, we are per-
haps justified in expecting that this relationship,
whatever it is, will be the same as the one between
John and The ball was thrown by John, The ball,
John threw or It is the ball that John threw, be-
cause these various transformations are ostensibly
meaning-preserving. This is a higher-order alterna-
tive to directly calculating the sentence similarity
between the representations of John threw the ball
and The ball was thrown by John, viewed through
the lens of the meaning of John.

This has further implications with respect to
phenomena like semantic masking (Shi and Penn,
2025), in which asymmetries have been observed in
the ability of a document’s context to obscure vari-
ous inserted passages of text in question-answering
tasks with LLMs. Rephrasing under a meaning-
preserving transformation can actually alter these
effects if the entity answer to a factoid question is
not invariant to its sentence location.

The motivation behind both tasks is the same:
given some semantics-related task, when replac-
ing a sentence with a semantically equivalent yet
syntactically transformed alternative, it should be
the case that any method that claims to encode
semantics should be robust to this replacement.
Essentially, we claim moving across semantics-
preserving transformations should not change the
behavior of a true measure of semantics. For exam-
ple, if sentence A is similar to sentence B according
to some measure, and A’ is the passivized form of
A, then A’ should be equally similar to sentence B.
This is the sentence similarity task. If the subject of
sentence A is deemed important by some measure,
then the importance of that same subject on the
sentence A’ should also be equally important by
that measure. This is the entity invariance task. We
can approach both tasks with the aforementioned
semantic tools: cosines of sBERT vectors and influ-
ence functions. An example is illustrated in Figure
1.
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Alexander conquered Persia.

Persia was conquered by Alexander.
Passivized

Baseline Sentence

Alexander
Entity

Conquered Persia, Alexander did.
VP-Topicalized

Persia, Alexander conquered.
Topicalized

It was Persia that Alexander conquered.
Clefted

Persia was conquered by 
Alexander.

Text within a turquoise box 
represents the sBERT embedding 
for that text

Two texts within a grey box 
represents the influence score of 
the bottom text on the top one 
(note this is a scalar)

Conquered Persia, Alexander did.
Alexander conquered Persia.

Task 1: Sentence Similarity

Task 2: Entity Invariance

Alexander conquered Persia.

Persia was conquered by Alexander.

sBERT scores obtained by comparing each transformation with 
its baseline:

Influence scores obtained by calculating influence of each 
transformation on baseline

Persia was conquered by Alexander.
Alexander conquered Persia.Cosine

Similarity

Cosine
Similarity

Cosine
Similarity

directly
Influence ScoresBERT score

directly

directlyPersia was conquered by Alexander

Alexander

Alexander conquered Persia.

Alexander

sBERT scores obtained by computing cosine similarity of each 
transformation with its entity, subtracting similarity of the entity with 
baseline 

Influence scores obtained by calculating influence of the 
entity on each transformation, subtracting influence of the 
entity on the baseline 

Alexander
Persia was conquered by Alexander

Alexander
Alexander conquered Persia.

sBERT scorebaseline score

baseline score baseline score

transformation scoretransformation score

transformation scoretransformation score

transformation scoretransformation score

baseline scoretransformation scoretransformation score Influence Score

Figure 1: Example of both tasks under both metrics. Above shows the walkthrough of getting scores for the sentence
"Alexander conquered Persia." in the passivized transformation. The above calculations are repeated for each
transformation and for each sentence.

4 Experimental Setup

4.1 Datasets

4.1.1 Sentence Sampling and the
Grammatical Transformation Dataset

In order to investigate grammar transformations
on our semantic tasks in a controlled manner, we
created a dataset that contains 50 random factual
statements expressed in a simple sentence, con-
taining only one independent clause. We prompt
ChatGPT to produce a list of fact statements that
are expressed in a simple sentence. We take 50 of
these sentences as our baseline, with hand-filtering
to remove any strange or duplicate sentences. We
then prompt ChatGPT with these baselines and for
each baseline, ask it to give a topicalizaed, clefted,
vp-topicalized, and passivized form. Again, a final
step involves meticulously going through the trans-
formations to ensure accuracy. See Appendix C for
details about the prompts. The result is a dataset
containing 50 sentences in their base form. For
each base form, a passivized, clefted, topicalized,
and vp-topicalized form makes up the complete
dataset. Refer to Table 1 for an example of an entry
in the dataset, and refer to Appendix A for all the
baseline sentences in the dataset (their transforma-
tions follow naturally).

4.1.2 Wikitext Dataset

The WikiText dataset (Merity et al., 2016) is a
collection of over 100 million tokens taken from
"good," i.e., featured articles in Wikipedia. Several

Baseline Alexander conquered Persia.
Passivization Persia was conquered by Alexander.
Clefting It was Persia that Alexander conquered.
Topicalization Persia, Alexander conquered.
VP-Topicalization Conquered Persia, Alexander did.

Table 1: One entry of the Grammatical Transformation
Dataset

Baseline Zorvik climbed Everest.
Passivization Everest was climbed by Zorvik.
Clefting It was Everest that Zorvik climbed.
Topicalization Everest, Zorvik climbed.
VP-Topicalization Climbed Everest, Zorvik did.

Table 2: One entry of the Made-Up Entity Dataset

earlier papers on influence functions have chosen
to use this source, and so we have followed suit.

Influence functions are rather anomalous with
respect to language modeling experiments. The
language model (GPT2, in our case) is pre-trained
on a large dataset D, but then it must also be fine-
tuned on a smaller dataset with respect to the same
language modelling objective. The influence cal-
culations then determine how influential a certain
training instance in the fine-tune dataset is on the
generation of a query. This fine-tuned set exists
only so that influence will not need to be computed
on the entire pre-training dataset, which is massive.

We use the training partition of wikitext-2-raw-
v1 as the basis of our fine-tuning set. Into this, we
have inserted grammatically transformed sentences
from the Grammatical Transformation dataset that
are semantically unrelated to the wikitext that they
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are embedded in.

4.1.3 Made-Up Entity Dataset

But because the pre-trained model may have seen
some version of the same data, it does make sense
to have another dataset where we rename all en-
tities that appear as subjects in the correspond-
ing, untransformed baseline sentences (the trans-
formations then typically change which grammati-
cal function that entity will have) with completely
made-up entities. When we use these renamed,
baseline sentences as queries during influence cal-
culations, we can then reasonably be assured that
the influence will have come mainly from the cor-
respondingly renamed transformation in the fine-
tuned set.

Table 2 shows an entry in the Made-Up Entity
dataset, and Appendix A shows all the made-up
entities.

4.2 Calculating Sentence Similarity

In directly calculating sentence similarity with
sBERT vectors, we simply compute the cosine of
the sBERT encoding of a baseline sentence with
that of each of its transformations in the Grammat-
ical Transformation Dataset in turn. We used the
sentence transformer all-mpnet-base-v2 described
in Section 2.1.

When calculating sentence similarity with influ-
ence functions, we assume that sentences that are
more similar will be more influential. Our made-up
entity dataset has been concocted with nonsense
names so that the transformed sentence that was
inserted into the fine-tuning text will, in spite of its
transformation, be the most semantically similar.
The influence score will then correspond to how
similar they are.

Note that due to the symmetry built into the def-
inition of influence functions, we do not need to
explicitly symmetrically close our definition of sim-
ilarity here.

To support batched calculations, all of our added
entries are padded to 20 tokens, long enough to
cover the longest transformed sentence in our
dataset. With this setup, we can obtain the influ-
ence of each transformation on generating its own
baseline variant.

4.3 Calculating Entity Invariance
When using sBERT to calculate entity invariance,
we calculate:

(e · t)
|e||t| − (e · b)

|e||b|
where e, t and b are the sBERT vectors for the
entity, transformed sentence and untransformed
baseline, respectively. Note that this calculation
avails itself of sBERT’s indifference to the semantic
type of its input.

We do this for each transformed sentence, for
each entry in the Grammatical Transformation
dataset.

With influence functions, we again assume that
the congruence or salience of an entity to a particu-
lar text will be reflected by a greater influence. We
again avail ourselves of influence’s indifference to
the semantic type of the query, which can be as sim-
ple as a referring expression. In our experiments,
the entity in question will always be the subject of
the untransformed baseline sentence. We subtract
the influence of the entity on the baseline from the
influence of the entity on the transformed sentence.
Padding is the same as with sentence similarity.
Figure 1 presents an example of both tasks under
both metrics.

5 Results and Findings

Let us first begin by noting that, across both
tasks and all syntactic transformations, there is a
tight, linear correspondence between sBERT vector
cosines and influence scores. Their Pearson corre-
lation is 0.9326, with a p-value of 2.62× 10.−178

As for the specific grammatical transformations,
the five rows shown in the tables in this section
were chosen because they represent overall trends;
the full results for all 50 sentences can be found
in Appendix B. In addition, influence scores were
scaled with arctan, compressing the range to −π/2
to π/2.

Table 3 contains sentence similarity scores us-
ing sBERT cosines. For the sentence similarity
task, sBERT tends to encode the passivized forms
of sentences most similarly to their corresponding
baseline sentences. Table 4 contains sentence sim-
ilarity scores using influence functions. In stark
contrast to the sBERT results, influence finds both
topicalizations to be most similar to their baselines,
whereas passivization is the least similar. In both
tables, we can see that the scores are near the top
of their respective scales.
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Passivization Clefting Topicalization VP-Topicalization
0.9325544834 0.8652806878 0.8628834486 0.90064466
0.9408032894 0.9085036516 0.883110702 0.8844070435
0.9199316502 0.8648024201 0.8657934666 0.8941929936
0.9520395398 0.9430727363 0.9146342278 0.9339743257
0.9660890102 0.8314833641 0.8642077446 0.9086657166

Table 3: Scores of the Sentence Similarity task between
the baseline and each of the different transformations
using sBERT cosine similarities. Each row corresponds
to one row in the Grammatical Transformation dataset,
and each column to a grammatical transformation. Note
for this and all tables using this color pattern, white rep-
resents the smallest value, and dark green is the largest.
Rows are independently colour mapped.

Passivization Clefting Topicalization VP-topicalization
1.570795547 1.570795942 1.570796084 1.570796024
1.570796187 1.570796237 1.570796266 1.570796248
1.57079604 1.570796097 1.57079621 1.570796157

1.570795623 1.570796153 1.570796207 1.570796074
1.570793101 1.570796037 1.570796129 1.570796194

Table 4: Scores of the Sentence Similarity task between
the baseline and each of the different transformations
using influence functions. The scores have been normal-
ized using arctangents.

Table 5 shows the entity invariance scores us-
ing sBERT cosines. For this task, sBERT vec-
tors are most invariant to passivization relative to
their encodings of the respective baseline sentence,
whereas clefting exhibits the most variance. Table
6 shows the entity invariance scores using influ-
ence functions. For this particular combination, it
is more difficult to spot any sort of trend or prefer-
ence for one transformation over the others. Both
of these scores are difference calculations. In the
case of sBERT, the differences are closely range-
bound around zero, meaning that the effect of using
any grammatical transformation was minimal. In
the case of influence functions, the prominence of
values near −π/2 shows that all of the grammati-
cal transformations we experimented with resulted
in a suppression of influence scores relative to the
baseline subject.

Passivization Clefting Topicalization VP-topicalization
-0.09655714035 -0.1692547202 -0.04888242483 -0.08329671621
0.03376698494 -0.01508197188 0.02062654495 -0.01081442833

-0.09354573488 -0.1332816482 -0.1059363484 -0.1363123655
-0.02574926615 -0.05807337165 -0.0239841342 -0.07041674852
-0.02594101429 -0.09438753128 -0.04366868734 -0.07553547621

Table 5: Scores of the Entity Invariance task between
the subject of the baseline sentence and each of that sen-
tence’s different transformations using sBERT cosines.

Passivization Clefting Topicalization VP-topicalization
-1.570795954 -1.570796167 -1.570795853 -1.570795884
-1.570796289 -1.570796284 -1.570796288 -1.570796289
-1.570796251 -1.570796245 -1.570796264 -1.570796272
-1.570796283 -1.570796278 -1.570796279 -1.570796278
-1.570796223 -1.570796245 -1.570796238 -1.57079623

Table 6: Scores of the Entity Invariance task between the
baseline subject relative to each transformation using
influence functions. The scores have been normalized
using arctangents.

5.1 Significance of Grammatical
Transformations

It is also possible to examine differences in the
effects of the four grammatical transformations
that we selected. The distributions of the various
scores across tasks, both jointly and severally, fail
Levene’s test of homoscedasticity, so a repeated-
measures Friedman’s test is the appropriate way to
test for significant differences among their medi-
ans. Its null hypothesis is that there is no significant
difference among the four transformations, which
would imply (but not prove) a degree of resilience
in the chosen semantic representation. As shown in
Table 7, the choice of grammatical transformation
is significant in the direct sentence similarity task,
regardless of method, but is significant for entity
invariance only with sBERT cosines, not with in-
fluence functions. Note that the magnitudes of the
p-values are at opposite poles, so this is a matter of
kind, not degree. Table 8 shows the respective test
statistics with their effect sizes. The three signifi-
cant effect sizes are all considered large, because
they are greater than 0.5.

For the settings found to be statistically signifi-
cant, we present a ranking of transformation pref-
erence (higher scores are more preferred) in Table
9. This confirms that for the task of sentence simi-
larity, influence finds passivization to produce the
least similarity, and therefore the most difference
in meaning, while sBERT finds passivization to be
most similar. In fact, while they have similar p-
values and test statistics to those for sBERT vector
cosines, their ranking of grammatical transforma-
tions is the exact opposite.

For entity invariance, on the other hand, sBERT
once again finds passivization to best preserve it, al-
though clefting preserves it the least. In both tasks,
we are of course not testing whether passivization
influences meaning, but rather, given that passiviza-
tion is thought to be meaning-preserving, whether
sBERT cosines and influence functions perform as
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we want them to.

Sentence Similarity Entity Invariance
sBERT 2.32× 10−15 3.97× 10−7

Influence 1.69× 10−15 0.983

Table 7: p-values of Friedman’s test for different experi-
mental settings.

Sentence Similarity Entity Invariance
sBERT 71.23 / 1.1936 32.57 / 0.807
Influence 71.88 / 1.199 0.17 / *0.058

Table 8: Test statistics (χ2) / effect sizes (ϕ) of Fried-
man’s test for different experimental settings (the lower-
right effect size is hypothetical, as no significance has
been demonstrated).

5.2 Effect of Concocted Names
As shown in Table 10, the effect of concocting the
names of the fixed entities magnifies the effect of
changing the grammatical transformation in the
entity invariance task to the point that it becomes
statistically significant, and of moderate, almost
large size.

6 Discussion

That influence functions might demonstrate any
resilience to syntactic transformations is indeed
interesting, because: (1) sBERT vectors do not
(nor does any other vector-based representational
scheme that we are aware of), in spite of how amaz-
ingly well they work as semantic representations,
and (2) it means that influence functions bring us
that much closer to being able to truly work with
the meanings of sentences rather than more super-
ficial aspects of their syntactic realizations. Nev-
ertheless, this resilience has only been seen in our
examination of something more subtle, where we
look not at differences in meaning, but differences
in influence scores relative to a fixed entity, and
thus arguably differences in differences in mean-
ing. Were it not for entity invariance, in fact, one
might wonder why influence scores bothered to
exist, given their strong Pearson correlations to
sBERT-vector cosines and fickleness with respect
to syntactic transformations in more direct compar-
isons of sentence meaning.

The results on the Made-Up Entity dataset sug-
gest that at least some of the resilience of influence
functions is due to their ability to draw upon the
meanings of the pre-trained data or the syntactic
variety of their expression, or both, in order to see

through the effects of a syntactic transformation. In
typical LLM fashion, however, the patterns learned
by the language model in relation to this are not
sufficiently robust or principled to withstand, for
example, an innocuous change in the semantic ar-
guments. And so an innovation that was designed
to isolate the effects of the query around the trans-
formed sentence in fact hurt performance.

6.1 Limitations

We cannot flatly claim that influence functions are
a better alternative to sBERT vectors, in part be-
cause of the adverse effects of consistently chang-
ing names. There are other limitations, too, the
chief of which is that sBERT uses an encoder-style
model which contains bi-directional context, while
the Anthropic code base and paper for influence
functions is focused around GPT2 and other de-
coder models that only see previous tokens in its
history. So it is impossible to determine the ex-
tent to which the entity invariance we saw with
influence functions is due to the underlying de-
coder architecture without rewriting that code base.
What we can already affirm is that this difference
in architecture was not enough for influence scores
to fall out of lock step with sBERT cosines in the
Pearson correlation test that we conducted.

Another limitation is our choice of a small num-
ber of grammatical transformations for experimen-
tation. The results presented in Table 9 naturally
single out passivization from the other transfor-
mations, and indeed passivization is special. It is
the only transformation among the four that we
selected to unequivocally constitute A-movement,
and the only one that rotates the grammatical func-
tion assignment around the arguments of the base-
line sentence. It is also the only one of the four
that has overt morphological reflexes, although
both clefting and VP-clefting would also cause
the LLM’s tokenizer to change the length of the in-
put. One might also argue that certain of these four
transformations are easier to withstand or easier
to predict the consequences of, using the measure-
ment tools at our disposal, either because of the
structural complexity of the transformation in terms
of a chosen syntactic representation, or because of
a variance in their relative frequencies in the pre-
training corpus. We would, at the same time, like
to expand the experimental list of transformations,
while better balancing these other effects, but these
two purposes work against each other.
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Passivization Clefting Topicalization VP-Topic
Influence on Sentence Similarity 1.570795571 1.570795892 1.570796019 1.570796057
sBERT on Sentence Similarity 0.937302351 0.9078437984 0.8857396245 0.8987811208
sBERT on Entity Invariance -0.05444133282 -0.08711430431 -0.05307358504 -0.07616019249

Table 9: Medians of the scores on the Grammatical Transformation dataset for each transformation under statistically
significant conditions, ranked by colour.

p-values Test Statistics Effect Size
Sentence Similarity 3.79× 10−14 65.568 1.145
Entity Invariance 0.008 11.712 0.484

Table 10: p-values, test statistics (χ2), and effect sizes
(ϕ) for different tasks with the Made-Up Entity dataset
(influence functions only).

7 Conclusion

Along with neural language models has come in-
creasing concern over transparency and explain-
ability. Influence functions are one example of an
attempt to understand or interpret language models.
There is some evidence, as shown in this paper, that
influence functions are good for more than assign-
ing blame for faulty output. They correlate well
with sentence-similarity scores.

Using entity invariance over grammatical trans-
formations, we have been able to distinguish the
two, however. While sentence embeddings are
not resilient to syntactic transformations in any of
our experimental settings, in certain conditions,
influence functions are. This is important, be-
cause meaning representations should be invariant
to meaning-preserving transformations.

It will be important to repeat this experiment
after reworking either the Anthropic code base or
sBERT so that they can run on the same kind of
model. It will also be important to expand and
better control the list of syntactic transformations.
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A Full Datasets

Table 11 contains all the concocted entities that, af-
ter replacing the subjects in the Grammatical Trans-
formation dataset, form the Made-Up Entity dataset
described in 4.1.3.

Table 12 contains all the baseline sentences in
the Grammatical Transformation dataset described
in Section 4.1.1. The transformations are omitted
for brevity but follow directly from the baselines.

B Full Result Tables

Table 13 contains the full results of the sentence
similarity task on both metrics. Note that there are
50 rows of data, each corresponding to an entry in
the Grammatical Transformation Dataset. Colors
are mapped such that the smallest is white, largest
is dark green and intermediate values are gradated
uniformly, and in addition, each row is done inde-
pendently.

Table 14 contains the full results of the entity
invariance task on both metrics.

Table 15 contains the full results for the test of
influence on the Made-Up Entity dataset on both
tasks, detailed in Section 4.1.3.

C Prompts

Prompt to generate the baseline fact sentences:
Please provide me a list of factual statements like
"Mozart composed symphonies" that follow the
simple sentence structure.

Given the list of baseline sentences, the prompt
to generate a transformation: I will provide you
a list of sentences. You are to take each sentence
and topicalize it. For example, if given "John liked
Mary." you are to return "Mary, John liked.". The
same prompt can be adapted for the other transfor-
mations.
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Made-up Entities in the Made-Up Entity Dataset
Kolpytimia Fervan Phran Zorvik Ivoren
Jymilopy Galros Quirin Reilktyia Jexar
Fulkingra Hivian Raxen Avaron Kynor
Liuntmat Ivren Salven Brenix Larven
Kolparop Jovik Torvin Cyrin Morden
Funmilip Kelrin Uvorn Dralin Nexor
Belrix Laxor Vexan Elvir Shadrin
Cevran Merin Wavric Fixon Fullinma
Darvon Novin Xalden Gravin Dilkop
Emlian Orvex Yavren Haldor Imnity

Table 11: All entities in our Made-Up Entity Dataset. These replace the subjects of the Grammatical Transformation
dataset to form the new dataset

Baseline Sentences in the Grammatical Transformation Dataset
Albert Einstein developed the theory of relativity. Armstrong landed on the moon.
Isaac Newton formulated the laws of motion. Fleming discovered penicillin.
Leonardo da Vinci painted the Mona Lisa. Darwin explained evolution.
William Shakespeare wrote Hamlet. Jobs founded Apple.
Marie Curie discovered radium. Beethoven composed Fur Elise.
J.K. Rowling wrote the Harry Potter series. Hillary climbed Everest.
Vincent van Gogh painted The Starry Night. Pasteur developed vaccines.
Nikola Tesla invented the alternating current (AC) motor. Galileo built telescopes.
Georgy Zhukov led the defense of Stalingrad. Ford revolutionized manufacturing.
Alexander Fleming discovered penicillin. Orwell wrote 1984.
Michelangelo sculpted David. Picasso painted Guernica.
Charles Darwin developed the theory of evolution. Edison patented the light bulb.
Thomas Edison invented the electric light bulb. Mandela fought apartheid.
Beethoven composed Symphony No. 5. Turing cracked the Enigma code.
Alexander Graham Bell invented the telephone. Pythagoras discovered the Pythagorean theorem.
Mozart composed The Magic Flute. Hitchcock directed Psycho.
Leonardo DiCaprio played the role of Jay Gatsby. Mozart composed Don Giovanni.
Columbus discovered America. Washington led the Continental Army.
The Wright brothers invented the airplane. Napoleon invaded Russia.
Alexander conquered Persia. Franklin invented the lightning rod.
Marie Curie studied radioactivity. Curie discovered polonium.
Tesla designed alternating current systems. Kepler described planetary motion.
The Romans built aqueducts. Gagarin orbited Earth.
Magellan circumnavigated the globe. Caesar crossed the Rubicon.
Gutenberg invented the printing press. Chopin composed nocturnes.

Table 12: All 50 baseline sentences used in the Grammatical Transformation Dataset. Not included for brevity are
the corresponding grammatical transformations but they all follow naturally to make up the full dataset.
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Sentence Similarity via Influence Sentence Similarity via Sentence-BERT
Passivization Clefting Topicalization VP-Topicalization Passivization Clefting Topicalization VP-Topicalization

1281673.25 2596264 4117991.25 3298893.25 0.9325544834 0.8652806878 0.8628834486 0.90064466
5032188.5 7685314 6797391 6382516 0.9408032894 0.9085036516 0.883110702 0.8844070435
7136764.5 11084613 16475059 12699568 0.9306652546 0.8681627512 0.869109869 0.8732848167

3492748 4352391 8556159 5876025 0.9199316502 0.8648024201 0.8657934666 0.8941929936
1532958 2286936.75 1962189.875 2141318.75 0.9520395398 0.9430727363 0.9146342278 0.9339743257
4620397 13047812 8191310.5 20385430 0.9660890102 0.8314833641 0.8642077446 0.9086657166

1275383.625 2828912.75 4700864.5 6202506.5 0.9333539009 0.9185542464 0.9130138755 0.8701131344
3085148.25 2570608.75 3505769.5 5189386.5 0.9549874067 0.9168089628 0.9037501812 0.9442888498

5773955.5 7070393.5 10300728 12519818 0.9459875226 0.9487894773 0.9275122881 0.8671823144
4353710.5 3066081.75 5515658 3065397.75 0.9545772076 0.9427666068 0.9304442406 0.9420560598

1201822.25 762331.3125 6281364 5113827 0.9067315459 0.9071839452 0.8697237372 0.902159512
6461203 5040498.5 7943203.5 8796788 0.9197968245 0.8237189054 0.8344243169 0.8498998284

1900646.625 1747893.375 3532316.25 5013893 0.9284735918 0.84999156 0.8362667561 0.9234173894
3811932 5775193 5407366.5 8614384 0.9404629469 0.940613687 0.9342517853 0.8057485819
8396329 13875857 38902156 -336879.2813 0.9341417551 0.8465870023 0.7667613029 0.8968443274

2837912.5 2746652.75 3477327.5 5668458 0.9407648444 0.7814874649 0.8770526648 0.8991389275
2148719.75 2310032.5 3563150 7584823.5 0.9522520304 0.9452135563 0.8985278606 0.836519599

1163579.875 1002357.438 2497049.5 1499065.875 0.9046645164 0.8813423514 0.7317293882 0.8887551427
1367728.375 614765.3125 2399663.5 2348435.25 0.9161099195 0.8231762052 0.8400527835 0.8983151913
1972371.625 5103495.5 3946486.5 6394397.5 0.9530593753 0.918993175 0.8561660051 0.9100579023

712751.5 1288459.25 2425012.75 3654488 0.9562042356 0.9505699277 0.9037286043 0.8873476982
3226312.25 12242624 3931645.75 13437938 0.9615622759 0.9444450736 0.9279776812 0.8876610994

1420691.625 5752419 8330069 3952169 0.9537521601 0.9556134939 0.9316477776 0.8822870851
309985.2188 3447946 5053616 7553659 0.9246538281 0.8528832197 0.856222868 0.9120983481

800681 538536.625 2079399.75 2897636.25 0.9088691473 0.8832570314 0.8298295736 0.8844642043
91632.98438 1477246.75 1883422.875 2362679.5 0.8620303273 0.7549761534 0.7469062209 0.8201477528

2736904.5 441928.3438 763860.5 1111945.375 0.9550385475 0.9451751709 0.9499857426 0.9289374352
317121.375 905179.6875 2216923.25 1574170.75 0.8973581791 0.8525787592 0.8231647611 0.8734014034

1058726.875 2258758.75 3243198.25 4167219.75 0.9199647903 0.8848507404 0.8137908578 0.903968513
-1187882.375 6206952.5 1382713.875 2774814.75 0.9419152141 0.9371224046 0.8946403861 0.9033447504

1384578.5 11605822 1470714.5 12923023 0.8947380781 0.8980829716 0.8914081454 0.878882587
398852.7188 877115.1875 2340028.25 1418243.75 0.9431471229 0.9407480955 0.927508533 0.8732652068
512260.9688 124985.6953 1507217.375 3009961.5 0.9419971704 0.9371962547 0.9451744556 0.9277190566

927574 -569455.8125 890655.3125 3681423 0.9550658464 0.9444385767 0.9141231775 0.9183707237
733503.875 1276804.125 3643654 613235 0.9289010763 0.8879346251 0.8347960711 0.8943598866
2617136.25 1795073.5 2855236 7847653 0.9220842123 0.915694356 0.8794906735 0.8984233141

636359.25 126831.7031 1154313.75 4479112.5 0.9173202515 0.9273391962 0.895643115 0.9292954206
688857.4375 870001.75 1613224.25 2188606.25 0.8809921145 0.8822927475 0.8651847839 0.8980981708

897886.75 2438285.5 3755775.25 5557944 0.9443784356 0.8753024936 0.8788477182 0.900886178
941638.5625 1710459.5 3206986.75 2542614.5 0.9473628402 0.9563817978 0.9277408123 0.9360141158

30088.2207 3036802.75 1362985.5 3273471.25 0.8767876625 0.8422478437 0.918872118 0.8392100334
-774782.5625 4324408 3250920.75 7688956.5 0.9330461621 0.922550559 0.888368547 0.9031774402
1543971.625 1883542.375 2346876.5 2069620.625 0.9551422596 0.9336919785 0.9073114991 0.9046003222

2149576.5 1670727.625 4511604.5 2736040.75 0.9525103569 0.8796239495 0.8039262891 0.8643612266
-66643.16406 208990.6719 760295.8125 2674516.25 0.9314661622 0.906768024 0.925755322 0.924367547
1650114.375 3372535 1811241.375 3720192 0.9604322314 0.9507023096 0.9522266388 0.9335971475

2179720.75 94931.34375 1805788.5 2851061.25 0.9632445574 0.9436131716 0.9506351948 0.9086754918
908247.5 2219431.75 6535197.5 2098055.5 0.9507032633 0.9038532972 0.8263111115 0.9095230699

-470488.875 688643.0625 2670438.5 3444965.75 0.9334220886 0.9068481922 0.8767338395 0.9065231085
-1013974.75 6141339 2260686 7763943 0.9230386019 0.9325930476 0.9073643088 0.8753144145

Table 13: Full results of Sentence Similarity for both metrics on the entire Grammatical Transformation Dataset
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Entity invariance via Influence Entity invariance via Sentence-BERT
Passivization Clefting Topicalization VP-topicalization Passivization Clefting Topicalization VP-topicalization

-2685623 -6254405 -2108614 -2258712 -0.07981181145 -0.1866739392 -0.1492462158 -0.07941681147
-26642611 -23641762 -25821433 -26574901 -0.06372123957 -0.1190310717 -0.112989068 -0.0492888093
-13220497 -12153932 -15876012 -18372530 -0.08093649149 -0.1657860875 -0.06755018234 -0.04545301199

-23089960.75 -20474648.5 -20957768 -20638588.5 -0.1250346899 -0.1121886373 -0.05282765627 -0.1104551554
-9629271.5 -12170401.5 -11296740.5 -10278239.5 -0.004707098007 -0.06935936213 -0.05996596813 0.01575297117
-27716518 -24282692 -25155550 -24522918 -0.02630108595 -0.1617150307 -0.1105882525 -0.1176011562
-25609095 -25669994 -24993926 -25406562 -0.0555267334 -0.07726699114 -0.0490463376 -0.05264532566
-14933946 -12275290 -16347746 -16882840 -0.08301895857 -0.100716114 -0.07386052608 -0.08472329378
-15794400 -8453728 -11933606 -11977778 0.003785192966 -0.02281010151 -0.06004858017 -0.1017688513
-30020002 -19234332 -26009050 -21754662 -0.04582571983 -0.06943738461 -0.06015014648 -0.02689957619
-48643260 -52031866 -48561260 -46328487 -0.1114506721 -0.09153693914 -0.05393457413 -0.1327273846
-13833647 -9833368 -13587115 -10178348 -0.06523412466 -0.1308091283 -0.08723050356 -0.06536006927
-26825080 -25047562 -26189696 -25613158 -0.09480243921 -0.1450120807 -0.1342134476 -0.05758196115

-1135976.25 -475462.5 -2344986.125 -1476259.547 -0.0925809741 -0.1185005307 -0.05976593494 -0.06406724453
-39184466 -38029180 -31495636 -36814442 -0.04791623354 -0.1590764523 -0.1918034554 -0.08462017775

-1247697.25 -1582920.375 -2108257.125 -1594213.875 -0.09655714035 -0.1692547202 -0.04888242483 -0.08329671621
-5411460 -6072064 -5347273 -5201701 0.03376698494 -0.01508197188 0.02062654495 -0.01081442833

-4791516.125 -3093396.25 -3368433.25 -3402382.5 -0.09742739797 -0.08908066154 -0.006914794445 -0.09745392203
-12588536 -28372232 -34465044 -39599843 -0.09354573488 -0.1332816482 -0.1059363484 -0.1363123655

-5319618.375 -4277966.313 -4288703.438 -5360857.469 -0.02574926615 -0.05807337165 -0.0239841342 -0.07041674852
-7629488 -11472516.5 -10119478.5 -9223493 -0.01981073618 -0.03779411316 -0.05990833044 -0.03124922514

-1823057.594 -1784169.672 -1747495.781 -1909726.992 -0.03912311792 -0.07392579317 0.03000319004 -0.06897968054
-31943223 -28038618 -34662588 -32163390 -0.05335593224 -0.03372785449 -0.01171341538 -0.02090236545

-1104358.875 -2584393.844 -3484716.25 -1595341.125 -0.02594101429 -0.09438753128 -0.04366868734 -0.07553547621
-3454303.375 -1707085.625 -1072567.125 -1806547.125 -0.06934568286 -0.07635483146 -0.07115519047 -0.1302825809
2332928.625 2165193.875 2180960.313 2484504.125 -0.08078327775 -0.1065143049 -0.1084765792 -0.1459647715

-12339632.25 -13939776.63 -16306948.5 -15179150.88 -0.03378689289 -0.02639275789 0.001132577658 0.02219408751
-2894744.125 -3501600.211 -3639278.414 -3362675.984 -0.04256004095 -0.02782595158 0.06826972961 -0.003503620625
-198664.1445 -228390.333 -185710.7344 -199948.0586 -0.06719768047 -0.1265891194 -0.01654732227 -0.07524868846

-414397.375 -730582.7031 -678280.2813 -781506.2969 -0.09697979689 -0.08204746246 -0.06582641602 -0.05791759491
-283525.1289 -284416.8887 -261344.5234 -260542.9336 -0.09624645114 -0.08741539717 -0.04021796584 -0.07799932361

-8322824 -7754106 -6927294 -7234931 -0.03954720497 -0.04791337252 -0.01593309641 -0.1249685585
-38572803 -24507834 -34113582 -31726072 -0.03267228603 -0.04540675879 -0.02843618393 -0.04879248142

-18167.93164 -18284.80469 -22466.16797 -15712.23633 -0.02734774351 -0.06580168009 -0.05387979746 -0.1557758152
-446892.125 -483367.3125 -479492.9375 -1020807 -0.07068240643 -0.1144337654 -0.09733355045 -0.07694244385
-3250265.25 -4003595.563 -3033394 -3140831.75 -0.1278484464 -0.1360321045 -0.0533195138 -0.09156519175

-1908188.188 -831025.9375 -792524 -1234735.563 -0.1284969449 -0.1011826992 -0.09552234411 -0.04509288073
-1874450.125 -1568216 -1688667.938 -1822333.188 -0.1489322186 -0.1448811293 -0.06250846386 -0.1114014387
-4128723.789 -2868800.25 -5321833.625 -1356737.25 -0.04154163599 -0.07667589188 -0.0476590395 -0.07678490877

-29504152 -32576832 -30273304 -28288826 -0.03211379051 -0.04234272242 0.02607136965 -0.01085174084
26074.9375 -451694.0859 -220842.4688 -318559.5 -0.03710752726 -0.1560547352 -0.09752297401 -0.08025348186

-1946600.25 -2015420.75 -2433695.125 -1350453.25 -0.0997890234 -0.02228420973 0.01836383343 -0.08943325281
-718451.7813 -944356.6641 -945010.3594 -978230.1328 0.02094578743 -0.02048495412 0.01983216405 -0.1224358678
-29409283.88 -30200487.56 -29657554.56 -29677078.81 0.01468878984 -0.08090877533 -0.007811784744 -0.05628025532
-1109870.063 -1860999.219 -1730642.281 -2111163.311 -0.04685598612 -0.05257755518 -0.0422347784 -0.04875138402

-2075367 -2253507.375 -2368550.75 -2355812.188 -0.04864227772 -0.0438978672 -0.04264587164 -0.02939426899
-326502 -2257342.25 -2389740.875 -1023074 -0.06806963682 -0.08834481239 -0.0005748867989 -0.1109085083

-17051838.84 -16849220.94 -15265631 -16327568.88 -0.03762674332 -0.08681321144 -0.09053331614 -0.1175132394
-2649977.906 -2593891.906 -2393907 -2046743.75 -0.02224761248 -0.04226249456 -0.0484764576 -0.06495755911
-26235076.38 -26820000.16 -26304973.25 -26184891 -0.097905159 -0.08832764626 -0.02254664898 -0.1072673202

Table 14: Full results of Entity invariance for both metrics on the entire Grammatical Transformation Dataset
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Sentence Similarity via Influence Entity Invariance via Influence
Passivization Clefting Topicalization VP-topicalization Passivization Clefting Topicalization VP-topicalization

20699412 18898032 18216750 14871124 -27748200 -21957264 -19352244 -16531028
16107982 16881070 22166466 18357252 -25357752 -31761387 -25464259 -24658304

8983601 9679158 13356021 15754497 -15623932.5 -15539081 -10364748 -19133420
6311177 31551756 15346468 33377176 -32253152 -34866796 -30644562 -31838056

-4400801 3247743.25 8152989 -1417421.375 -37055640 -34900592 -44443604 -41120728
7341449.5 4947732.5 10200429 8779436 -10611611 -9151762 -10131612 -9676926
4204987.5 3982068 3914922.75 14536122 -2995158.75 -2896915.563 -2880270.25 -3905569.219
39287480 39517636 41943084 43717972 -23887976.25 -24590565.5 -24768332.5 -24817787.5
5499680.5 5292868 9293386 14166252 -6988639.25 -8419173.469 -8611006.188 -8578112

795575.6875 721371.75 2425898 1754051.875 -16320768 -17970983 -18785290 -17531584
1111503.125 2716567.25 1668867.125 5971097 -46875189.25 -48718234.09 -48014607.44 -47222828.75

3494235.5 5168803 5021732.5 6507909 -1306780 604563.5 -1818692 -198710
2854848.5 2777719.5 3898743.25 5461473 -44338464 -56349592 -50853727 -52246354
1941477.5 9786865 5676007.5 9990937 2108757.125 2131060.875 1837815.625 1714763
806739.75 1078171 3864495.25 1805136.25 -3313877 -5654521 -6208624 -6319545
1971969.5 2315744.5 3322627 4030830 609971 -116435 82594.09375 -293907.0938

3113887.25 3309663.25 5848674 7088668 -61137592.38 -62781103.19 -61198772.5 -61969797.77
904815.0625 4273071.5 1094813.375 3007366 -4451510.205 -4695470.813 -4905691.969 -4977761.5
476680.4375 180478.6094 677784.3125 1363827.125 -8516562.813 -8411518.031 -8619159.438 -8473698.125

-1440849.125 6980230.5 5300396 4356878.5 -11607418 -14793079 -14087506.5 -15849524.5
1288198.375 3206311.25 5574628 6867961 3482046.375 3396289.5 2969881.625 2794664.625

3750752 9526400 4090863.75 12548599 1851081.109 1852303.016 1861345.625 1741095.734
1479134.5 2008157.5 1753084.5 1594822.125 -2386763.75 -2982937.656 -2696552.434 -2792250.531

622985.6875 2346483.75 6988319 7975886 -18440996.5 -23206848 -19082092.5 -22463687
537622.6875 960032 2324116.75 3750187.75 -1748337 -3400219.875 -2762614.938 -3739159.875
1378174.875 1122773.25 2615694 3123351.5 -34615689.75 -35094075.25 -34674898.25 -35754053.25

347643.125 594932.75 1796586.375 2670808.75 -11495633.88 -11424431.88 -11695386.09 -11622510.38
305673.8125 661324.9375 2004349.625 1520810.75 -4411322.625 -3197441.75 -4706700.25 -4590533

2249547 3402734.5 6386406 4276829.5 -25215807 -29706655 -25352677 -28966407
3405452.25 12879227 5271509 8707653 -11760492 -14378362 -13283870 -10874287

768798.9375 10446396 5316533.5 12891541 -20133013.5 -20565648.5 -21723378 -20852058
9640745 9694372 6758299.5 3705323.75 -16910541 -22972139 -16782637 -18804143

355867.75 1285882.375 1297126.75 1909627.625 344915.875 161834.25 420683.5 -502630.875
1240693.875 2390800 3266505.75 3750562.5 -84545504 -86513072 -95985880 -85100844
126504.9453 689580.875 1197900.25 1589813.875 -2965967.5 -2691341.563 -2771703.875 -2990364.906

10040059 7601738 3605134.75 6452776.5 -12713596 -14162309 -9163776 -13836231.5
574604.875 1275667.75 2521754 3318908.25 -241800.1602 -507822.1719 -1196177.531 -633820.4688

229866.9063 489298.1563 1058893.375 4325071 -1023570.063 -227643 -961018.6875 136663.125
1205245.625 2386297.75 4134517.75 4209640 -8267742.375 -9116313.133 -9054034.375 -8748847.125

4838220.5 5989610 7196361 7528256.5 -170502362 -156098350 -144139452 -155251562
680086.625 7122028.5 3757842 4863109.5 -43254391.25 -44739429.88 -42880126 -40628191.5

6614905.5 8474995 4974632.5 12607139 -21855384 -24289794 -20991455 -21518870
1809379 3166296.5 4690755 2627413.25 -55810420 -60561396 -52134966 -56077972
2263918 830624.4375 4329830.5 10571793 -18316043.25 -16365657 -14891428 -15227425.5

-422677.3125 232356.2344 1123875 2746210.5 1260457.25 -1450561.25 -828111.5 101014
393759.875 1359005.75 1329041.125 2745960.25 2505653.137 2954838.031 2476717.504 3066468.438

1965582.375 4272043.5 3442731 4518502 -10066473 -13644846 -16204924.75 -13169884.5
567223.3125 9596649 3692350 7254443.5 -12858188 -19651287 -17660868.5 -15906087

-179255.6563 -3388808 7529950.5 3677222.75 -21820827.5 -21620684 -21853104 -21528893.75
1040165.625 6428225.5 6093796.5 1911645.75 -34843994.5 -35182859.5 -34070036 -34218104

Table 15: Full results of Influence on both tasks for the Made-Up Entity dataset
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Abstract
For linguists, embedded clauses have been of
special interest because of their intricate distri-
bution of syntactic and semantic features. Yet,
current research relies on schematically created
language examples to investigate these con-
structions, missing out on statistical informa-
tion and naturally-occurring examples that can
be gained from large language corpora. Thus,
we present a methodological approach for de-
tecting and annotating naturally-occurring ex-
amples of English embedded clauses in large-
scale text data using constituency parsing and a
set of parsing heuristics. Our tool has been eval-
uated on our dataset Golden Embedded Clause
Set (GECS), which includes hand-annotated
examples of naturally-occurring English em-
bedded clause sentences. Finally, we present
a large-scale dataset of naturally-occurring En-
glish embedded clauses which we have ex-
tracted from the open-source corpus Dolma
using our extraction tool.

1 Introduction

One of the most popular methods of conducting
linguistic research has consisted of handcrafting
paradigmatic utterances followed by gathering na-
tive speakers’ judgements. Yet, it is questionable
how much these constructed utterances reflect real-
world language use. As a result, plenty of debate
has arisen about the legitimacy of paradigmatic
utterances as a research tool, with arguments sug-
gesting this particular data collection technique
can lead to biased results (Cowart, 1997; Schütze,
2016). Whilst this debate has been happening in
linguistics, the advancements of Natural Language
Processing (NLP) have led to a significant increase
in the amount of freely available language corpora
as well as an increase in their size. For example,
the open-source dataset Dolma consists of 3 tril-
lion English tokens (Soldaini et al., 2023). These

*These authors contributed equally and are ordered alpha-
betically.

datasets provide new opportunities for linguistic
research, with the ability to gather statistical data
about specific language constructions and naturally-
occurring examples beyond handcrafted sentences.

One particular sentence construction that would
benefit from such corpus research is that of EM-
BEDDED CLAUSES. These constructions contain an
embedding predicate which selects a clausal com-
plement, as seen in the sentence: Mary hopes that
John likes chocolate. Here, the predicate hopes
embeds the declarative clausal complement that
John likes chocolate. Alongside DECLARATIVE

clausal complements, as in (1a), there are also PO-
LAR INTERROGATIVE clausal complements (1b),
ALTERNATIVE INTERROGATIVE clausal comple-
ments (1c), and CONSTITUENT INTERROGATIVE

clausal complements (1d). Crucially, predicates
vary with respect to which clausal complement
type they are allowed to embed; consider the dif-
ference in grammaticality between wonder, which
can embed interrogative clausal complements, and
hope, which cannot embed interrogative clausal
complements.1 In addition, it has been observed
that emotive factives, such as be happy (about),
take declarative and constituent interrogative com-
plements but not polar and alternative interrogative
complements (Abels, 2004; Karttunen, 1977; Sæbø,
2007, a.o.).

(1) a. Mary {*wondered | hoped | was happy }
[that John liked chocolate].

b. Mary {wondered | *hoped | *was happy
about } [whether John liked chocolate].

c. Mary {wondered | *hoped | *was happy
about } [whether John liked chocolate or
cake].

d. Mary {wondered | *hoped | was happy
1These judgements, commonly reported in the literature,

are shared by the 3 native British English and Canadian En-
glish speakers among the authors.
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about } [which chocolate John ate].

Because of this observation that a predicate se-
lects for particular types of embedded clause in
fine-grained ways - partly conditioned by the predi-
cate’s lexical semantics - there is a debate amongst
syntacticians and semanticists about what roles syn-
tax and semantics play within these constructions
(Grimshaw, 1979; Uegaki and Sudo, 2019; White,
2021, a.o.). Extrapolating clausal embeddings from
large-scale corpora would help to answer such ques-
tions, by providing large-scale statistical evidence
for how often these embedding predicates appear in
natural language use and what clausal complements
they select, as well as the ability to look for natural
language examples. Thus, the aim of this paper
is to create a tool for linguists to extract English
sentences containing embedded clauses from large-
scale corpora, whilst also providing the following
information: (i) the span of the embedded clause,
(ii) the lexeme(s) of the embedding predicate, and
(iii) the type of the embedded clause.2

This task of extracting embedded clauses is by
no means trivial. Firstly, the span of the embedded
clause in a sentence has to be correctly identified,
excluding any element that belongs to the matrix
clause. Secondly, there are constructions that super-
ficially resemble embedded clauses, but are in fact
not, as they fail to categorise syntactically as com-
plements of an embedding predicate or as clauses.
To see this, consider the following examples:

(2) a. Mary saw a man [that John mentioned].

b. Mary ate [what John cooked].

c. Mary goes to the gym regardless of
[whether she is tired or not].

The bracketed clause in (2a) is a RELATIVE

CLAUSE and is not a complement of an embed-
ding predicate. In (2b), we have an instance of a
FREE RELATIVE, which is considered as primar-
ily a Noun Phrase rather than a clause (Caponigro,
2003; van Riemsdijk, 2006). The bracketed clause
in (2c) is an UNCONDITIONAL (Rawlins, 2008),
which is a modifier rather than a complement of a
matrix predicate. Thirdly, embedded clauses can
arise in complex clausal structures such as coordi-
nation (3a), which often occurs with ellipsis, nest-

2Code: https://github.com/navarrenicolas/clause_parser/.
Extracted embedded clause dataset available on HuggingFace:
https://huggingface.co/datasets/nnavarre/Embedded_Clauses-
dolma_v1_6-sample

ing (3b), or some combination of both (3c). Conse-
quently, to correctly identify embedded clauses, we
need a correct syntactic parse of the sentence, as
well as appropriate heuristics to rule out structures
such as those in (2) and deal with the structures in
(3).

(3) a. Mary knows [that John likes chocolate]
and [that Mark does not].

b. Mary knows [that John thinks [that Mark
likes chocolate]].

c. Mary knows [that John thinks [that Mark
likes chocolate]] and [that Mark does
not].

Our paper is structured in the following way:
Section 2 describes previous attempts at building
a large-scale corpora of English embedded clauses
(e.g. MegaAcceptability), and additionally exam-
ines existing tools designed to extract sentences
from language corpora (e.g. linguistic search en-
gines). Section 3 introduces our hand-annotated
dataset of English embedded clauses: Golden Em-
bedded Clause Set (GECS). Section 4 describes
our extraction tool that uses constituency repre-
sentations and parsing heuristics, as well as our
tool’s performance on GECS. Section 5 presents
the large English embedded clause dataset that we
have extracted from the open-source dataset Dolma.
Section 6 suggests future research avenues and 7
concludes our work. Overall, we provide three new
contributions:

1. A small-scale dataset (GECS) with fine-
grained gold standard annotation of English
embedded clauses to be used as a benchmark
for this task

2. An extraction tool which can be applied to En-
glish language corpora to extract and annotate
embedded clauses

3. A large-scale extracted set of English embed-
ded clauses from the language corpus Dolma
for the linguistic community to use

2 Relevant Work

2.1 MegaAcceptability
The only existing attempt at a large dataset of En-
glish embedded clauses is the MegaAcceptability
dataset (White and Rawlins, 2016, 2020). White
and Rawlins selected a list of 1007 English verbs

2
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that are known to select clausal embeddings, and
then designed 50 schematic sentences covering a
range of syntactic environments in which an em-
bedded clause can occur. They then slotted the
1007 verbs into the 50 schematic sentences to cre-
ate ∼ 50, 000 entries. Through Amazon MTurk,
participants rated the acceptability of the resultant
sentences, leading to a large dataset of embedded
clause constructions ranked by acceptability, on a
7-point ordinal scale.

Although the MegaAcceptability dataset moves
away from the problem of a small set of sentences
being used as evidence for linguistic hypotheses,
it still utilises non-natural sentences which have
been handcrafted. Furthermore, for finite embed-
ded clauses White and Rawlins (2016; 2020) only
considered environments without complementis-
ers or with the following complementisers: that,
whether, and which. They also only consider pred-
icates with no prepositions or with the following
prepositions: to and about. They make use of a
pre-defined list of verbs which accept clausal com-
plements, which does not account for the full set of
embedding verbs nor adjectives and complex pred-
icates which can also accept clausal complements.
Therefore, it is unclear if the dataset captures the
natural distributions of embedding predicates, em-
bedded clause types, and the types of embedded
clauses selected by embedding predicates.

2.2 Linguistic Search Engines
The goal to extract sentences with certain linguis-
tic phenomena from natural language use is not
a new concept. There have been several attempts
to create search engines in which an individual
can query annotated natural-language corpora for
certain constructions and then be provided with a
list of sentences which match the provided query.
Prominent tools with this use include the Linguist’s
Search Engine (Resnik and Elkiss, 2005), SPIKE
(Shlain et al., 2020), and the LINDAT/CLARIAH-
CZ PML Tree Query (Pajas et al., 2009).

Although these are powerful tools, their query
languages are not sufficiently fine-grained to cap-
ture the relevant structures of embedded clauses.
They rely on annotation of corpora with lemmas,
part-of-speech tags, and dependency graph repre-
sentations. This means that one would need to
specify dependency relationships rather than con-
stituency/hierarchical ones to identify the structure
of embedded clauses. Such an approach is limit-
ing, as it is difficult to identify clause and predicate

Embedded 
Clause 

Annotation

Predicate Clause Type

Token 1 Token n...

String Lemma POS

...

Figure 1: The annotation in GECS for each embedded
clause.

spans based on dependency relations or linear struc-
ture. There is also less consistency with respect to
the relations that identify embedded clauses than
with constituency parsers. Moreover, linguistic
search engines offer linguists limited flexibility
to decide which corpora they want to extract sen-
tences from.

3 Golden Embedded Clause Set (GECS)

For the novel task of English embedded clause
detection in natural language corpora, we created a
hand-annotated dataset (GECS) which can serve as
a benchmark for evaluation and be used in its own
right for a small-scale analysis of embedded clause
constructions. In GECS, each embedded clause
is annotated with its embedding predicate, clause
span, and clause type (see Figure 1). We provide
the embedding predicate as a list of the relevant
tokens (i.e. ignoring negation words, adjuncts, and
any other tokens which may appear between the
first embedding predicate token and the clause).3

Annotation Procedure To create our naturally-
occurring embedded clause dataset, we selected
a subset of 866, 538 sentences from Dolma4 (Sol-
daini et al., 2023). The data was not cleaned so as
to accurately test the robustness of the tool. We
then parsed the sentences and filtered them to re-
move any which necessarily did not contain em-
bedded clauses.5 To extract the set of polar and

3To capture the complex constructions of coordinated and
nested embedded clauses alluded to in Section 1, we optionally
provide a recursive data structure version of GECS which
makes the internal clausal structure transparent (see Figure 4
in the Appendix).

4Specifically we used the files cc_en_head-0000,
cc_en_head-0001, and c4-0085.

5We used SBAR from SpaCy’s Berkeley Neural Parser
(Kitaev et al., 2019; Kitaev and Klein, 2018) as an indicator,
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S

NP

PRP We

VP

VBP are ADVP

RB still

ADJP

JJ unclear PP

IN as PP

IN to SBAR

IN whether CC or RB not S

NP

NNP Canada

VP

VBZ is NP

DT a NN state

(a) Complex embedding predicate (‘are unclear as to’)

S

NP

DT No PRP one

VP

VBZ is ADJP

JJ certain

SBAR

IN whether S

NP

NNP Betty

VP

VBZ is ADVP

RB still

ADJP

JJ alive

CC or VP

ADVP

RB just

VBN hypnotized

(b) Adjectival predicate (‘is certain’)

Figure 2: Example parses of embedded clause sentences in GECS.

alternative interrogative embedded clauses, we fur-
ther filtered out sentences that did not contain the
words whether or if. Finally, to filter for constituent
interrogative embedded clauses, we only consid-
ered sentences with: who, what, when, where, why,
how, or which. The next stage of hand annotation
consisted of one researcher going through the pre-
filtered sentences and confirming (i) if there were
embedded clauses and (ii) if so, providing the anno-
tation of predicate tokens, clause span, and type. A
second researcher then went through the previous
researcher’s annotations to confirm agreement.

Overall, GECS contains 147 declarative em-
bedded clauses, 138 polar interrogative embed-
ded clauses, 84 alternative interrogative embed-
ded clauses,6 and 158 constituent interrogative em-
bedded clauses. In addition, we provide a set of
111 adversarial examples verified to not contain
any embedded clauses, but do contain mislead-
ing structures such as free relatives and relative
clauses. These were created by selecting sentences
discarded by the annotators in the final stage of
GECS’ creation.

4 Parser Tool

Though it is possible to define a set of heuristics
based on Regular Expressions or dependency re-
lations, preliminary analysis indicates significant
disadvantages to such an approach, as were seen
with the linguistic search engines from Section 2.
For this reason, we opted for representations from
constituency syntactic parsers to extrapolate hier-
archical structure. A benefit of this choice is that
assuming that this structure in the parsed representation is a
necessary condition for an embedded clause.

6There are fewer alternative interrogative embedded
clauses due to this type being far sparser in the pre-filtered
dataset than the other types.

linguistic theory is typically given with respect to
constituency trees, and we can therefore imple-
ment linguistic facts into extraction heuristics more
freely than with other representations. While it is
possible that a Dependency Parser could be used
to achieve equivalent results, it is not clear what
improvements it could offer. We leave this ques-
tion open to a more thorough exploration in future.
With the constituency representation we defined a
set of heuristics to perform the following tasks:

1. Detection: detecting embedded clause(s) in a
sentence

2. Predicate Identification: identifying each
embedding predicate

3. Clause Identification: identifying the span
of each embedded clause

4. Typing: identifying the type of each embed-
ded clause

The syntactic parser that we use is SpaCy’s
Berkeley Neural Parser, a constituency parser that
has an LSTM and self-attentive architecture (Ki-
taev and Klein, 2018; Kitaev et al., 2019). Other
options are available for constituency parsing; how-
ever, we decided upon this parser because it is
state-of-the-art for constituency parsing.

The SpaCy constituency parser represents each
sentence as an n-ary tree structure with several
syntactic categories (e.g. S, VP, NP, SBAR) in
parent and child hierarchy. This tree structure is
particularly helpful in extracting embedded clauses
because we can traverse the parent levels and check
for particular child nodes in complement positions.
We then defined heuristics based on the structures
from the parser to perform the aforementioned
tasks of embedded clauses detection, predicate
identification, clause identification, and typing.

4
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4.1 Methodology

Detection The first heuristic we deemed neces-
sary for detecting embedded clauses is the exis-
tence of an SBAR in the parsed representation.
This is a syntactic category for a subordinate clause,
which is a superset of embedded clauses, but
also includes non-embedded clauses like relative
clauses. To check if a subordinate clause is an em-
bedded clause, we assume it needs to be dominated
by a VP headed by a predicate. While there may be
other syntactic categories immediately above the
subordinate clause, we are only interested in the
first upstream occurrence of one of two syntactic
categories: NP or VP. In the case where the label
is VP, the sentence has an embedded clause. If
the label is NP, then the sentence does not have an
embedded clause—likewise if neither of the two
are found until the root node of the tree. We use
the hierarchical nature of the constituency parser to
distinguish embedded clauses from relative clauses
and complements of NPs.

To limit the amount of false positives that would
be extracted from the dataset we implemented a few
heuristics based on the embedding predicate and
the subordinating conjunction of the clauses that
are detected. First, if the embedding predicate is
empty after the part-of-speech filtering or the only
predicate token is ‘is/be’, then the clause is not con-
sidered to be an embedded clause. Secondly, we
rule out any clauses beginning with certain subordi-
nating conjunction because they are not indicative
of an embedded clause. Specifically, we blacklist
the following: after, although, before, despite, to,
for, so, though, unless, until, than, because, since,
while, as, even if, in order.

Predicate Identification Having identified an
embedded clause in a sentence, we can extract the
embedding predicate from the sentence by search-
ing for the nearest VP parent of the clause. We
iteratively search through the parents of the embed-
ded clause until a VP parent is reached. We then
identify the predicate span from this constituent,
considering a wider range of possible verbs, adjec-
tives, and prepositions than previous methods (cf.
Section 2.1). For each constituent child of the VP
(with exception to the final one which contains the
embedded clause) we keep every token in the child
span as long as the child label is either a PP, NP
or SBAR label. For the last child of the VP, we
keep every token until the onset of the embedded
clause. We then filter these tokens based on their

part-of-speech tags. We keep only the tokens that
are VERB, ADP or ADJ, with the exception for an
auxiliary tag AUX if there is also an adjective in the
original token list. This helps us capture adjectival
predicates such as ‘unclear as to’ or ‘is certain’ (see
Figure 2).

Clause Identification Given that a sentence is
detected as having an embedded clause, we can
then further use the parsed representation to extract
the span of the embedded clause. The constituency
parser is advantageous in this regard as we take
whatever is under the syntactic label of SBAR to
be the embedded clause constituent.

Typing Having identified the clause span, the
heuristics for typing the clause can involve more
simple string matching. For alternative interroga-
tive clauses we check the complementiser. If the
complementiser whether is in the first word of the
embedded clause along with the token or, then it
is an alternative interrogative. If instead, we find
whether that is not followed by the token or or is
followed by the explicit string or not, then the em-
bedded clause is a polar interrogative. If a unique
token of either which, who, what, when, where, why,
or how is the first word of the embedded clause,
then it is a constituent interrogative clause. If none
of the prior conditions are met, including if the
clause begins with that, then we type the clause as
declarative.

4.2 Evaluation

We evaluate the performance of our tool on the
sentence annotations in GECS. With these anno-
tations we can accurately test the tool’s ability to
detect embedded clauses, embedding predicates,
and clause types, allowing us to evaluate how our
tool handles messy natural data. We have also built
a pattern matching baseline to compare our heuris-
tics against a more linear approach.

Pattern Matching Baseline The baseline we
constructed is a rule-based tool using pre-defined
lexical patterns to extract embedded clause anno-
tations from a sentence. This method relies on the
SpaCy Matcher, a tool which is similar to Regu-
lar Expressions in that it matches a given pattern
in a string, but with useful supplemental linguis-
tic information encoded, such as POS and lemma
(Honnibal and Montani, 2017)7. In order to de-

7We opted for a Regular Expression matcher baseline due
to its straightforward implementation for this task, as com-
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tect embedded clauses, the Matcher is provided
with the fixed list of (potentially) embedding predi-
cates from MegaAcceptability (White and Rawlins,
2016). It then returns instances of these predicates
in a sentence; with an added heuristic ensuring that
the predicate is followed by some other verb or
auxiliary (i.e. a clause), an embedded clause is
identified. Prepositions proceeding the verb are
included in the list of predicate tokens and POS
and lemmas are also identified. Limited by the
linear nature of the Matcher, we define the clause
span as the end of the predicate to the end of the
sentence, ignoring any adverb/pronoun which may
occur between a predicate and clause. For the final
goal of typing the embedded clause we again use
the Matcher to match the first token of the clause to
the associated complementisers for each type. We
distinguish between polar and alternative interroga-
tives by classifying clauses containing the token or
but not the string or not as alternative, and every
other instance as polar. If no associated comple-
mentiser is found in the clause, the clause is typed
as declarative.

Detection Baseline Parser Tool

Precision Recall F1 Precision Recall F1
Single 0.54 0.94 0.69 0.90 0.94 0.92
Multi 0.74 0.85 0.79 0.94 0.83 0.88
Overall 0.54 0.91 0.68 0.90 0.91 0.91

Table 1: Precision, Recall, and F1 scores for clause
detection in GECS.

Task Baseline Parser Tool
Predicate Identification 0.79 0.91
Clause Identification 0.50 0.87
Type Identification 0.94 0.96

Table 2: Identification accuracy scores evaluated on the
true positives set of detected clauses from Table 1.

Results We split the evaluation of our tool and
the baseline into three detection sections: Sin-
gle Clause Evaluation which evaluates detection
performance on sentences in GECS that only in-
cluded one embedded clause, Multi Clause Eval-
uation which evaluates detection performance on
sentences in GECS that had multiple embedded
clauses (nested and coordinated clauses), and Over-
all which combines the statistics of single and multi
clause evaluation and performance on the adversar-
ials. Table 1 provides the precision and recall for

pared with a Dependency Parser for instance.

these metrics. We also evaluated amongst the cor-
rectly detected embedded clauses the annotation
abilities of our tool and the baseline, by seeing if
the selected predicate is correct (Predicate Identi-
fication), if the selected clause is correct (Clause
Identification), and if the typing of the clause is
correct (Type Identification). Table 2 provides the
accuracy scores for these metrics.

As Table 1 and 2 shows, we outperform the base-
line in every metric, indicating that our method of
utilising a constituency based tool is better than
a linear based approach. Our tool only slightly
degrades in detection recall when given a sen-
tence that had nested and/or coordinated embedded
clauses.

Failure analysis In the few cases of our tool’s
error, we see the following categories: parser er-
rors, unconditionals mistaken as embedded clauses,
and incomplete complex predicate detection. The
parser error was the biggest issue for failed cases
- unfortunately this is an unavoidable error given
that any parser will be imperfect. Unconditionals
also proved a problem because they are parsed the
same as an embedded clause, and therefore are im-
possible to differentiate from one another. Finally,
complex predicates were sometimes incompletely
detected so not all of the predicate tokens are placed
in the entry. Given that some of these errors are
unavoidable, coupled with the tool’s high precision
and recall, we still take the results to indicate that
our tool can be used to create a large-scale dataset
of naturally-occurring embedded clauses, as long
as researchers propagate the error into their analy-
sis - something which needs to be done with any
corpus study.

5 Case Study: Large-Scale Dataset

Having designed a tool which can identify and an-
notate embedded clauses, we applied it to an En-
glish corpus to create a large-scale dataset of an-
notated embedded clauses. We chose to apply the
tool to a subset of Dolma8 (Soldaini et al., 2023).
Overall, 28, 968, 073 embedded clauses were de-
tected.

5.1 Comparison with MegaAcceptability

In order to compare with MegaAcceptability, we
performed a limited case study on our large-scale
dataset by only looking at our dataset entries that

8We extracted text from the the Dolma subset v1_6-sample.
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included the 1007 verbs that were used in the
MegaAcceptability templates. To get the rating
of each verb from MegaAcceptability, we selected
the maximum normalised rating of that verb’s avail-
able constructions. We compared the distribution
between the acceptability rating of a verb accord-
ing to MegaAcceptability and its frequency in the
large-scale dataset. It would be generally expected
that the higher a verb is rated the more frequent it
would be. As shown in Figure 3, this is the overall
trend that we see. This means that our tool has
successfully captured the verbs with the highest ac-
ceptability, while the verbs with lower acceptability
had a lesser chance of occurring with embedded
clauses.

There are some exceptions to the frequency-
acceptability distribution, however this provides an
interesting exploration point. For instance, the low
acceptability outlier which has a high frequency in
Figure 3 is the predicate mean. Looking at entries
with mean as the predicate, we see three example
types: (i) where it is unclear if the predicate is ac-
tually embedding or is acting as some filler (4a),
(ii) false positives (4b), and (iii) true embedded
clauses (4c). Thus, mean could be an outlier be-
cause of false positives, or it could be an outlier
due to a data-driven approach collecting sentence
clause types which a template approach could not.

(4) a. It’s pretty catchy, I mean who doesn’t go
ANN ANN and A SORE.

b. In Glosa it means "what I’ve just said".

c. This means [...], the ADA applies to you.

5.2 Clauses and Predicates at Scale
With our large scale dataset of embedded clauses
we can look beyond the fixed list of predicates as
would be provided by a template-driven dataset like
MegaAcceptability. With our approach we are able
to view the clause-predicate distribution at a grand
scale to test and verify linguistic theories. From the
nearly 29 million embedded clause examples in the
dataset we have the following distribution of clause
types: 19, 195, 112 declarative clauses, 9, 402, 868
constituent interrogative clauses, 261, 274 polar in-
terrogative clauses, and 108, 819 alternative inter-
rogative clauses. This shows us how rare polar and
alternative interrogative clauses are. Moreover, we
can examine to the distribution of embedding pred-
icates in the dataset. Taking a look at the part-of-
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Figure 3: Comparison of natural data frequency and
acceptability of the verbs found in MegaAcceptability
ranked in increasing order of acceptability

speech tags for each of the embedding predicates in
the dataset we can observe the distribution of adjec-
tival and verbal predicates. Adjectival predicates
require an accompanying verb or auxiliary (e.g., be
happy), so we look at complex predicates involving
two or more tokens. We find that there are 35, 294
unique adjectives within these complex predicates.
Meanwhile, for simple one-word verbal predicates,
we find 29, 654 unique predicates. Altogether, this
leaves us with a strong set of examples to analyse
any clause-predicate distribution of interest.

Here we present an example of how the dataset
can be used in linguistic research to further validate
and verify linguistic theories, as well as survey new
possible sentence constructions that could be of
interest.

Emotive Factive Predicates As mentioned in
Section 1, previous analyses have shown that emo-
tive factive predicates, such as be happy, or be glad,
are not able to embed either polar or alternative in-
terrogative clauses (Karttunen, 1977; Abels, 2004;
Sæbø, 2007). We can see if the extracted dataset
shows this distribution statistically and if there are
any counter-examples.

To test this generalisation, we selected a subset
of emotive factive predicates to investigate further:
happy, amazed, sad, glad, excited, surprised, in-
credible, angry, mad, jealous, afraid. Looking at
the clauses that are embedded with these predicates,
we get the following distribution of clause types:
175, 479 declarative clauses, 47, 877 constituent in-
terrogative clauses, 159 polar, and 134 alternative
interrogative clauses. The statistical breakdown
does match the generalisation, with declarative and
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constituent interrogative embedded clauses being
the more popular embedded clause type. However,
more importantly, there are some polar and alterna-
tive interrogative, of which we can search through
to find potential counter-examples to the generali-
sation.

In searching through the polar and alternative
interrogative embedded clauses, many are false
positives, with the following four errors being in-
dicative of the set: unconditionals (5a), wrong pred-
icate span where the emotive factive is not the em-
bedding predicate (5b), real embedded clauses but
the sentence does not have the intended meaning
required by the generalisation, e.g., be afraid is
non-factive in (5c), and clausal adjuncts (5d).

(5) a. It’s not your problem, because you’re
happy whether you’re with him or doing
stuff on your own.

b. I’m not sure how excited to get about this
fund and whether he’s just piggybacking
on the Buffett name.

c. We are afraid whether it will be in Sindhi
interest.

d. Meanwhile, people across the state are
hair-on-fire mad over whether urban wa-
ter users should be allowed to buy rural
property simply for the water rights, and
whether some water users should be al-
lowed to sell their water to others out of
state.

Given that we need to propagate the tool’s error
rate, this is to be expected. However, there appears
to be some genuine counter-examples (6), of which
at least two of the three native speakers among the
authors find grammatical. It is beyond the scope of
this paper to provide an analysis of these sentences,
so we leave it for future work.

(6) a. In the post you talk about your child’s
health issues and in the end ask if people
are happy with whether they’re circum-
cised or not.

b. You might be surprised about whether
there’s hope for future shooters.

Although this analysis is not exhaustive in the
least, we use these examples to motivate the use of
this dataset to further validate and explore linguistic
theories through naturally-occurring linguistic data
in addition to handcrafted templatic examples.

6 Discussion

As this is the first method at extracting embed-
ded clauses from natural language corpora, we set
out some future research avenues to be undertaken.
Firstly, clausal embedding extraction should be ex-
tended to other languages so that linguistic theories
using such large corpora can have crosslinguistic
validity. Given that the universal definition of a
clausal complement is a complement to VP, we
argue that a similar method to what we have de-
scribed in the paper can be taken with other lan-
guages. The main changes would be to the fine-
grain heuristics that we used for typing. Of course,
our approach is subject to the limitations that follow
from any corpus-based research, which introduces
its own set of biases pre-existing in the corpora. It
is also not always possible to scale this approach
crosslinguistically, as the method relies on a given
language having large enough corpora (which many
do not). Nonetheless, this should not deter people
from using the method with an applicable language,
in complement with other approaches. Secondly,
we recognise that there are other potential methods
for extracting English clausal embeddings. One
such technique is the use of an LLM, a method
which we decided against given that an LLM is a
blackbox, meaning a thorough error analysis would
not be able to be conducted. To aid future develop-
ment within this area, we have provided GECS to
be used as a benchmark for this task.

7 Conclusion

The availability of large natural-language corpora
has led to an opportunity for linguists to conduct
large-scale language studies. However, extracting
specific language constructions from such large cor-
pora is a difficult endeavour. A particular construc-
tion in need of a large-scale corpus study is that
of embedded clauses. Thus, we have made three
contributions in aid of fulfilling this need. Firstly,
we have created GECS, a small-scale dataset with
fine-grained gold standard annotation of embedded
clauses to be used as a benchmark for embedded
clause extraction in English. Secondly, we created
a tool which can be applied to English natural lan-
guage corpora to detect and annotate embedded
clauses. And finally, we provided a large-scale ex-
tracted set of English embedded clauses from the
natural language corpus Dolma for the linguistic
community to use.
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Figure 4: The data structure in GECS for coordination
and nesting of embedded clauses.

B Examples of Parser Errors

We have provided some examples of parser errors
which are discussed in section 4.2. The sentence
in Figure 5 is usually interpreted as a conditional
sentence, however the parser represented it as an
embedded alternative interrogative clause. On the
other hand, the sentence in Figure 6 is an embedded
clause, but the parser represented it as a relative
clause.

C Neg-Raising Generalisation

Another linguistic generalisation that concerns em-
bedded clauses is Neg-Raising. When syntactically
negated, Neg-Raising predicates can take seman-
tically higher scope than negation (Horn, 1978;
Gajewski, 2007; Zeijlstra, 2018). Consider (7a),
which can have the reading as in (7a) but can also
have the interpretation in (7b). Accordingly, be-
lieve is described as a Neg-Raising predicate.

(7) a. I don’t believe John is nice

b. I believe that John isn’t nice

S

VP

VB Tweet NP

PRP Me

SBAR

IN if S

NP

PRP You

VP

VBP Love NP

PRP Me

Figure 5: False-positive parse of a sentence with a con-
ditional

S

NP
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VBP are ADJP

JJ happy S
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TO to VP

VB discuss NP

NP

PRP$ your NN case

CC and SBAR

WHADVP

WRB how

S

NP

PRP we

VP

MD can VP

VB help NP

PRP you

Figure 6: False-negative parse of a constituent embed-
ded clause
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However, many other embedding predicates do
not allow this reading. Consider predict in (8a),
which does not have the reading in (8b), so that
predict is a non-Neg-Raising predicate

(8) a. I don’t predict it will rain

b. I predict it will not rain

A generalisation of Neg-Raising predicates that
has come from the literature is that they do not
select for interrogative embedded clauses (Zuber,
1982; Mayr, 2019; Theiler et al., 2019). Thus, we
can see in our dataset if there are genuine counter-
examples to this generalisation, by searching for
the Neg-Raising predicates that have interrogative
embedded clauses. We did this with the predicate
believe which occurred 497, 684 amount of times
in the dataset, of which 19, 787 were interrogative
embedded clauses. Looking at a subset of these
interrogative embedded clauses, the majority of the
instances were not true embedded clauses, which
is to be expected as we need to propagate the error
of the tool into our analysis. However, there were a
few potential true counter-examples like (9), which
two of the three native speakers amongst the au-
thors found grammatical. However, we leave their
analysis for future work.

(9) a. As we are not omniscient, we can’t vali-
date/believe (absolutely) whether God’s
existence is true/absolute.

b. Ernst was also asked if she believed
whether or not the Russia investigation
was warranted.
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Abstract

Building on recent work in subregular syntax,
we argue that syntactic constraints are best un-
derstood as operating not over trees, but rather
strings that track structural relations such as
dominance and c-command. Even constraints
that seem intrinsically tied to trees (e.g. con-
straints on tree tiers) can be reduced to such
strings. We define serial constraints as an
abstraction that decomposes string constraints
into a context function (which associates nodes
with strings) and a requirement function (which
enforces constraints on these strings). We pro-
vide a general procedure for implementing se-
rial constraints as deterministic tree automata.
The construction reveals that the many types
of constraints found in subregular syntax are
variants of the same computational template.
Our findings open up a string-based perspec-
tive on syntactic constraints and provide a new,
very general approach to the automata-theoretic
study of subregular complexity.

1 Introduction

One of the most common assumptions in theoreti-
cal and computational linguistics alike is that syn-
tax does not operate over strings but rather trees,
DAGs, or even more complex structures. This is
the case for all major syntactic formalisms, includ-
ing a.o. Minimalism, HPSG, LFG, TAG, and CCG.
Even in formal language theory, where many find-
ings focus on the complexity of syntax as a set
of well-formed strings (Huybregts, 1984; Kornai,
1985; Shieber, 1985; Radzinski, 1991; Michaelis
and Kracht, 1997; Kobele, 2006, a.o.), there is a
large body of work that analyzes these strings as the
yield of tree structures (e.g. the characterization of
multiple context-free string languages as the string
yields of MSO-definable tree languages under an
MSO tree-to-tree transduction). But even though
syntax may well do a lot of work with richly struc-
tured objects, this does not entail that this structure

is readily accessible to all parts of syntax. To the
contrary, recent work in subregular syntax (Graf,
2022a,b) suggests that syntactic constraints are so
limited that they are better understood as operating
over strings, albeit strings that encode linguistic re-
lations like dominance and c-command rather than
linear precedence (cf. Frank and Vijay-Shanker,
2001).

For example, Principle A of binding theory
requires a reflexive such as herself to be c-
commanded by a compatible DP like Mary or the
woman within a specific locality domain. As ex-
plained in Graf and Shafiei (2019), enforcing Prin-
ciple A does not require access to the full tree
structure as we only need to know the list of c-
commanders of the reflexive, which can be repre-
sented as a string. Even wh-movement, one of the
most fundamental aspects of syntax, can be under-
stood as a constraint that a wh-landing site imposes
on its string of wh-tier daughters (Graf, 2022a,
p.275f). Thus, while syntax may build tree struc-
tures for use at the interfaces (meaning, prosody),
its constraints appear to be limited to particular
types of strings that do not provide nearly as much
information as the tree they are obtained from.

This paper puts this general observation on a for-
mal foundation. We introduce the notion of serial
constraints, which are pairs consisting of a context
function and a requirement function (Sec. 2). The
context function con associates every node n of
tree t with a string that encodes its syntactic con-
text in t, e.g. its string of ancestors or its string of
wh-tier daughters. The requirement function req
maps each n to a string language. Then t is well-
formed with respect to the serial constraint iff it
holds for every node n of t that con(n) ∈ req(n).
We argue that all the proposals put forward in the
subregular syntax literature so far are instances of
serial constraints (Sec. 2.3–2.5). We then show how
serial constraints can be implemented as determin-
istic tree automata (Sec. 3). For some constraints,
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this takes the form of deterministic bottom-up tree
automata (Sec. 3.1, 3.2), while for others it takes
the form of sensing tree automata, which are deter-
ministic top-down automata with a look-ahead of 1
(Sec. 3.3, 3.4). Despite that difference in direction-
ality, the automata follow a common construction
that can be expressed in algebraic terms as a for-
mula of Boolean matrix multiplication steps. These
formulas can be tweaked in various ways to define
new types of string representations, opening up a
novel perspective on subregular automata for syn-
tax.

Our findings have several implications. First
of all, our framework provides the first automata-
theoretic description of tier-based strictly local tree
languages. While there has been a lot of work on
tier-based strict locality for strings (Lambert and
Rogers, 2020), extending it to trees is not trivial.
Since a node can have arbitrarily many tier daugh-
ters, one cannot simply store them all in the states
of the tree automaton. Our automata construction
resolves this challenge and might even provide a
new foundation to develop a subregular theory of
tree automata. Second, serial constraints formally
link two branches of subregular syntax that seem to
have been moving in different directions: tree tiers
with local constraints VS strings with tier-based
strictly local constraints. Our findings reassert
the status of subregular syntax as a unified pro-
gram that furnishes computationally restricted yet
linguistically flexible ways of analyzing syntactic
phenomena. Finally, the reduction of syntactic con-
straints from trees to strings opens up new attack
vectors for syntactic learning. For example, neu-
ral networks could be trained on corpora that lack
full tree structures but include relevant c-command
relations, encoded as a string.

It is also important to emphasize what this paper
is not about. We do not claim that tree structure
is redundant for syntax. As mentioned above, the
structure-building aspect of syntax seems crucial
for prosody and semantic interpretation. Following
the two-step approach (Morawietz, 2003; Mönnich,
2006), we regard syntax as the interaction of two
components: syntactic constraints that define the
set of well-formed structures, and a transductive
component that maps syntactic objects to output
structures that are used at the PF and LF interfaces.
We are not currently aware of any method to re-
duce the latter to strings, and even subregular work
on the transductive component presupposes trees
for this (Graf, 2023). But syntactic constraints are

amenable to such a reduction and all the method-
ological simplifications this may provide — as long
as strings are built over pertinent syntactic relations
rather than linear precedence.

2 Serial constraints for syntax

We take as our starting point recent proposals
from subregular syntax (see Graf 2022a,b for a
recent overview). In subregular syntax, syntactic
structures are feature-annotated dependency trees
that encode derivations of a variant of Minimal-
ist grammars (MGs; Stabler, 1997, 2011) where
licensee features are unordered (Sec. 2.1; see also
appendix A for additional background on MGs and
their dependency trees). These syntactic structures
are regulated by various subregular constraints, and
we define serial constraints (Sec. 2.2) as a general
mechanism that unifies the many proposals in the
subregular literature (Sec. 2.3–2.5). Serial con-
straints could also be used with other kinds of tree
structures, but this paper limits itself to the kind
of MG dependency trees used in the subregular
literature.

2.1 MG derivations as dependency trees

We treat trees as labeled Gorn domains (Gorn,
1967), but for convenience we assume that daugh-
ters are numbered from right to left. A Gorn ad-
dress is a string of natural numbers (s ∈ N∗), in-
cluding the empty string ε. A Gorn domain D
is a set of Gorn addresses such that I) ui ∈ D
implies u ∈ D for all u ∈ N∗ and i ∈ N (mother-
of closure), and II) uj ∈ D implies ui ∈ D for
all u ∈ N∗, i, j ∈ N, and i < j (right sibling
closure). We occasionally use ux to refer to the
unique address ui ∈ D such that u ∈ N∗, i ∈ N,
and u(i+ 1) /∈ D. A Σ-tree is a pair ⟨D, ℓ⟩ where
D is a Gorn domain and ℓ : D → Σ the (total)
labeling function. When clear from context (and
particularly in Sec. 3), we use the term node to
refer to either a Gorn address or its label.

Let Lex be an MG lexicon, i.e. a finite set of lex-
ical items and thus an alphabet. We call a Lex -tree
an MG dependency tree (MDT) over Lex . Given
node u of MDT t, node ui is interpreted as the i-th
argument of u (see Fig. 1). Since there is a fixed up-
per bound j on the number of arguments a lexical
item may take, we may assume w.l.o.g. that there is
a fixed bound k ≥ j such that every Lex -tree is at
most k-ary branching. Limited branching is crucial
for our automata implementation in Sec. 3.
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Figure 1: Dependency tree for ∗Which politician did
Mary prove to herself that might flee the country?, with
Gorn address subscripts and dashed movement arrows
added as visual aids

Even though MGs make heavy use of move-
ment, all phrases in an MDT remain in their base
positions. Movement is indicated via movement
features, with the actual displacement left to a
post-syntactic transduction step. Negative features
(e.g. wh−, epp−) mark the head of the moving
phrase, and positive features (e.g. wh+, epp+) mark
the head that provides the corresponding landing
site. For additional background on the linguistic
interpretation of MDTs, the reader is referred to
appendix A.

2.2 Serial constraint = context + requirement

We define string-based constraints on trees as the
interaction of two functions. The context function
defines a system for mapping each node n of a tree t
to a specific string that is derived from the structural
relations of t, relative to n. In some cases, a set
Ω of diacritic symbols is used to distinguish mul-
tiple structural relations within the string. The re-
quirement function then regulates the shape of the
string n is mapped to. While all kinds of require-
ment functions could be considered, the proposals
from the subregular literature can be captured with
maximally simple ones that constrain the string of
n based solely on the label of n. Combining a con-
text function with a requirement function yields a
serial constraint.

Definition 1. An Ω-augmented context function
over Σ is a total function con that takes as
inputs a Σ-tree ⟨D, ℓ⟩ and Gorn address a ∈
D and maps them to a (possibly empty) string
⟨ℓ(a1), ω1⟩ · · · ⟨ℓ(an), ωn⟩ such that n ≥ 0 and for

all 0 ≤ i ≤ n, both ai ∈ D and ωi ∈ Ω. If |Ω| = 1,
the context function is unaugmented. ⌟
To avoid visual clutter, we write ℓ(a)ω instead of
⟨ℓ(a), ω⟩, and we completely omit any mention of
Ω for unaugmented context functions. To further
increase readability, we use · to explicitly separate
the symbols in the outputs of context functions.

Example 1. The (unaugmented) daughter string
context function drs maps every node to its string
of daughters, ordered from left to right. In Fig. 1,
drs(prove[exp+]) is Mary[epp−]·that[exp−]·to. ⌟
Definition 2. An Ω-augmented requirement
function over alphabet Σ is a total function req :
Σ → ℘((Σ × Ω)∗) that associates every symbol
with a (possibly empty) string language over Σ×Ω.
We say that req is regular iff req(σ) is a regular
string language for every σ ∈ Σ. ⌟
Again we will use superscripts instead of pair nota-
tion, and we will omit Ω for unaugmented require-
ment functions. Hence the co-domain of unaug-
mented req is simplified to ℘(Σ∗).

Example 2. The requirement function Merge maps
every lexical item to its set of possible argument
configurations, each one represented as a string.
For example, the transitive verb eat is mapped to
the set LDD of all strings consisting of exactly
two lexical items that each are of category D. In-
transitive eat would instead require exactly one
such D (and thus its image under Merge is LD ).
If the grammar formalism does not disambiguate
between the two, then eat is mapped to LDD∪LD .⌟
Definition 3. An Ω-augmented serial constraint
over Σ is a pair ⟨con, req⟩ such that con is an
Ω-augmented context function over Σ and req is
an Ω-augmented requirement function over Σ. A
Σ-tree t := ⟨D, ℓ⟩ is well-formed with respect
to ⟨con, req⟩ iff it holds for every a ∈ D that
con(t, a) ∈ req(ℓ(a)). ⌟
Example 3. Selectional restrictions of lexical items
can be regarded as a serial constraint that combines
the context function drs over MDTs with the re-
quirement function Merge. ⌟

2.3 Types of context functions: a-strings
We now turn to how the various string represen-
tations used in the subregular literature (Graf and
Shafiei, 2019; Shafiei and Graf, 2020; Graf, 2022a)
can be reconceptualized as context functions. We
start our discussion with a-strings as they are the
most intuitive.
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Definition 4 (a-string). Given Gorn address u of
MDT t := ⟨D, ℓ⟩, the a[ncestor]-string context
function as maps t and u the string of nodes in t
that properly dominate u (in top-down order):1

as(t, u) :=

{
ε if u = ε

as(t, v) · ℓ(v) if u = vi, i ∈ N

Example 4. The a-string of which[epp−, wh−]
in Fig. 1 is did[wh+]·T[epp+]·prove[exp+]
·that[exp−] ·might[epp+]·flee. ⌟

A-strings can be used to enforce constraints on
movement paths. This includes domain conditions
like island constraints, but also morphological alter-
nations triggered by movement, e.g. wh-agreement
in Irish (McCloskey, 2001; Georgi, 2017; Graf,
2022c).

Example 5. If a subordinate clause is headed by
that, then its subject cannot be extracted out of this
clause. This is known as the that-trace effect. This
constraint is violated by which politician in Fig. 1.
We can model this with the context function as
in combination with a fairly simple requirement
function req . If n carries the subject movement
feature epp− then one of the following must hold:
the rightmost complementizer in as(n) is not that,
or for every movement feature f− of n, at least
one f+ occurs in as(n) to the right of the right-
most complementizer. If n does not include epp−,
req(n) is Σ∗. The MDT in Fig. 1 is ill-formed
because as(which[epp−, wh−]) is rejected by req
due to the rightmost complementizer being that
with no wh+ occurring after it. ⌟

2.4 Types of context functions: c-strings

Whereas a-strings are mostly used to capture ef-
fects related to movement, c-strings track licensing
requirements that are mediated by c-command.

Definition 5 (c-string). Given Gorn address u of
MDT t := ⟨D, ℓ⟩, its c[ommand]-string context

1The definition in Shafiei and Graf (2020) uses a bottom-
up order for a-strings, which is formally equivalent but less
elegant for our purposes. Moreover, Shafiei and Graf always
include ℓ(n) in as(n) in order to track which constraints
should apply to the string. Since our approach leaves con-
straint selection to req , including ℓ(n) in as(n) is redundant.
In fact, factoring out constraint selection reduces the complex-
ity of the string constraints in Shafiei and Graf (2020) from
IOTSL to OTSL.

Note that the same differences also hold for the definition
of c-strings in Graf and Shafiei (2019) and our Def. 5.

function cs is recursively defined as2

cs(t, u) :=





ε if u = ε

cs(t, v) · ℓ(v) if u = vx

cs(t, vi) · ℓ(vi)← if u = v(i− 1)

Example 6. The c-string of which[epp−, wh−]
in Fig. 1 is did[wh+]·T[epp+]·prove[exp+]
·Mary[epp−]←·that[exp−]·might[epp+]·flee.
The c-string of herself is did[wh+]·T[epp+]
·prove[exp+]·Mary[epp−]←·that[exp−]←·to. ⌟

Intuitively, the c-string of n is obtained by
traversing the tree from n towards the root in a
leftmost manner, never moving right or down. This
approximates the linguistic notion of c-command
but does not track how movement may create new c-
command relations or destroy existing ones (but we
believe that the automata-theoretic view in Sec. 3
furnishes the right tools for addressing this in the
future). In addition, c-strings also make an explicit
distinction between containing c-commanders (X)
and non-containing c-commanders (X←), which is
crucial for some constraints such as Principle A. C-
strings are our only instance of such an augmented
context function.

Example 7. Consider a simplified version of Prin-
ciple A: if n is a reflexive, then the smallest TP
containing n must contain a DP that c-commands
n. In our framework, this means that cs(t, n) must
contain some X← such that X carries category fea-
ture D and occurs to the right of the rightmost T in
the string. If n is not a reflexive, the Principle A
requirement function PrA puts no restrictions on
it (we set PrA(n) := Σ∗). ⌟

Note that for every node n of any MDT t,
as(t, n) is the longest subsequence of cs(t, n)
that does not contain any symbols with the super-
script ←. In subregular terms, as(t, n) is a tier
of cs(t, n). It follows that every regular constraint
over a-strings can be restated as a regular constraint
over c-strings. Hence our automata-theoretic treat-
ment of c-strings in Sec. 3 is also an implicit treat-
ment of a-strings.

2.5 Types of context functions: T-strings

Our last and perhaps most abstract type of strings is
defined via tree tiers. Intuitively, a tree tier T (t) of
tree t is constructed by fixing a set of node labels,

2The original definition in Graf and Shafiei (2019) does
not include the augmentation symbol ←.
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T[epp+]
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that[exp−]

which[epp−, wh−]

Figure 2: Two tiers of the MDT in Fig. 1: epp-tier (left)
and that-trace tier (right)

the tier alphabet T , and removing from t all nodes
that do not belong to T . Figure 2 shows two tiers
of the MDT in Fig. 1. The epp-tier is obtained by
removing all nodes whose label does not include
epp+ or epp−, whereas the that-trace tier keeps
all instances of the complementizer that and all
nodes that carry wh+ or wh−. On a tree tier, the
label of a node determines the shape that its string
of daughters must have. Hence tree tiers are a vi-
sual metaphor for a context function that associates
every node with its string of tier daughters.

Definition 6 (Tier strings). Given Gorn address u
of MDT ⟨D, ℓ⟩ and T ⊆ Σ, we say that u is on T
iff ℓ(u) ∈ T . Then u is the T -mother of v (and v is
a T -daughter of u) iff u and v are both on T , v =
uv1 · · · vn (vi ∈ N, n ≥ 1), and for all 1 ≤ i < n
it holds that uv1 · · · vi is not on T . Furthermore,
w T -precedes w′ iff w and w′ have the same T -
mother and there exist u, v, v′ ∈ N∗ and i, j ∈ N
such that i > j, w = uiv, and w′ = ujv′.

The T -string context function T maps t and u
to the set of T -daughters of u in t, ordered by T -
precedence. When u has no T -daughters, T (n) :=
ε. ⌟
Example 8. Let epp be the alphabet of the epp-
tier, which includes all labels that contain epp+ or
epp−, and wh the corresponding alphabet for the
wh-tier. Then the epp-string of which[epp−, wh−]
in Fig. 1 is ε, and so is its wh-string. The epp-string
of T[epp+] is Mary[epp−]·might[epp+]. The wh-
string of did[wh+] is which[epp−, wh−], whereas
its that-trace string is that[exp−]. ⌟
Like a-strings, tier strings can be used to enforce
island constraints and other conditions on individ-
ual movement paths. In contrast to a-strings, they
also capture constraints on how distinct movement
paths may interact.

Example 9. In MGs, every landing site must be
targeted by exactly one mover. This can be cap-
tured over tier strings: for every n with movement
feature f+ it must be the case that the f-string of
n contains exactly one lexical item with f−. A-

strings, by contrast, can enforce the presence of
a landing site for a mover (if n carries f−, then
as(n) must contain f+) but cannot guarantee that
this landing site isn’t targeted by multiple movers
(e.g. C[wh+] when the subject and object both carry
wh−, as neither one appears in the other’s a-string).

Daughter strings as defined in example 1 are iden-
tical to T-strings with T = Σ. Hence our automata-
theoretic treatment of T -strings also subsumes
daughter strings.

3 Tree automata for serial constraints

The previous section has identified several string
representations and constraints that have been in-
voked in the subregular literature, and we have
recast all of them as context functions that can
be combined with suitable requirement functions.
Since the constraints from the subregular literature
all define subregular string languages, they can all
be captured with regular requirement functions and
thus finite-state string automata (FSAs). While
requirement functions are easily understood and
implemented, then, the formal status of context
functions is less clear.

We propose to model context functions as de-
terministic tree automata whose only purpose is to
decide which nodes should be fed as input to the re-
quirement function. These tree automata simulate
the (FSAs of the) requirement functions in their
state space, while different context functions corre-
spond to minimally different matrix multiplication
formulas for updating states. This has the advan-
tage that the tree automaton implicitly produces
and evaluates in a single run all n string representa-
tions that the corresponding context function would
produce for a tree with n nodes. The matrix mul-
tiplication formulas also provide a very general
template that can be easily adapted to new kinds of
string representations.

3.1 Automata for T-string context functions

T-string context functions are implemented as (de-
terministic) bottom-up tree automata. We present
the general template here and provide an illustra-
tive example in Sec. 3.2. Our construction assumes
that regular requirement functions are decomposed
into FSAs, one per symbol in the alphabet. The
FSAs are subsequently decomposed into Boolean
matrices. As mentioned in the introduction, this
addresses a central challenge of dealing with T-
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strings: even when MDTLs are assumed to be at
most k-ary branching, there is no upper bound
on the number of T-daughters a node may have.
Hence one cannot represent the entire string of T-
daughters in the states of the tree automata. Instead,
one has to store how the T-daughters seen so far
would cause the FSA of req(σ) to transition be-
tween states. The matrix representation of FSAs
makes this very easy. Readers unfamiliar with this
construction are referred to Appendix B for addi-
tional background.

A bottom-up tree automaton is a 4-tuple A :=
⟨Σ, Q, F,∆⟩ where Σ is an alphabet, Q is a finite
set of states, F ⊆ Q is the set of final states, and ∆
is a set of transitions. Transitions are of the form
σ(q1, . . . , qn) ⇒ q (σ ∈ Σ, qi ∈ Q, n ≥ 0).3

Intuitively, the automaton processes trees from the
leaves to the root, assigning each node n a state
q ∈ Q based on I) the label of n, and II) the states
of n’s daughters. The automaton recognizes tree t
iff the root of t is assigned some q ∈ F .

Let B be the Boolean matrix representation of
some FSA with m ≥ 1 states that generates the
string language req(σ), where σ ∈ Σ and req is
some regular, Ω-augmented requirement function.
We use I for the initial matrix, F for the final ma-
trix, b(σ) for the Boolean matrix corresponding to
symbol σ ∈ Σ × Ω, and idm for the identity ele-
ment for matrix multiplication of Boolean m×m
matrices. We use ⊗ to denote Boolean matrix mul-
tiplication.

For every σ ∈ Σ, we construct a bottom-up
tree automaton Aσ that ensures for every tree t
and node n with ℓ(n) = σ that T (t, n) ∈ req(σ).
Intersecting all Aσ for σ ∈ Σ yields a bottom-up
tree automaton that enforces requirement function
req over T -strings.

Our construction automatically assembles Aσ

from the specification of just two attributes for each
node label.

Definition 7 (Node attributes). Let V,O ⊆ Σ be
the set of visible and opaque nodes, respectively,
and σ ∈ Σ the restricted node. Then the value
v(nω) of nω ∈ Σ × Ω is b(nω) if n ∈ V , and
idm otherwise. Given a Boolean matrix q, q ⊕
nω is v(nω) if n ∈ O and q ⊗ v(nω) otherwise.
Given initial matrix I and final matrix F, rn(q)

3In the tree automata literature, it is more common to write
the transition rules in the format σ(q1(x1), . . . , qn(xn)) ⇒
q(σ(x1, . . . , xn)), with each xi a variable representing a sub-
tree (see Gécseg and Steinby 1997 and Comon et al. 2008,
p.20). We omit these variables to reduce clutter.

is undefined if both n = σ and I ⊗ q ⊗ F = 0;
otherwise rn(q) = q. ⌟
Intuitively, visible nodes are those that can cause
the underlying FSA to transition to a new state. For
T-strings, those are simply the nodes that are on
the tier. Opaque nodes induce locality domains by
overwriting the result of previous matrix multipli-
cations with their own value. For T-strings, every
visible node is also opaque. The restricted nodes
for Aσ are exactly those labeled σ, i.e. the ones
whose T-string must be well-formed according to
the underlying FSA.

Definition 8 (T-string automaton). We define
Aσ := ⟨Σ, QB, QB,∆⟩. Here QB is the result
of closing the set of square matrices in B under
Boolean matrix multiplication. For every n ∈ Σ
and all q1, . . . , qk ∈ QB (k ≥ 1), we set

q := rn

(
k⊗

i=1

qi

)
⊕ v(n)

such that σ(q1, . . . , qk) ⇒ q ∈ ∆ iff q is defined.
Furthermore σ() ⇒ v(σ) ∈ ∆ for every σ ∈ Σ. ⌟
Since the formula above yields at most one value
for q, Aσ is deterministic even if B is the Boolean
representation of a non-deterministic FSA. Note
that QB and ∆ are automatically constructed from
σ, Σ, B, and the attributes V and O. Also, all states
of Aσ are final (a tree is rejected iff there is a node
that no state can be assigned to). Hence Aσ could
instead be defined as a 5-tuple ⟨Σ, σ,B, V,O⟩.

3.2 Example: epp-string requirement
function

Example 9 mentions that MGs require every land-
ing site to be targeted by exactly one mover. If a
node carries the feature epp+, then its epp-string
must contain exactly one node that carries epp−.
We can think of this as a requirement function 1
that maps each lexical item to one of two regu-
lar string languages. If l does not carry epp+, then
1(l) is Σ∗; otherwise, 1(l) is L1 := E

∗
EE

∗ where
E ⊆ Σ is the set of lexical items that carry epp−

and E := Σ − E. It is easy to define an FSA for
L1, which is then decomposed into its Boolean
representation B (see Fig. 3).

We now construct A for a single lexical item,
which is might[epp+]. The epp-tier contains all
items that carry epp+ or epp−, so all of those are
visible and opaque. Figure 4 shows the states as-
signed by the automaton as well as the attributes of
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Figure 3: FSA for L1 and corresponding Boolean ma-
trices, with e/e as a shorthand for every lexical item on
the epp-tier that does/doesn’t carry epp−.
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Figure 4: Run of automaton enforcing L1 over epp-
strings of might[epp+]; + and − indicate whether the
node is visible, opaque, and/or restricted

each node (in the order visible-opaque-restricted).
The tree is correctly recognized as well-formed
with respect to the epp-string requirement function
because the root is assigned a state (remember that
all states are final).

Let us consider a few specific nodes from Fig. 4.
The leaf node politician is not visible, so its value
is the 2 × 2 identity matrix id2. Since it is a leaf,
we use the transition σ() ⇒ v(σ), for which it is
irrelevant whether politician is opaque or restricted.
Now consider which, right above politician. It is
visible and opaque, but not restricted. Since it is
visible and carries epp−, its value is the Boolean
matrix e. Since it isn’t restricted, rn(

⊗k
i=1 qi) is

not undefined, but since it is opaque its state is just
its value e. The node flee above which is neither
visible nor opaque or restricted. Hence its state
is the result of matrix multiplying the states of
which and the with its value id2. Finally, might

is visible, opaque, and restricted. Its value is the
Boolean matrix e, which is identical to id2 in this
case. As might is restricted, rn(

⊗k
i=1 qi) could be

undefined. But fortunately multiplying I with the
state of flee and F yields 1 (confirming that the
epp-tier string of might is a member of L1). If
the result had been 0, no state would have been
assigned and the computation would have halted,
causing the tree to be rejected. Instead, might is
assigned its value as its state because it is opaque.
The computation continues from there, but since
no other nodes in the tree are restricted, we are
guaranteed to assign some state to the root (which
is final because all states are final).

By constructing such an automaton for every
lexical item with epp+, we ensure that every lexical
item with epp+ has exactly one epp− among its
epp-tier daughters.

3.3 Automata for c-string context functions

We now turn to the implementation of c-strings
(which subsumes a-strings as discussed at the end
of Sec. 2.4). Instead of bottom-up automata, we
will use sensing tree automata as these have previ-
ously been proposed by Graf and De Santo (2019)
as a model of c-string constraints.4 For conve-
nience, we use a slightly different notation for defin-
ing the transitions of these automata, and we allow
the initial state to be determined by the label of
the root. These changes will make it easier to see
that the state assignment template for sensing tree
automata is almost the same as for bottom-up tree
automata. In particular, the attributes and opera-
tions from Def. 7 carry over unaltered. This shows
that our treatment of context functions is indepen-
dent of the specific types of tree automata.

A sensing tree automaton is a 3-tuple A :=
⟨Σ, Q, δ⟩ where Σ is an alphabet, Q is a finite set
of states, and δ is a set of transition rules that may
take two distinct forms. For interior nodes, we
have ⟨q, σ(σ1, . . . , σk), i⟩ ⇒ qi (1 ≤ i ≤ k). This
means that if σi has mother σ with state q, left sib-
lings σ1, . . . , σi−1, and right siblings σi+1, . . . , σk,
then σi is assigned state qi. For root nodes, the
transition σ ⇒ q assigns state q to σ. Intuitively,
sensing tree automata assign states in a top-down

4Sensing tree automata cannot be used to capture tier-string
constraints. As noted in Graf and De Santo (2019), sensing
tree automata cannot regulate movement steps that aren’t re-
stricted by both the specifier island constraint and the adjunct
island constraint. For example, a sensing tree automaton can-
not ensure that every epp+ is targeted by exactly one epp−.
But as we just saw, this is easily enforced over epp-tier strings.
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fashion and make the assigned state contingent on
the mother’s state and the labels of the node, its sib-
lings, and its mother. Since sensing tree automata
are deterministic, δ must not contain distinct tran-
sitions rules with the same left-hand side. A tree t
is accepted by A iff every node of t is assigned a
state.

With these preliminaries out of the way, it is
easy to define the sensing tree automaton Aσ for
some requirement function req . As before, B is
the Boolean representation of an FSA with m ≥ 1
states that generates r(σ), and QB is the result
of closing the set of square matrices in B under
Boolean matrix multiplication.

Definition 9. We define Aσ := ⟨Σ, QB, δ⟩. For
every state q ∈ Q and all 1 ≤ j ≤ k and
σ, σ1, . . . , σk ∈ QB, we set

qj := rσj

(
q ⊕

j−1⊕

i=1

v(σ←i )

)
⊕ v(σj)

⌟

such that ⟨q, σ(σ1, . . . , σj , . . . , σk), j⟩ ⇒ qj ∈ δ
iff qj is defined. Furthermore, σ ⇒ v(σ) for every
σ ∈ Σ.

The formula for c-strings differs only marginally
from T-strings, namely in the argument of r. Quite
generally, this is the area where differences be-
tween context functions are expressed. To wit, a-
strings would also differ in only this area by sim-
plifying the argument of r to just q. The specific
differences between c-strings and T-strings are due
to siblings taking on a similar role in c-strings to
ancestors in T-strings. With c-strings, an opaque
node renders inaccessible all information about its
left siblings, and thus the values of siblings have
to be combined with ⊕ instead of ⊗. Also, each
sibling σi is a c-commander and hence its value
must be v(σ←i ) rather than v(σi). These minor
changes in the formulas cannot distract from the
fact, however, that a-strings, c-strings and T-strings
(which includes daughter strings) have remarkably
similar automaton implementations.

3.4 Example: Binding and (reduced) c-strings

As with T-strings, we provide a linguistic example
of the automaton construction for c-strings. Con-
sider once more the simplified version of Princi-
ple A from example 7: if n is a reflexive, then cs(n)
must have a non-containing D-head D←to the right
of the rightmost containing T-head.

Astart B

T, D←

D←

I :=
(
1 0

)
F :=

(
0
1

)

D← :=

(
1 1
0 0

)
T :=

(
1 0
0 0

)
id :=

(
1 0
0 1

)

Figure 5: FSA and Boolean matrices for Principle A
over reduced c-strings that only contain D← and T.

did[wh+]

T[epp+]

prove[exp+]

Mary[epp−] that[exp−]

might[epp+]

flee

which[epp−, wh−]

politician

the

country

to

herself

- - -(
1 0
0 1

)

+ + -(
1 0
0 0

)

- - -(
1 0
0 0

)

+ - -(
1 0
0 0

) - - -(
1 1
0 0

) - - -(
1 1
0 0

)

+ - +(
1 1
0 0

)+ + -(
1 0
0 0

)

- - -(
1 0
0 0

)

+ - -(
1 0
0 0

) + - -(
1 1
0 0

)

- - -(
1 0
0 0

) - - -(
1 1
0 0

)

Figure 6: Run of automaton enforcing LA over reduced
c-strings that only contain D and T; + and − indicate
whether the node is visible, opaque, and/or restricted
(D-heads are visible only when they are non-containing
c-commanders, and T-heads are visible only when they
are containing c-commanders)

In order to make the example more insightful,
we will implement this as a tree automaton that con-
structs a reduced version of the c-string that only
contains Ds and Ts, ignoring all c-commanders that
are immaterial to this constraint. That is to say, the
task of ignoring irrelevant nodes is shifted from
the requirement function into the context function.
Hence the requirement function maps reflexives
to the string language LA := {T,D←}∗ D← (see
Fig. 5). The set of visible nodes consists of all
D← and all T (but not D or T←). The only opaque
nodes are visible T-heads, and the only restricted
node is herself.

The run of the resulting sensing tree automa-
ton is shown in Fig. 6. Since every node is as-
signed a state, the tree is correctly recognized as
well-formed. The important thing to keep in mind
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is that each node n may now exhibit a dual be-
havior depending on whether the formula uses
v(n) or v(n←). For example, the state of Mary
is computed with v(Mary) = id2, and hence it
is identical to the state of its mother prove. On
the other hand, the state of that is computed with
v(Mary←) = D←, inducing a state change. The
same effect obtains with the state of which relative
to the. Also note how might, by virtue of being
opaque, receives the state v(might) = T and thus
renders Mary inaccessible from within that subtree.

4 Conclusion

All syntactic constraints that have been put forward
in the subregular literature can be analyzed as serial
constraints. Serial constraints consists of a context
function that associates every node in a tree with
a string derived from the tree, and a (regular) re-
quirement function that requires the node’s associ-
ated string to belong to a (regular) string language.
While requirement functions are fairly unremark-
able from a formal perspective, context functions
require additional considerations.

This paper shows that the context functions for
T-strings (and by extension daughter strings) as
well as c-strings (and by extension a-strings) can
all be implemented as tree automata that follow a
universal template. Crucially, the states of these au-
tomata store no information beyond what is needed
to simulate the requirement function. All other
decisions are made based only on the information
available directly in each transition rule: whether
a node is visible, opaque, and/or restricted. How
exactly this information is used to compute states
can be succicntly expressesd via matrix multipli-
cation formulas. Each such formula is of the form
q := rσ (ϕ) ⊕ v(σ), where ϕ is a Boolean ma-
trix computed from the states and/or the values of
nodes accessible in the transition rule. The general
upshot is that even though selectional constraints
and constraints on tree tiers seem intuitively differ-
ent from a-string and c-string constraints, they are
but minor variations of a common theme.

One surprising implication of these findings is
that (most, perhaps even all) syntactic constraints
can be regarded as operating over strings rather
than trees. All the regulating work is done by the
requiremnt function (which is an FSA), with tree
automata serving as a simple wrapper that passes
information into this function. Of course this may
be due to serial constraints providing a lot more

power than it currently seems. For example, even
the requirement that a tree must have an odd num-
ber of nodes can be implemented as a serial con-
straint (e.g. via a preorder traversal). On the other
hand, it seems that no serial constraint can express
the requirement that a tree must contain an even
number of nodes that each properly dominate at
least two nodes. Further work is needed to properly
assess the power of serial constraints and how it
varies with the chosen automaton model.
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A Background: MGs and tree structures

Every MG is fully specified by its lexicon, which
is a finite set of feature-annotated lexical items
that are combined by the structure-building opera-
tions Merge and Move. Merge features encode the
lexical item’s category (category feature F− ) and
its subcategorization requirements (selector fea-
tures F+). Move features indicate whether the lexi-
cal item furnishes any landing sites for movement
(licensor features f+), and whether it undergoes
any movement of its own (licensee features f−).
To reduce clutter, we only indicate Move features
throughout this paper. Some variants of MGs allow
licensor features to indicate whether the landing
site is linearized to the left or to the right. We allow
this option in this paper and use it for extraposition
of the that-clause in Fig. 1, but nothing hinges on
that.

As is common in subregular syntax, but unlike
standard MGs, we assume that licensee features are
unordered (this has no effect on generative capac-
ity). For example, a lexical item with both epp−

and wh− has to undergo both epp-movement and
wh-movement, but the order is unspecified. If the
closest epp-landing site is closer than the closest
wh-landing site, epp-movmeent will precede wh-
movement, otherwise it will follow it. When a
lexical item undergoes movement, it does not move
by itself but moves along the entire phrase it is the
head of.

MG derivations can be represented as depen-
dency trees. The mother-of relation corresponds to
Merge steps, and the right-to-left order of siblings
matches the order in which they are merged with
the mother. For example, flee in Fig. 7 first merges
with (the phrase headed by) the, taking it as a com-
plement. After that, (the phrase headed by) which
is merged as a specifier. Movement is only indi-
cated by licensor and licensee features — movers
are not displaced from their base position. A mover
with f− always targets the cloest landing site from
its base position that is provided by a matching f+.

While MG dependency trees look different from
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standard phrase structure trees, they encode all nec-
essary syntactic information. However, they do so
much more compactly than more common alterna-
tives such as X′-trees (cf. Fig.7).

B Background: FSAs as Boolean matrix
multiplication

An FSA is a 5-tuple A := ⟨Σ, Q, I, F,∆⟩ where
Σ is the alphabet, Q is a finite set of states, I ⊆ Q
is the set of initial states, F ⊆ Q is the set of final
states, and ∆ is a finite set of transition rules of
the form q

σ
=⇒ q′. We assume w.l.o.g. that Q is not

empty.
The corresponding Boolean representation is

constructed as follows. First, we fix an arbitrary
enumeration of all n ≥ 1 states of Q. Then every
σ ∈ Σ is associated with a n × n matrix b(σ)
such that the cell b(σ)i,j in row i, column j (1 ≤
i, j ≤ n) is 1 if ∆ contains the transition qi

σ
=⇒ qj .

Otherwise, the cell is 0. The initial matrix I is a
1 × n matrix such that I1,j is 1 if qj ∈ I and 0
otherwise. Similarly, the final matrix F is a n× 1
matrix such that Fi,1 is 1 if qi ∈ F and 0 otherwise.

Example 10. The smallest deterministic FSA over
Σ := {a, c} that recognizes a(aa)∗ corresponds to
the matrices below.

I :=
(
1 0

)
F :=

(
0
1

)

b(a) :=

(
0 1
1 0

)
b(c) :=

(
0 0
0 0

)

⌟

A string σ1 · · ·σk is recognized by A iff I ⊗
b(σ1) ⊗ · · · ⊗ b(σk) ⊗ F = 1, where ⊗ denotes
Boolean matrix multiplication. Given a Boolean
u × v matrix A and v × w matrix B, A ⊗ B is a
u × w matrix C such that for all 1 ≤ i ≤ u and
1 ≤ j ≤ w

Ci,j :=
v∨

k=1

(Ai,k ∧Bk,j)

Example 11. Continuing the previous example, the
FSA recognizes aaa as we have

I⊗ b(a)⊗ b(a)⊗ b(a)⊗ F = 1

which can be gleaned from the following tree:

1

(
0 1

)

(
1 0

)

(
0 1

)

(
1 0

)

I

(
0 1
1 0

)
b(a)

(
0 1
1 0

)

b(a)

(
0 1
1 0

)

b(a)

(
0
1

)

F

But the FSA rejects aa, c, and the empty string:

0

(
1 0

)

(
0 1

)

(
1 0

)

I

(
0 1
1 0

)
b(a)

(
0 1
1 0

)

b(a)

(
0
1

)

F

0

(
0 0

)

(
1 0

)

I

(
0 0
0 0

)
b(c)

(
0
1

)

F

0

(
1 0

)

I

(
0
1

)
F

⌟

The identity matrix idn of size n is the n × n
square matrix such that idi,j = 1 if i = j, and 0
otherwise. When M is an m × n matrix, idm ⊗
M = M ⊗ idn = M .

Example 12. Multiplying b(a) with id2 yields
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did[wh+]

T[epp+]

prove

Mary[epp−] C

might[epp+]

flee

which[epp−, wh−]

politician

the

country

CP

DPw

D′

D

which

NP

N′

N

politician

C′

C

did

TP

DPi

Mary

T′

T VP

ti V′

V

prove

CP

C′

C TP

tw T’

T

might

VP

tw V′

V

flee

DP

D′

D

the

NP

N′

N

country

Figure 7: MG dependency tree and corresponding X′-tree for Which politician did Mary prove might flee the country
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b(a).

b(a)× id2 =

(
0 1
1 0

)
⊗
(
1 0
0 1

)

=

(
0 1
1 0

)

=

(
1 0
0 1

)
⊗
(
0 1
1 0

)

= id2 ⊗ b(a) ⌟

345
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Abstract

Linguistic theory distinguishes between compe-
tence and performance: the competence gram-
mar ascribed to humans is not always clearly
observable, because of performance limitations.
This raises the possibility that an LLM, if it is
not subject to the same performance limitations
as humans, might exhibit behavior closer to
a pure instantiation of the human competence
model. We explore this in the case of syntac-
tic center embedding, where, the competence
grammar allows unbounded center embedding,
although humans have great difficulty with any
level above one. We study this in four LLMs,
and we find that the most powerful model, GPT-
4, does appear to be approaching pure compe-
tence, achieving high accuracy even with 3 or
4 levels of embeddings, in sharp contrast to
humans and other LLMs.

“The heptapods had no objection to the
center-embedding of clauses, something that
quickly defeated humans”.

– Story of Your Life (Chiang, 1998)

1 Introduction

Until recently, there was a simple reason why every
AI system would fail the Turing Test – they lacked
the basic linguistic capabilities shared by all native
speakers of a language. That has changed with
current large language models (LLMs), which, it
would seem, have now mastered human language.
As Mahowald et al. (2024, p. 518) put it, “for
modern LLMs, formal [linguistic] competence in
English is near human-level”. There remain, how-
ever, notable differences in the linguistic behavior
of LLMs and humans. In this paper we focus on dif-
ferences in the interpretation of syntactic center em-
bedding constructions. These constructions, while
little noted in the NLP literature, have a special sig-
nificance in the development of modern linguistics.
Famously, Chomsky claims that center embedding

is fully grammatical as a matter of linguistic com-
petence, but generally fails to be accepted because
of a performance limitation involving short-term
memory (Chomsky, 1957; Chomsky et al., 1963).
These claims are central to the very founding of
modern linguistics.

It is revealing to compare center embedding with
left and right embedding. Consider a propositional
verb like “believe”, that can take a sentence as its
complement to the right, and that sentential com-
plement might itself involve such a structure, as in
(1):

(1) a. [John believes [Harry likes fish]]
b. [John believes [Tom said [everyone

knows . . . [Harry likes fish] . . . ]]]

An adverbial phrase like “in the library” can modify
a verb phrase to its left; the modified verb phrase
might itself contain such a modifier, as shown by
(2):

(2) a. Col. Mustard [[killed Mr Boddy] in
the library]

b. Col. Mustard [[[ . . . [killed Mr Boddy]
with the candlestick] in the library]
. . . without remorse.]

The above cases illustrate the potential for un-
bounded levels of embedding, both to the right
and to the left. We turn now to center embedding.
Here the embedding clause contains material both
to the left and right of the embedded clause. This
is illustrated by (3), where a nominal expression,
“teacher”, is modified by a relative clause, “the stu-
dent saw”.1

(3) [The teacher [the student saw t] is happy.]

1The relative clause “the student saw” includes a trace or
variable, which we indicate with t to show that it in this case
is bound by “the teacher”, and similarly with the variables s,
d, and g in examples (4) - (6), standing for “student”, “driver”
and “girl”, respectively.
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Level 1

Multiple levels of center embedding are readily
constructed. Examples (4) - (6) represent levels 2-4
of center embedding.

(4) [The teacher [the student [the driver hit s]
saw t] is happy.] Level 2

(5) [The teacher [the student [the driver [the
girl likes d] hit s] saw t] is happy.] Level 3

(6) [The teacher [the student [the driver [the
girl [the man hates g] likes d] hit s] saw t]
is happy.] Level 4

Such multiple center embeddings are generally un-
interpretable for human language users, and are
virtually nonexistent in normal texts.

In this paper, we explore whether LLMs can
interpret and assess center embedding structures
in English. We create synthetic data instantiating
levels 1-4, and pose questions which require under-
standing of the structure. For example, for example
(4) above, we ask, “Who hit who?”, a question
that targets the most deeply embedded predication.
Here, we find that GPT-4 performs extremely well
at all levels, from 1 to 4, in contrast to other models,
and also sharply contrasting with what is known
about human behavior. This, we argue, suggests
that GPT-4 is approaching pure competence. We
perform a total of four different tests, varying the
embedding level that is questioned, the number
of few-shot learning examples provided, and the
lengths of NPs in the synthetic data. We also test
the ability to assess the grammaticality of center
embedding structures.

The results of these additional tests are mixed.
On the one hand, in all the tests, there are settings
in which GPT-4 performs with very high accuracy,
suggesting something close to a pure instantiation
of the competence model. On the other hand, there
are also tasks and settings in which its performance
is degraded, revealing sensitivity to factors such as
the embedding level of the question, the number of
few-shot examples, and the lengths of the NPs in
the structures.

In light of these mixed results, it is premature to
conclude that we can observe pure competence in
an LLM like GPT-4. Yet its behavior is much closer
to pure competence than human behavior. We dis-
cuss the implications of this, noting that GPT-4
has attained these impressive abilities, despite the
fact that multiple center embeddings are undoubt-

edly extremely rare in its training data. We con-
clude with some reflections about the implications
of these results for theorizing about the language
faculty as it is instantiated in humans as well as in
AI models.

2 Related Work

2.1 Center Embedding and Linguistic
Competence

According to Karlsson (2007, p. 365) “the main-
stream view...voiced by many linguists from dif-
ferent camps” is that “there are no grammatical re-
strictions on multiple center-embedding of clauses.”
This is all the more striking given the extreme rarity
of multiple center embedding. Karlsson (2007, p.
378) reports on a study of “corpus data from seven
Standard Average European (SAE) languages: En-
glish, Finnish, French, German, Latin, Swedish,
and Danish”, finding that “in ordinary language
use, written C3s [level 3] and spoken C2s [level 2]
are almost non-existent.”

Chomsky et al. (1963) present sentence (7),
which is an example of level 2 center embedding:

(7) The rat the cat the dog chased killed ate the
malt.

In the view of Chomsky et al., example (7) “is
surely confusing and improbable but it is perfectly
grammatical and has a clear and unambiguous
meaning.” This argument relies on the Chomskyan
distinction between competence and performance,
where competence is an idealized theory of the
“mental reality underlying actual behavior” (Chom-
sky, 1965, p. 4). Millière (2024) points out that
“Linguistic performance can be affected by external
factors like memory limitations, distractions, slips
of the tongue, etc. that may obscure the full ex-
tent of the underlying competence.” Performance
factors make the underlying linguistic competence
difficult to observe in humans, much as friction
makes it difficult to observe the underlying nature
of Newton’s law of gravity.

2.2 Center Embedding and Performance
Factors

Gibson (1998, p. 3) notes that center embedding
structures give rise to what is often “referred to
as a processing overload effect.” Gibson proposes
the Syntactic Prediction Locality Theory (SPLT).
According to this theory, center embedding incurs
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a memory cost, associated with “computational re-
sources [that] are required to store a partial input
sentence” (Gibson (1998, p. 8)). This is an essen-
tial feature of center embedding constructions; for
example, in (4) above, when the word “driver” is
encountered, there are three partial input sentences
that must be stored. On this theory, it is the require-
ment to keep multiple partial structures in memory
that can lead to processing overload. Gibson (1998,
p. 14) observes that this “. . . fits with what is known
about short-term memory recall in non-linguistic
domains: it is harder to retain items in short-term
memory as more interfering items are processed.”

Gibson considers a wide range of differences in
types of embedding structures in arguing for the
superiority of SPLT over previous theories, such
as Chomsky et al. (1963), Miller and Isard (1964),
and Abney and Johnson (1991). What Gibson’s
theory shares with the previous theories is the view
that the facts about center embedding structures are
explained with reference to performance factors.

2.3 Human Performance
There are numerous empirical studies that support
the claim that center embedding presents difficul-
ties for humans. Thomas (1995, p. 22) asks sub-
jects to rate examples according to perceived dif-
ficulty “on a quick first reading”. Thomas shows
that there are important differences based on the
type of center embedding. However, in general, he
notes that a simple level 1 structure “is easy to un-
derstand”, while “embedding just one more clause
[i.e. level 2]... produces near incomprehensibility”
(Thomas, 1995, p. 8). Bach et al. (1986) describe a
psycholinguistic study concerning somewhat differ-
ent embedding constructions in German and Dutch,
again finding a striking difference in difficulty be-
tween level 1 and higher levels of embedding. We
performed a small, informal survey to further ex-
amine human performance on center embedding.
See A.2 for details.

2.4 Linguistic Probing of LLMs
There is an extensive literature describing the prob-
ing of LLMs for specific linguistic capabilities. Ma-
howald et al. (2024) argue that current LLMs have
largely mastered what they call “formal linguistic
competence”. They point out that current mod-
els perform well on resources such as the BLiMP
benchmark (Warstadt et al., 2020), which consists
of minimal pairs illustrating many linguistic phe-
nomena. “Models achieve similarly impressive

results,” they continue, “on other linguistic bench-
marks like SyntaxGym” (Gauthier et al., 2020).

However, some recent works have shown that
there remain specific capabilities that pose difficul-
ties for some of the most powerful current models.
For example Hardt (2023) shows that recent LLMs
struggle with the phenomenon of ellipsis while Cui
et al. (2023) find that they have substantial difficul-
ties interpreting sentences with “respectively”.

2.4.1 Subject-Verb Agreement
A particular area of interest for linguistic probing
is subject-verb agreement. Wilson et al. (2023,
p. 278) point out that subject-verb agreement “de-
pends not on linear proximity to the verb, but struc-
tural proximity . . . ”, as illustrated by the following
paradigm:

(8) a. The labels on the bottle is . . .
b. * The label on the bottle is . . .
c. * The labels on the bottle are . . .
d. The label on the bottle are . . .

Humans sometimes diverge from the pure compe-
tence model, making errors based on an “attractor”,
i.e., a noun that intervenes between subject and
verb, such as “bottle” in example (8)b above. Re-
cent work (Linzen et al., 2016; Lakretz et al., 2021)
has shown that models are able to largely capture
the “structure-sensitive grammatical knowledge”
implicated in the competence model (Wilson et al.,
2023, p. 278), while also showing some errors
based on attractor effects.

2.4.2 Center Embedding
Just as with subject-verb agreement, human per-
formance diverges from the competence model
with center embedding. However, the divergence
is much starker in the case of center embedding
– humans consistently fail in the interpretation of
multiple center embeddings, although they are com-
pletely acceptable according to the competence
model. Recent probing of LLMs reveals similar
divergence from the competence model. For ex-
ample Dentella et al. (2023) find that LLM “accu-
racy on grammatical prompts of center-embedded
sentences is at chance” in a test of grammatically
judgments by LLMs in the GPT-3 family. Hu
et al. (2024, p. 10) test LLMs on a variety of con-
structions, finding that models “evaluated on the
same sentences in minimal pairs achieve at- or near-
ceiling performance on most linguistic phenomena
tested, except for centre embedding”, noting that,
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for center embedding, “humans also perform near
chance.”

An additional observation comes from Gibson
and Thomas (1999), concerning what they call the
“VP illusion”, where ungrammatical versions of
center embedding sentences are judged to be as
acceptable as their grammatical counterparts, as
illustrated by (9):

(9) a. The patient who the nurse who the
clinic had hired met Jack.

b. The patient who the nurse who the
clinic had hired admitted met Jack.

Example (9)b is a grammatical level 2 example
of center embedding, while (9)a is ungrammatical,
since the verb “admitted” is omitted. Gibson and
Thomas find that the ungrammatical examples with
a missing VP, like (9)b, are judged to be as accept-
able as their grammatical counterparts. Subjects
were given seven “practice examples”, with “dis-
cussion of possible scores for each” (Gibson and
Thomas, 1999, p. 238). The study was performed
using a questionnaire, and the authors note that,
although subjects were instructed to read examples
only a single time, subjects had the opportunity to
re-read examples. Christiansen (1997) reports on a
variant of this study where examples are presented
online, so that re-reading is not possible. In this ex-
periment, the missing VP examples were perceived
as more acceptable than their grammatical counter-
parts. See also Engelmann and Vasishth (2009) for
an alternative view, arguing that the illusion does
not arise for German speakers.

3 Data

We construct a synthetic dataset, where each item
consists of a prompt, a context, and a question.2

We consider each of these elements in turn.

3.1 Context

The context consists of synthetic examples of cen-
ter embedding of levels 1-4. The form of these
examples is as follows, where N denotes Noun, TV
denotes Transitive Verb and IV denotes Intransitive
Verb:

Level 1: The N the N TV IV.
Level 2: The N the N the N TV TV IV.

2Data and associated code will be made available on
Github upon acceptance.

Level 3: The N the N the N the N TV TV TV
IV.

Level 4: The N the N the N the N the N TV TV
TV TV IV.

We have the following substitutions for N and
TV:

• N: teacher, student, driver, girl, man, woman,
boy

• TV: saw, hit, likes, hates, knows

• IV: is happy, left, is glad

The synthetic data is constructed for levels 1-
4, by a procedure that repeatedly makes random
selections for N, TV, and IV, resulting in a large
collection of sentences for each level. For each test,
a random subset of unique sentences are selected.

3.2 Prompt
We define the prompt P0, shown in figure 1. We
also use prompts with examples, thus applying few-
shot learning. The examples within the prompt are
always of the same embedding level as the example
in the context.

You will be given an example consisting of a
context and a question to answer. The answer
should always be of this form "The N V the N",
where N stands for a noun, and V stands for a
verb.
Context: {context}
Question: {question}
Now answer the question:

Figure 1: Prompt P0

We will use prompts with varying numbers of
few-shot examples, such as P5, P10 and P20, i.e.,
with 5, 10 and 20 few-shot examples respectively.

3.3 Question
We formulate a question, “Who TV’ed who”,
where the verb TV is from the most deeply em-
bedded clause. We term this question, Q0 (figure
2).

We also define a question, Q1, that targets the
next most deeply embedded predication, as exem-
plified in figure 3. Note that Q1 does not apply to
level 1 examples.

We evaluate the model response as correct if it
matches the predefined answer exactly, and incor-
rect otherwise. All tests use accuracy as the metric.
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Level 1
Context: The teacher the student saw is happy.
Q: Who saw who?
A: the student saw the teacher.
Level 2
Context: The teacher the student the driver saw
hit is happy.
Q: Who saw who?
A: the driver saw the student.
Level 3
Context: The teacher the student the driver the
girl saw hit likes is happy.
Q: Who saw who?
A: the girl saw the driver.
Level 4
Context: The teacher the student the driver the
girl the man saw hit likes hates is happy.
Q: Who saw who?
A: the man saw the girl.

Figure 2: Four Embedding Levels with Question Q0,
targeting the most deeply embedded structure

4 Testing

4.1 Test 1: Question Q0
For each embedding level (1-4), we test four mod-
els: GPT-3.5, GPT-4, llama3-70B and llama3-8B
(see Appendix A.1 for details). Test 1 uses ques-
tion Q0, with either 0 or 5 few-shot examples. In
table 1 we present results. GPT-4 is perfect at level
1 with both few-shot settings. With 0 examples,
accuracy declines rapidly with higher embedding
levels, while with 5 examples, GPT-4 continues to
have very high accuracy up to level 4. The other
models all have much lower accuracy than GPT-4,
especially with higher embedding levels. Accord-
ing to the competence model, center embeddings
are fully grammatical at any level. With 5 few-shot
examples, GPT-4 seems closely aligned with the
competence model, although there is a modest drop
in accuracy at levels 3 and 4. The other three mod-
els are more similar to humans, in that they have
considerable difficulty with any multiple levels of
embedding.

4.2 Test 2: Question Q1
In Test 2, we pose question Q1, and we use prompts
with few-shot examples, ranging from 0 to 30. One
interpretation of the test 1 results is that GPT-4 with
5 examples is indeed approaching pure competence
with respect to center embedding, with nearly per-

Level 2
Context: The teacher the student the driver saw
hit is happy
Q: Who hit who?
A: the student hit the teacher.
Level 3
Context: The teacher the student the driver the
girl saw hit likes is happy
Q: Who hit who?
A: the driver hit the student.
Level 4
Context: The teacher the student the driver the
girl the man saw hit likes hates is happy
Q: Who hit who?
A: the girl hit the driver.

Figure 3: Embedding Levels 2-4 with Question Q1,
targeting the next most deeply embedded structure

fect results up to level 3, and still quite high results
with level 4, contrasting sharply with humans and
the other LLMs. On the other hand, it could be
that the behavior of GPT-4 does not actually re-
flect the competence model involving unbounded
structural embedding; there are other conceivable
explanations. It could, for example, be employing
a simple linear strategy, where it conducts a search
to the left of the verb being questioned to locate
the subject and object NP’s. Consider the example
in figure ??. When posed with the question “Who
saw who?”, the strategy might be to locate the two
NP’s immediately to the left of “saw”. The first
NP encountered is the subject, and the second is
the object. This strategy is perhaps facilitated by
the fact that all NPs in our synthetic data consist of
two words.

By using question Q1, we seek to rule out a lin-
ear strategy along the lines given above. Consider
the level 2 example in figure 3. To answer the
question, “Who hit who?”, it is necessary to search
left by first skipping over the verb “saw” and the
NP “the driver”. While this is not inconceivable,
it would seem to be more complicated than is the
case with question Q0. In test 2 we also experiment
with the number of examples in few shot learning,
using prompts with up to 30 few-shot examples.

The results are given in table 2. The llama mod-
els struggle with Q1, even at level 2. Here GPT-3.5
also struggles, although accuracy does increase
markedly as the number of few-shot examples in-
creases. Things are quite different with GPT-4 –
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Model Few-shot L1 L2 L3 L4

llama3-8b 0 0.005 0.005 0.000 0.000
llama3-8b 5 0.005 0.005 0.005 0.015
llama3-70b 0 0.845 0.640 0.535 0.455
llama3-70b 5 0.760 0.465 0.210 0.095
GPT-3.5 0 0.545 0.355 0.110 0.045
GPT-3.5 5 1.000 0.885 0.580 0.315
GPT-4 0 1.000 0.500 0.385 0.195
GPT-4 5 1.000 1.000 0.900 0.845

Table 1: Test 1 – Question Q0, Accuracy levels 1-4

while it encounters some difficulty with Q1 as com-
pared with Q0, accuracy increases sharply with few-
shot examples. Already with 5 examples, GPT-4 is
above .9 for levels 2 and 3, and with 25 examples
it achieves a score of .840 on level 4.

Model Few- L2 L3 L4
shot

llama3-8b 0 0.000 0.000 0.000
llama3-8b 5 0.000 0.000 0.000
llama3-8b 10 0.000 0.000 0.000
llama3-8b 20 0.000 0.000 0.000
llama3-70b 0 0.040 0.035 0.040
llama3-70b 5 0.200 0.225 0.010
llama3-70b 10 0.115 0.175 0.130
llama3-70b 20 0.175 0.145 0.000
GPT-3.5 0 0.000 0.000 0.005
GPT-3.5 5 0.565 0.205 0.160
GPT-3.5 10 0.710 0.365 0.075
GPT-3.5 20 0.645 0.325 0.245
GPT-3.5 25 0.870 0.565 0.350
GPT-3.5 30 0.795 0.525 0.315
GPT-4 0 0.165 0.015 0.000
GPT-4 5 0.905 0.980 0.410
GPT-4 10 0.950 0.980 0.335
GPT-4 20 1.000 1.000 0.435
GPT-4 25 0.995 1.000 0.840
GPT-4 30 0.995 1.000 0.690

Table 2: Test 2 – Question Q1

4.3 Test 3: Variable-Length NPs

In test 3, we create an additional difficulty for the
kind of linear strategy discussed above. We mod-
ify the test data so that NP’s are sometimes two
words, and other times three words. This is done
by modifying the instantiations for N as follows:

N: happy teacher, young student, driver, girl,
man, woman, short boy

Recall that, in our synthetic data, all transitive
verbs consist of a single word, and all NP’s consist
of two words. So, if we consider again the level 2
example in figure 3 with the Q1 question, “Who
hit who?” a conceivable search strategy would be:
search 4 words to the left, at which point the subject
and object NP’s are encountered. With variation in
the lengths of NPs, a strategy of searching left can
no longer be determined by the number of words
encountered. Rather, such a strategy would have
to be defined in terms of constituents. Results are
shown in figure 3. Only GPT-3.5 and GPT-4 are
tested here, since the llama models performed so
poorly in test 2. It does appear that the variable
length of NP’s poses an additional challenge for
the models. However, similarly to test 2, accuracy
rises sharply as few-shot examples increase.

Model Few- L2 L3 L4
shot

GPT-3.5 0 0.005 0.030 0.015
GPT-3.5 5 0.450 0.270 0.060
GPT-3.5 10 0.710 0.325 0.175
GPT-3.5 15 0.745 0.295 0.090
GPT-3.5 20 0.670 0.285 0.200
GPT-4 0 0.045 0.010 0.005
GPT-4 5 0.995 0.740 0.260
GPT-4 10 0.915 0.830 0.150
GPT-4 15 0.950 1.000 0.635
GPT-4 20 0.870 0.990 0.600

Table 3: Test 3 – Question Q1, variable-length NPs

4.4 Test 4: Missing VP Illusion
In test 4, the model is prompted to judge whether an
example is grammatically correct or not. Here we
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restrict attention to GPT-4. Half of the examples are
taken from our original synthetic data, as described
above for test 1. We create an equal-sized set of
examples with a missing verb, as illustrated for
level 2, by (10):

(10) a. *The teacher the student the driver
saw is happy.

b. The teacher the student the driver
saw hit is happy.

We test with data for levels 2, 3 and 4. The accuracy
of judgments is at or below chance (.50) for few-
shot values of 0 or 5. However, with few-shot of 10,
GPT-4 is performing notably better than humans,
well above chance for all three levels. Note that, in
the study of Gibson and Thomas (1999), subjects
were given 7 “practice examples". Furthermore,
they were only tested on level 2 examples.

Model Few-shot L2 L3 L4

GPT-4 0 0.405 0.410 0.495
GPT-4 5 0.485 0.525 0.460
GPT-4 10 0.835 0.665 0.590

Table 4: Test 4 – Missing Verb Grammaticality Judg-
ment

4.5 Error Analysis
In all cases, the system is expected to produce an-
swers of the form N1 V N2. We define four types
of errors:

• Type 1: N1 is incorrect, N2 is correct

• Type 2: N1 is correct, N2 is incorrect

• Type 3: N1 is incorrect, N2 is incorrect

• Type 4: Other

We consider selected settings based on a manual
evaluation of the first 10 examples, restricting at-
tention to GPT-4, in test 1 and test 2. Table 6 shows
the number of errors of each type. While there is
considerable variation, some clear tendencies can
be observed in this small-scale error analysis. With
Q0, errors tend to be Type 2, which might relate to
the fact that the subject, N1, is adjacent to the verb
being questioned. This might explain the compara-
tive lack of errors with N1 for Q0. This is not the
case with Q1, and here both type 1 errors and type
3 errors are frequent.

Model Level Few- Q T1 T2 T3
shot

GPT-4 2 0 Q0 0 10 0
GPT-4 3 0 Q0 0 9 1
GPT-4 4 0 Q0 0 9 1
GPT-4 2 5 Q0 10 0 0
GPT-4 3 5 Q0 0 10 0
GPT-4 4 5 Q0 0 10 0
GPT-4 2 0 Q1 0 1 9
GPT-4 3 0 Q1 2 0 8
GPT-4 4 0 Q1 8 0 2
GPT-4 2 5 Q1 10 0 0
GPT-4 3 5 Q1 2 0 2
GPT-4 4 5 Q1 0 7 3

Table 5: Error Types, T1, T2, T3, and T4 for selected
test settings, based on manual analysis of first 10 errors
for each setting

5 Discussion

Chomsky (1965, p. 4) describes competence as a
theory of the “mental reality underlying actual be-
havior”. As with any domain of natural phenomena,
there are an unbounded number of potential theo-
ries that are consistent with observation, so other
factors, such as elegance and simplicity, play a key
role in selecting among candidate theories (Kuhn,
1997). According to the Chomskyan framework,
the theory of linguistic competence is formulated in
terms of simple recursive rules. While this model
sometimes deviates from observed linguistic behav-
ior, these deviations can plausibly be attributed to
performance factors.

Dupre (2021, p. 632) notes that, on mainstream
views in linguistics, “the gap [between competence
and performance] is quite substantial”, and thus
finds it unlikely that an LLM would “provide in-
sight . . . to linguistic competence.” Yet this is the
conclusion we argue for in this paper – that linguis-
tic competence can be more clearly observed in
GPT-4 than in humans.

The evidence for this conclusion has been pre-
sented in tests 1-4 described above, and can be
largely summarized in figure 4. Here we can see
that there are certain settings in which GPT-4 main-
tains high accuracy in multiple embeddings. In this
way GPT-4 differs sharply with the other, less pow-
erful models we tested, and of course this is also
quite different from what is observed with human
performance.

The evidence we have presented is far from con-
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Figure 4: GPT-4 Results, tests 1 and 2
(L1 is not relevant for question Q1)

clusive. Even in the best settings, such as Q0, P5
and Q1, P25, the accuracy is not perfect, and fur-
thermore declines notably at level 4. Our tentative
explanation is that, while GPT-4 may well have
acquired the linguistic competence model, it is also
subject to certain performance limitations, although
these limitations are far less severe than those that
apply to humans. Another important issue involves
few-shot learning. GPT-4 does not achieve high
accuracy in the zero-shot setting. It could be ar-
gued that GPT-4 does not in fact implement the
competence model, but rather, is simply exhibiting
effective few-shot learning. We have a different
view, based on the idea that it can be difficult to
access the knowledge of an LLM through prompt-
based tasks. As Hu and Levy (2023, p. 9) argue,
“A model’s failure to exhibit a linguistic generaliza-
tion when prompted might not reflect a lack of the
relevant information”; Hu and Frank (2024, p. 1)
note, furthermore, that “performance on a task is
a function of the model’s underlying knowledge,
combined with the model’s ability to interpret and
perform the task.” We are suggesting that the few-
shot learning examples support the model’s “ability
to interpret and perform the task”, thus providing a
more accurate reflection of the underlying compe-
tence of the model.

6 Conclusions

In this paper, we have explored the possibility that
a powerful LLM might reflect pure competence.
That is, it might faithfully reflect the human compe-
tence model. In humans, linguistic competence is
often obscured by performance limitations. Center
embeddings present perhaps the most striking diver-
gence between human linguistic behavior and the
competence model. We report on a series of tests
involving a variety of settings of few-shot learning,
embedding levels, and constituent sizes, as well
as a grammaticality judgment test. The results are
mixed, in that GPT-4 performs very well in many,
but not all, settings. We suggest that GPT-4 might
be subject to less strict performance limitations
than humans, so that competence is less obscured
by performance limitations in GPT-4 than it is in
humans.

Newton’s laws of motion are easier to study in
special settings, such as the vacuum chamber of
a laboratory. Our hypothesis is that a sufficiently
powerful LLM might provide such a frictionless
setting in which to observe linguistic competence.
While the evidence presented here does not demon-
strate that this hypothesis is correct, we hope to
have shown that it is worth pursuing, and perhaps
it will soon be conclusively demonstrated as LLMs
continue to improve.
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7 Limitations

The paper seeks to determine whether LLMs under-
stand syntactic center embedding, but this general
question is explored in only a few particular ways.
Only four LLMs are considered. There are also
several important limitations with respect to the
data. First, the data is solely English. Second, it is
synthetic data, constructed according to a template
that reflects one specific form of center embedding,
in which a noun phrase is modified by a relative
clause. There are other forms of center embedding
that could also be considered. In addition, while
we have argued that the results are suggestive of a
pure competence model, this would of course imply
mastery of many other linguistic phenomena, and
our investigation has restricted itself to center em-
bedding. Furthermore, while we explored various
combinations of different question types, few-shot
learning, and constituent lengths, there are other
forms and combinations that would be well worth
exploring. Finally, we have made claims about the
general uninterpretability of multiple center em-
beddings for humans; while these generally echo
claims made in the literature, they are claims that
would benefit from rigorous empirical examination.
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A Appendix

A.1 Test Details
A.1.1 Test 1
The GPT-4 and GPT-3.5-turbo models were ac-
cessed from the OpenAI site in the period from 13
to 14 December 2024, with default settings. The
llama3-70b and llama3-8b models were accessed
from api.llama-api.com in the same period, also
with default settings. Each of these tests were per-
formed with 200 randomly selected examples.

A.1.2 Test 2
The GPT-4 and GPT-3.5-turbo models were ac-
cessed from the OpenAI site in the period from 10
November 2024 to 1 December 2024, with default
settings. The llama3-70b and llama3-8b models
were accessed from api.llama-api.com in the same

period, also with default settings. Each of these
tests were performed with 200 randomly selected
examples.

A.1.3 Test 3
The GPT-4 and GPT-3.5-turbo models were ac-
cessed from the OpenAI site in the period from 10
November 2024 to 1 December 2024, with default
settings. Each of these tests were performed with
200 randomly selected examples.

A.1.4 Test 4
The GPT-4 model was accessed from the OpenAI
site in the period from 10 November 2024 to 1 De-
cember 2024, with default settings. Each of these
tests were performed with 200 randomly selected
examples.

A.2 Human Performance
We posed 4 examples each of levels 1, 2 and 3, to
9 respondents, for a total of 108 observations. The
context and question were modeled after the ma-
terials used in our LLM experiments.3 As shown
in table 6 the results show a sharp drop in accu-
racy from level 1 to levels 2 and 3; consistent with
widely held views in the literature.

Level Accuracy
1 .889
2 .611
3 .528

Table 6: Survey Results for Center Embeddings

3Survey data provided online upon acceptance.
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Abstract 

In this paper, I outline the process of creating a 
mobile keyboard for Itunyoso Triqui, an 
endangered indigenous language of Southern 
Mexico. Literacy in Itunyoso Triqui is low, and 
speakers do most of their texting and typing in 
Spanish. The language’s complex lexical tone 
system and many multigraphs make typing on a 
typical QWERTY mobile keyboard difficult. This 
keyboard offers several innovative features to 
make typing in Triqui more idiomatic, including 
multigraph keys and several options for tone 
input. By allowing for more convenient typing in 
Triqui, this keyboard enables speakers to use 
Triqui over Spanish in day-to-day typing and 
texting, which helps bolster language vitality and 
literacy. The case of Triqui is not unique. Many 
minority language speakers use a dominant 
language for typing and texting; dominant 
languages have better language tools, due to 
having a larger potential userbase and therefore 
more resources for development.  By creating 
tools for minority languages that are idiomatic to 
each language and convenient to use, we can 
encourage their use in digital contexts, increasing 
literacy and vitality of minority languages more 
broadly.  

1 Introduction 

As technology use increases and more and more 
communication is done online through text, there is 
an increased demand for digital tools that serve 
endangered language communities. In this paper, I 
discuss the process of developing a mobile 
keyboard for Itunyoso Triqui, a minority language 
spoken in Southern Mexico.  

Itunyoso Triqui is one of three Triqui varieties, 
spoken by roughly 2500 speakers in and around 
San Martín Itunyoso, Oaxaca, Mexico (DiCanio, 
2010). Its orthography uses a modified Latin script, 

with many multigraphs and accent marks to 
represent its complex tone system.  

Fluent literacy in Itunyoso Triqui is low (1-2%). 
There have been recent efforts to establish literacy 
programs, but they are currently on hiatus due to 
political and economic conditions in the area. 
Many speakers use at least some digital technology 
(usually a smartphone), and day-to-day writing and 
texting is usually done in Spanish, due to low 
literacy and the relative difficulty of texting in the 
language.  

In creating a digital keyboard for Itunyoso Triqui, 
we aim to help speakers to practice literacy and use 
the language in everyday texting and writing. This 
project is inspired by the TZ'IB'MA project (Mateo 
Toledo 2022), which created mobile keyboards for 
several Mayan languages, including Q'anjob'al, 
Kaqchikel, and Mam, which helped speakers text 
more easily in their languages. 

2 Digital Tools for Minority Languages 

Modern language technology development exists 
in a feedback loop. Because dominant languages 
have a larger userbase, language technology more 
likely to be developed for them. Subsequently, 
bilinguals gravitate toward dominant languages in 
texting due to their higher-quality, more 
convenient tools (van Esch et al., 2019). Creating 
tools for minority languages allows to use their 
language in text as well as speech, helping both 
literacy and language vitality.  

Texting is an essential part of modern literacy; for 
many people, the majority of their day-to-day 
writing is over text. A well-designed keyboard that 
is idiomatic to a language is helpful for both 
literacy and language revitalization programs, as it 
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allows students to practice the written language in 
day-to-day, spontaneous conversation. 

Creating tools for marginalized languages also 
helps to chip away at the feedback loop, by creating 
an existing user base for these languages. While 
private companies currently have little economic 
incentive to make these tools, academic projects 
can help fill that gap and seed further development. 
Digital language technology is another way that 
linguists can contribute materially to the 
communities of languages they document. 

In designing language tools, one should make them 
convenient and idiomatic to a language, in order for 
speakers to want to use them. The desire to use 
one’s native language can only overcome so much 
frustration with poorly made tools. Therefore, a 
language’s orthography and linguistic structure 
should be taken into account when making 
language tools. 

3 Keyboard Development 

In creating this keyboard, there were several 
requirements aimed at making the keyboard easy 
for speakers to adopt. First, the keyboard should be 
easy to access and install, without advanced 
technical knowledge. Second, the keyboard should 
be beginner-friendly; it should be easy and intuitive 
to use, even without technical knowledge, and it 
should be usable even without perfect literacy, as 
part of its use case is in teaching literacy. Lastly, it 
should be convenient and idiomatic to Triqui; the 
multigraphs and accent marks that are easy to 
input.  

The keyboard was made using Keyman by SIL, a 
program for creation of custom keyboards. To 
install, users download the Keyman mobile app 
from the App Store or Google Play Store. (The 
keyboard is only designed for mobile use, as 
mobile phones are much more common than 
computers in the community). Users can install the 
keyboard within the Keyman app, without a 
technical installation process, and the keyboard 
works system-wide. The keyboard also includes a 
predictive text feature, trained on corpus data.  

Itunyoso Triqui has a highly complex tone system, 
contrasting five level tones and four contour tones. 
The five level tones /a⁵ a⁴ a³ a² a¹/ are written with 
single vowels <á á a à à>, and the four contour 
tones /a⁴³ a³² a³¹ a¹³/ are written with double vowels 

<áa aa aà àa> (Note that the pairs /a⁵ a⁴/ and /a¹ a²/ 
are not distinguished in the orthography). Because 
of the high functional load of tone, nearly every 
word has one or more accent marks, and accents 
cannot be omitted without sacrificing 
comprehensibility.  

A standard QWERTY mobile keyboard requires 
long-presses to input accents. This keyboard offers 
long-press accent input as well as several other 
options that are more idiomatic. These include 
deadkeys, swiping up and down on vowel keys, a 
predictive text feature, and a novel method for 
inputting and correcting accents on already-typed 
words. We expect the predictive text to be the main 
input method for accents, and the accent correction 
feature allows for manually adding accents to 
words that the predictive text could not predict 
correctly, without having to delete the entire word. 

Many common segments are written with digraphs, 
with <kw nd ngw ngw ts ch chr cn> representing 
/kʷ ⁿd ᵑg ᵑgʷ t͡ s t͡ ʃ ʈ͡ ʂ ᶜɲ/, respectively. This keyboard 
includes keys that input a multigraph in its entirety, 
replacing keys in the QWERTY layout for letters 
that are not used in Triqui (e.g. <kw> replacing 
<w>, <ch> replacing <c>). This phonemic layout 
with multigraph keys was inspired by a similar 
approach used in the TZ'IB'MA project (Mateo 
Toledo 2022). 

In addition, most consonants can be geminated, 
indicated with a double letter. While this is 
straightforward to type for unigraph consonants 
(e.g. /k~kː, β~βː/ <k~kk, b~bb>), this can be 
cumbersome when the singleton consonant is 
already a multigraph (<kw~kkw, ch~cch, 
chr~cchr>). This keyboard has a text replacement 
feature that allows for typing of any geminate with 
a double tap, including multigraphs (e.g. 
<kw><kw> to type <kkw>).  

4 Distribution Efforts and Future Goals 

As of May 2025, the keyboard has 272 downloads, 
representing roughly 11% of Itunyoso Triqui 
speakers. In the future, the keyboard will also be 
incorporated into the literacy program when it 
resumes, and continually updated based on user 
feedback. 

By designing the keyboard around the orthography 
and linguistic structure of Itunyoso Triqui, and 
giving users multiple options to find what works 
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best for them, this project aims to make typing in 
Triqui as convenient as typing in Spanish, even 
with limited resources and funding. We hope that 
the availability of this keyboard will increase the 
use of Triqui in day-to-day texting and writing, 
improving literacy and language vitality. 
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1 Introduction

An important component of human sentence
comprehension is how to judge multiple simulta-
neously correct interpretations for a single input.
For instance, consider the case (as in 1) of a relative
clause (RC) that was running following a complex
noun phrase son of the doctor:

(1) I saw the son of the doctor that was running.

There are two possible interpretations of this sen-
tence based on whether the RC that was running
modifies the son or the doctor. The interpretation in
which the RC modifies the doctor is referred to as
low attachment (LA) while the case of the RC modi-
fying the son is referred to as high attachment (HA).

RC attachment preferences thus present an inter-
esting way of probing LLMs’ syntactic knowledge,
given that speakers’ preferences for HA or LA vary
cross-linguistically, and has been reported to be af-
fected by a variety of syntactic and semantic factors
(Grillo and Costa, 2014). However, RC attachment
preferences seem to be understudied in the LLM
syntactic evaluation literature (Davis and Van Schi-
jndel, 2020; Issa and Atouf, 2024). Here, we aim to
add to this scarce literature, and evaluate a variety
of LLMs trained to determine their disambiguation
strategies over relative clauses in Italian.

2 Italian RC Attachment

Modulo other variables, English speakers generally
exhibit a low attachment RC preference with Italian
speakers preferring a high attachment interpretation.
Recently, it has been argued that one important
predictor of attachment preference in Italian RCs
is whether the verb in the main clause is non-
perceptual (marry, know, cook, etc) or perceptual
(observe, hear, smell, etc). When other semantic
and syntactic aspects are controlled for, RCs of sen-
tences containing non-perceptual verbs lead to a LA
preference while perceptual verbs lead to a HA pref-
erence (Grillo and Costa, 2014; Lee and De Santo,

Sentence Verb Type Attachment
a perceptual (P) HA
b perceptual (P) LA
c non-perceptual (N) HA
d non-perceptual (N) LA

Table 1: Summary of Italian Stimuli by Group

2024). Focusing on French, Hénot-Mortier (2023)
has shown that monolingual and multilingual
transformer architectures exhibit some sensitivity to
non-perceptual/perceptual verb type modulations in
non-RC contexts. Building on the psycholinguistics
literature and these past LLM results on RC
attachment and verb type effects, here we ask:

1. whether LLMs tested on Italian show any type
of attachment preference;

2. whether these preferences conform to those
of Italian speakers;

3. whether these preferences show sensitivity to
verb type.

3 Experiment and Results

We build on Grillo and Costa (2014), testing Italian
sentences with a structure as in (1) but with a matrix
verb manipulation, which is either perceptual or non-
perceptual in a 2×2 design summarized in Table 1.
As a proxy for a model’s attachment preferences, we
measure the surprisal value at the embedded verb
(Davis and Van Schijndel, 2020). Therefore, we
depart from Grillo and Costa (2014) in being unable
to use fully ambiguous relative clauses. Instead,
we leverage the stimuli used in Lee and De Santo
(2024), testing our models on sentences that are
disambiguated for HA or LA by gender agreement
between one of the two nouns in the complex DP
(son or doctors) and the embedded verb. We can
then think of contrasting sentence types pairwise,
which leads to the following LA/HA predictions:
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Figure 1: Surprisal Values by Attachment Type and Verb Type for one of the Italian-only (GePpeTto; Polignano
et al., 2019) and one of the multilingual (bert-base-079 multilingual-cased; Devlin et al., 2019) models tested.

Attachment Preference← LOW if Verb
Surprisal(a) > Verb Surprisal(b)
Attachment Preference ← HIGH if
Verb Surprisal(a) < Verb Surprisal(b)
Attachment Preference← LOW if Verb
Surprisal(c) > Verb Surprisal(d)
Attachment Preference ← HIGH if
Verb Surprisal(c) < Verb Surprisal(d)

We evaluated two Italian-only models, and three
multilingual models (GePpeTto; AlBerto; bert-base-
multilingual-cased; bert-base-multilingual-cased;
xlm-roberta-large) in line with those tested for
French by Hénot-Mortier (2023). For each LLM,
pairwise contrasts do not reveal a strong tendency
towards either LA or HA. We then fit linear mixed-
effect models using Surprisal at the embedded
verb as the dependent variable, and Verb Type and
Attachment Type as fixed effects. Our analyses
show no significant attachment or verb type effects,
again consistent with the absence of attachment
preferences (in line with Italian speakers or not) in
each of the models, (see Figure 1 for results for two
of the models).

4 Discussion and Further Work

In this work, we measured the difference in surprisal
of locally ambiguous sentences at the point of
disambiguation to determine whether a variety of
LLMs learn human-like attachment preferences in
Italian. Our results indicate that none of the models
we tested exhibits any attachment preference at
all, somewhat in contrast to previous results for
Spanish and Arabic (Davis and Van Schijndel,
2020; Issa and Atouf, 2024). However, Davis and
Van Schijndel (2020) tested models with an LSTM

architecture, while Issa and Atouf (2024) used
prompting methods as opposed to the surprisal
measurements used here. Future work should
explore these differences more in depth, and suggest
a primary role for RC disambiguation in the study
of LLMs’ capabilities cross-linguistically.
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Explaining differences between phonotactic learning biases in the lab and
typological trends using Probabilistic Feature Attention
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1 Introduction

A primary goal of linguistic theory is to explain
why certain kinds of languages are underattested.
One methodology that has had success in explain-
ing phonological typology has been artificial lan-
guage learning, in which participants are trained
for a short period of time on a synthetic language
that was designed to test the learnability of a partic-
ular kind of pattern (for a review of this literature,
see Moreton and Pater, 2012a,b). Often, the goal of
these experiments is to see if participants’ learning
biases in the lab might explain typology by show-
ing that underattested languages are more difficult
to acquire (see, e.g., Wilson, 2006; Finley, 2008;
Glewwe, 2019).

However, learning biases seen in an experimen-
tal setting do not always match typological trends.
Moreton and Pertsova (2014) implemented a set of
patterns introduced by Shepard et al. (1961, hence-
forth, Shepard Types) as phonotactic restrictions
and taught them to participants in an artificial lan-
guage learning experiment. They found that partic-
ipants’ preferred patterns failed to mirror typolog-
ical trends in a database of attested phonological
generalizations (Mielke, 2008).

Here, I model the acquisition of phonotactic pat-
terns that align with the six Shepard Types tested
by Moreton and Pertsova (2014) using a maxi-
mum entropy phonotactic grammar (Hayes and
Wilson, 2008; Moreton et al., 2017) equipped with
Probabilistic Feature Attention (Prickett, 2023).
This model predicts the biases seen in Moreton
and Pertsova (2014)’s experimental results early
in learning, but by the end of learning reflects the
trends present in phonological typology. These re-
sults could help explain the differences observed by
Moreton and Pertsova (2014) between artificial lan-
guage learning and typology, since the latter could
be shaped by more long-term learning biases.

Figure 1: Shepard Type examples using the features
[±black], [±circle], and [±large]. Boxes around shapes
show how stimuli could be divided up in each type.
Taken from Moreton et al. (2017).

2 Background

2.1 Shepard Types

Shepard et al. (1961) found that humans were bi-
ased toward certain kinds of patterns when learning
in an experimental setting. They used patterns in-
volving 8 stimuli, where each stimulus could be
uniquely identified with three features. The shapes
in Figure 1 show an example of such a stimulus
space. They found that out of the six possible
ways of dividing up the space into two equally
sized groups, their participants learned some divi-
sions more quickly than others. The roman numer-
als in Figure 1 show the relative ease with which
each type was learned in their original experiments
(with lower numbers applied to easier Types and
dotted lines between Types representing inconsis-
tent/marginal differences in learnability). For a
review of the literature on Shepard Types for non-
linguistic patterns, see Kurtz et al. (2013).

Moreton and Pertsova (2014) implemented the
Shepard Types as phonotactic patterns (where the
three features were phonological and the stimuli
were words). Their results showed that in this con-
text, the Shepard Types were learned in the order
(from easiest to most difficult): I, IV, III, V, II, and
VI. However, when Moreton and Pertsova (2014)
analyzed a database of phonological patterns, as-
signing as many patterns as they could to each of
the Shepard Types, they found that the typological
frequency of the Types roughly mirrored the origi-
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Segment [labial] [continuant] [voice]
p + - -
b + - +
f + + -
v + + +
t - - -
d - - +
s - + -
z - + +

Table 1: Features and segments used for all simulations
presented here.

nal ordering found by Shepard et al. (1961): I, II,
III, IV/V, and VI.

2.2 Probabilistic Feature Attention

Prickett (2023) proposed Probabilistic Feature At-
tention (henceforth, PFA) as a way to model certain
kinds of uncertainty that likely exist in the process
of phonological acquisition. PFA introduces noise
into a learning model’s training data by making
certain segments temporarily ambiguous with one
another and is based on a regularization technique
from the machine learning literature called dropout
(Srivastava et al., 2014). This ambiguity is based on
the features used to represent the segments, with the
model distributing its attention (Nosofsky, 1986)
to these features probabilistically and resampling
which features are attended to on each learning
update.1

For example, imagine a phonotactic pattern us-
ing the segments and features in Table 1. If the
model attended to the feature [continuant], but not
[voice], the difference between [t] and [s] would
be preserved, but the model would treat [t] and
[d] identically. If the model was learning a pat-
tern in which voiceless sounds were grammatical
and voiced sounds were not, any learning update
in which [voice] was not attended to would fail to
push the learner in the correct direction.

Prickett (2023) paired PFA with a maximum
entropy phonotactic learner (Hayes and Wilson,
2008) with a conjunctive constraint schema (More-
ton et al., 2017) and successfully modeled a number
of artificial language learning experiments. Those
results demonstrated that some relevant features
being attended to while others are not can push the

1Note that this ambiguity could arise from a number of
factors in real phonological acquisition, such as misperception
(Bailey and Hahn, 2005) or constraints on memory (Gather-
cole and Adams, 1993).

model to generalize and learn in unexpected ways.
This altered learning and generalization mirrored
the human behavior in the relevant experiments.

3 Methods

The results presented here were found using the
software published in the supplementary materials
included with Prickett (2023), which implements a
maximum entropy phonotactic grammar and trains
it with batch gradient descent paired with PFA. The
hyperparameter values that were used for these
results were a learning rate of .05 and an attention
probability of .25. These were chosen after a short
amount of piloting, with a full grid search of these
values being left to future work.

Constraints representing every possible combina-
tion of the features in Table 1 were used (following
Moreton et al., 2017). This included constraints
with a single valued feature (e.g., *[+voice]), con-
straints with two valued features (e.g., *[+voice,
+continuant]), and constraints with three valued fea-
tures (e.g., *[+voice, +continuant, -labial]). Con-
straints with a single feature were always violated
by half of the possible segments (e.g., [b, v, d, z]),
constraints with two features were always violated
by two segments (e.g., [v, z]), and constraints with
three features were always violated by a single seg-
ment (e.g., [z]).

Six ‘languages’ (one for each Shepard Type)
were implemented using ‘words’ that were only a
single segment long. In the training data for each
language, four of the words had a probability of 1
and four had a probability of 0 (representing gram-
matical and ungrammatical words, respectively).
The model was tested in 30 separate runs for each
language, since PFA introduces variability into the
learning process. This ensured that results were
representative of the model’s average behavior, and
not the random choice of feature attention in a sin-
gle run.

4 Results

Figure 2 shows the average accuracy for the model
with PFA on each pattern. The model’s initial or-
dering of Shepard Types matches the performance
observed by Moreton and Pertsova (2014) in their
experiment: I, IV, III, V, II, and VI. However, later
in learning, the ordering of the patterns mirrors
the typological trends observed by Moreton and
Pertsova (2014), instead, with Type II crucially
having a higher accuracy than III, IV, or V. Note
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Figure 2: Probability of grammatical words in each
pattern, according to the model at each epoch. Results
are averaged over 30 separate runs per pattern.

that the ordering of Types IV and V does change
toward the end of acquisition, but the relative or-
dering of these Types in the typological study was
also inconsistent.

5 Discussion

5.1 Why does the model capture these biases?

The relative ordering of types that is present early
on in the model’s learning matches the expected
behavir of this kind of maximum entropy learner.
The reason that these biases exist in the model is
because of the structure of its constraint set and
the nature of gradient-based learning algorithms.
For an in-depth explanation for how a conjunctive
constraint schema combined with gradient descent
predicts this ordering of Shepard Types, see More-
ton et al. (2017).

But why does PFA cause the model to change its
relative ordering of Shepard Types later in learning?
The more features that are relevant to a pattern,
the more opportunities PFA has to obscure that
pattern over the course of learning (for more on this
effect, see Prickett, 2023, §4.3). Type II patterns
only involve two features, while Types IV and V
both involve three. For Types IV and V, all three
features must be attended to for a learning update
to push the model in the correct direction. But in
Type II, only the two relevant features have to be
attended to for the model to move its weights in the
correct direction. This effect of PFA compounds
as learning continues, making IV and V ultimately
more difficult to learn.

5.2 Future Work

The relationship between phonological learning in
the lab and phonological typology in the real world
is still largely an open question. Many factors could
drive differences between biases seen in artificial
language learning and real-world typology, such as
the effect of sleep on acquisition (see e.g., St Clair
and Monaghan, 2008), the pressures caused by the
iterative and interactive nature of language learning
(see e.g., Hughto, 2020), and phonetically driven
channel bias (see e.g., Ohala, 2014). The results
presented here offer an explanation for one particu-
lar mismatch between observed learning biases and
the frequency of attested patterns, but future work
should explore how PFA might interact with these
other phenomena.

Future work should also explore whether other
models of phonological learning can explain the re-
sults in Moreton and Pertsova (2014). A maximum
entropy model that uses a conjunctive constraint
schema will always predict the ordering of Shepard
Types seen in Moreton and Pertsova (2014)’s ex-
periment unless additional mechanisms are added
to it. But other approaches to phonotactic learning,
such as induced constraints (see, e.g. Hayes and
Wilson, 2008), expectation-driven learning algo-
rithms (Jarosz, 2015), or neural networks (see, e.g.
Mayer and Nelson, 2020) could all be tested on
these same patterns.

More typological work could also illuminate fu-
ture directions for this kind of research. Moreton
and Pertsova (2014) used patterns across two seg-
ments in their experiment, but only had access
to single-segment patterns in the database they
used to calculate typological frequencies (Mielke,
2008). The simulations presented here used single-
segment patterns as well, but PFA can be used with
multi-segment sequences (Prickett, 2023) and if
future work found a different typological distribu-
tion for patterns involving two segments, testing
the model on that kind of pattern could be useful.

5.3 Conclusions

While the goal of artificial language learning is
usually to explain some kind of typological trend,
Moreton and Pertsova (2014) found distinct dif-
ferences between learning observed in the lab and
the frequency of certain patterns in phonological
typology. A model with PFA, an independently mo-
tivated mechanism (Prickett, 2023), matches More-
ton and Pertsova (2014)’s experimental results early
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in learning, but mirrors typological trends later in
acquisition, providing a potential explanation for
the mismatch observed by Moreton and Pertsova
(2014).
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1 Introduction

The advent of distributional semantic embeddings
has enabled major progress in the computational
understanding of word meaning by enabling pre-
cise statistical explorations of semantic spaces (Erk,
2009; Mikolov et al., 2013; Pennington et al., 2014).
More recently, the rise of LMs have made it possi-
ble to study embeddings of words in context. Chro-
nis et al. (2023) developed a method for projecting
contextual word embeddings (CWEs) into a inter-
pretable semantic feature space defined by one of
three different semantic norms (Binder et al., 2016;
Buchanan et al., 2019; McRae et al., 2005). This
is achieved by training feed-forward models which
map from CWEs from BERT to a vector whose
values correspond to feature norms.

Our goal in this paper is twofold: first, we intro-
duce semantic-features1 as an extensible, easy-
to-use library based on Chronis et al. (2023) for
studying word embeddings from any LM in context.
Second, we show its ease of use through an online
application which researchers can use without ad-
ditional programming. We demonstrate these tools
with a linguistic experiment that uses this method
to measure the contextual effect of the choice of
dative construction (prepositional or double object)
on the semantic interpretation of utterances.

The dative construction has been of particular
interests to theoretical (Goldberg, 1995; Hovav and
Levin, 2008; Beavers, 2011) and computational
linguists (Bresnan, 2007; Hawkins et al., 2020; Liu
and Wulff, 2023; Jumelet et al., 2024; Misra and
Kim, 2024; Yao et al., 2025). This is primarily
due to its several interesting properties such as its
participation in alternation behavior (Levin, 1993),
flexible interpretation of the event it describes—
caused motion vs. caused possession (Goldberg,

⋆Work partly done at UT-Austin before joining TTIC.
1semantic-features is available at https://github.

com/jwalanthi/semantic-features

Figure 1: Interactive Demo in Use

1995; Hovav and Levin, 2008; Beavers, 2011), and
interesting feature specific preferences that humans
demonstrate while choosing between two dative
constructions during production (Bresnan, 2007).

Our case study focuses on the semantics of the
arguments of the dative construction—in particu-
lar its recipient argument (Beavers, 2011; Petty
et al., 2022). Specifically, we hypothesize that
“London” in “I sent London the letter.” (double
object; DO) should be more likely to be interpreted
as an animate referent (e.g., as the name of a per-
son) than in “I sent the letter to London.” (prepo-
sitional object; PO) This is because the DO da-
tive is more canonically associated with possession
transfer events, which constrains the recipient to
be animate (Beavers, 2011). The PO dative, on
the other hand, is associated with both possession
transfer and ‘caused-motion’ (Goldberg, 1995) and
allows for inanimate recipients. We test whether
LMs learn this distinction by projecting the em-
bedded representation from the token “London”
into a more interpretable semantic space and an-
alyze it for animate vs. inanimate features. We
include a full demonstration of how to easily ob-
tain such measures from models that have already
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been trained, in addition to describing our full sys-
tem for training projections from scratch.

2 semantic-features

Our extensible system for training models and ana-
lyzing embeddings performs three main tasks: em-
bedding extraction, model training, and hyperpa-
rameter tuning. Below, we summarize our method-
ology; more details can be found in the README.

Embedding Extraction The first step is prepar-
ing the CWEs which serve as the ‘source’ for the
training data. Given a (user-provided) corpus and
an LM whose weights/embeddings are accessible,
semantic-features extracts an embedding for
each word in the corpus using minicons (Misra,
2022). We average the embeddings across all con-
texts to obtain one vector per word, as in Chronis
et al. (2023). While any LM can theoretically serve
as the source for word embeddings, autoregressive
LMs like GPT-2 are not well-suited for this ap-
plication because their embeddings only capture
left-context for a given word.2

Model training All models use a multi-layer per-
ceptron (MLP) to perform feature prediction. All
hyperparameters can be user-specified except for
the MLP architecture. While Chronis et al. (2023)
experimented with other architectures, we choose
MLPs to maintain a fully neural system end-to-end.
Models are trained with a 80-20 train-validation
split, and loss is calculated as mean-squared error
between the predicted vector and the ground-truth
feature-norm vector.

Hyperparameter tuning Our system allows for
hyperparameter tuning by using optuna (Akiba
et al., 2019). We specifically use the TPESampler
module, which searches for the combination of hy-
perparameters which minimizes validation loss us-
ing a Tree-Structured Parzen Estimator algorithm.
optuna searches for the optimal values for hid-
den size, batch size, and learning rate over a spec-
ified set of ranges in Table 3. If enabled, the
MedianPruner is used to determine which trials
to prune. After running 100 trials, the model with
the lowest validation loss is saved.

Interactive Demo An interactive demonstra-
tion of a selection of models trained using

2As a note, while semantic-demo provides the ability to
train these MLPs, it does not provide the raw training data
itself. Users must obtain corpus data and feature norm data
from their respective sources.

semantic-features is available on HuggingFace
Spaces as a Gradio app,3 shown in Figure 1. Users
can retrieve a model which maps from the CWE of
a user-specified word in context from any layer of
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), or ALBERT (Lan et al., 2020) to any of
the three semantic feature spaces used by Chronis
et al. (2023).4 The models were trained using the
British National Corpus as the source text. For
each word that has a pre-defined feature vector,
semantic-features extracts the embeddings in
each context provided by BNC, averaging the em-
beddings per word across all contexts. This serves
as the source for training, and the feature vector
itself serves as the target. Further training details,
including hyperparameter specification and GPU
training hours, are provided in Appendix B. The
output of the demo is a list of the predicted features
sorted greatest to least.

3 A Small Case Study on Recipient
Semantics in Dative Constructions

Using the tools developed in the previous section,
we ask if LMs are sensitive to context-dependent
semantics in linguistic constructions. Consider the
dative alternation: some ditransitive verbs can take
two different argument structures. The first is the
double object (DO) construction and the second is
prepositional object (PO) construction.

(1) a. I sent London the letter. DO
b. I sent the letter to London. PO

While both are near synonymous, they apply differ-
ent contextual constraints on their arguments. For
instance, in the PO, London takes on its “standard”
definition as an inanimate place/location, but in the
DO, it seems that London is an animate recipient
(Beavers, 2011; Hovav and Levin, 2008). To what
extend do LMs learn this distinction? To test this,
we project embeddings from LMs to the Binder
features (Binder et al., 2016) space. We choose
the Binder Norms here specifically because each
feature has a concrete definition provided by the re-
searchers, which can allow for finer grained person-
hood vs. place-hood distinction. We use these defi-
nitions (reproduced in Table 1) to identify Binder
features which capture place-hood (Landmark and

3Available at https://huggingface.co/spaces/
jwalanthi/semantic-demo

4While these are the models we currently focus on, in
principle this can be applied on any masked language model.
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Feature Definition

Biomotion showing movement like that of a living thing
Body having human or human-like body parts
Human having human or human-like intentions, plans, or goals
Face having a human or human-like face
Speech someone or something that talks
Landmark having a fixed location, as on a map
Scene bringing to mind a particular setting or physical location

Table 1: Feature definitions from Binder et al. (2016).

Feature DO PO

Biomotion 1.19 0.43
Body 1.00 0.26
Human 0.89 0.48
Face 0.71 0.19
Speech 0.68 0.13
Landmark 1.83 3.43
Scene 2.59 4.43

Table 2: Relevant Binder features predicted for “Lon-
don” in (1) using CWEs from BERT layer 8. The PO
construction lends itself more towards “location” fea-
tures, and the DO more towards animate features.

Scene) and person-hood (Biomotion, Body, Hu-
man, Face, and Speech) to reflect the two possi-
ble salient readings. Higher values for a Binder
feature from the projected embedding is taken to
mean greater activation of the specific feature. We
choose features which capture person-hood and
place-hood distinctively, not those which are appli-
cable for both readings. For example, the Vision
feature, which is defined as “something that you
can easily see," can be activated in both contexts,
and is therefore not included in either category. We
then extract the embeddings for the recipient word
each layer of the LM in each context and project
them to the Binder space, observing changes in the
relevant features. Table 2 shows an example set
of predictions for (1) using BERT layer 8. We see
that, consistent with our predictions, “London” is
construed as more person-like in the DO and more
place-like in the PO.

To test this phenomenon more robustly, we use
a method similar to the experiment for studying
grammatical roles in Chronis et al. (2023), which
requires a balanced dataset of DO and PO sen-
tences. While the dataset provided by Hawkins
et al. (2020) is balanced in terms of the two con-
structions, it is not well-suited to our needs because
the variation in recipient animacy is not focused on
the place-like versus animate distinction observed
in (1). Instead, we generate 450 alternating pairs in
which the recipient is interpreted by a human eval-
uator to be a person in the DO and a place in the
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Figure 2: For each layer of an LM, we extract the CWE
and project it into Binder space. Left: we measure
the average change across the test sentences in Person
features from PO to DO. The positive values indicate
that recipients in the DO are found to be more animate.
Right: we measure the average change across test sen-
tences in Place features from DO to PO. Here, the posi-
tive values indicate that the recipients were found to be
more place-like in the PO.

PO. We do this by querying ChatGPT to come up
with proper nouns that can be interpreted as places
or people, ending up with 15 different such names,
all of which were manually checked. This included
names of states, as in “Dakota”, and names of coun-
tries, as in “Jordan”, in addition to names of cities,
as in “London”. We then paired them with 6 dif-
ferent alternating verbs (lemma: send, mail, order,
bring, fax, deliver) along with a host of correspond-
ing indirect objects which could also be plausibly
received by a place or person. Finally, we choose
from five different agents (names), leading to our
450 pairs of sentences, each of the form [agent]
[verb]past [recipient] [theme] for DO and
[agent] [verb]past [theme] to [recipient]
for PO. We project the embeddings of the recipients
in context from BERT, RoBERTa, and ALBERT to
the Binder feature space and average across con-
struction (DO or PO) and feature set (Person or
Place). Fig. 2 shows the average change in feature
values for person-hood features vs. place-hood
features across the alternants of the dative construc-
tion. That is, a value of 0.75 in the animacy panel
(left) suggests that the average difference in the
activation value of the recipient’s animacy features
in the DO and PO constructions was 0.75 units on a
scale of 0 to 6 (as provided by Binder et al. (2016))
with positive values indicating “more animate in
DO than in PO.” Similar interpretation (though in
the reversed direction) can be made for the right
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panel, which focuses on place-hood change when
switching from DO to PO.

Results As expected, almost all of the models
predict an increase in animacy in the DO compared
to the PO and an increase in place-hood in the PO
compared to the DO (Figure 2) across most lay-
ers. There are some exceptions where the change
in person-hood/animacy features is in the oppo-
site direction, though these are in the tiny minority
(i.e., a total of 3 times out of a total 36 possible
model and layer combination). Corroborating with
Chronis et al. (2023), we observe particularly high
activation-change of the relevant features in lay-
ers 6–9 as opposed to the final layer, suggesting
possible concentration of semantic sensitivity in
those layers. Overall, this suggests that the contex-
tually sensitive distributional semantic embeddings
of LMs capture subtle changes in semantic inter-
pretation of different related-constructions.

4 Conclusion

Our hope is that both the complete
semantic-features library for projecting
CWEs into semantic spaces and the online demo
will facilitate running linguistically informative
experiments using contextual word embeddings.
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A Hyperparameters

The following search ranges are used by optuna
for hidden size, batch size, and learning rate when
enabled.

Hyperparameter Lower Limit Upper Limit

Hidden Size min min(2*min, max)
Batch size 16 128
Learning Rate 10−6 1

Table 3: Search ranges for optimization, where min
denotes the minimum between the length of the embed-
ding and length of the feature vector and max denotes
the maximum between the two values

B Demo Models

All 117 models available through the Gradio app
have 2 layers with 50% dropout, and early stop-
ping after 6 epochs of non-decreasing validation
loss. The maximum epoch limit was set to 100,
though in reality, the best performing models fin-
ished training after 40-60 epochs. Hyperparameter
tuning was used for hidden size, batch size, and
learning rate, and pruning was not enabled. For
the Buchanan models, the raw feature labels were
not used, and the normalized feature values were
used. In total, training all 117 models took 25 GPU
hours, including those which were discarded in the
process of optimization. Models were trained using
an NVIDIA A40 GPU.
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1 Introduction

While morphology has received substantial atten-
tion in computational linguistics and typology, in-
flectional resources have long out-classed deriva-
tional datasets despite growing interest. UniMorph
4.0 (Batsuren et al., 2022), and Universal Deriva-
tions (Kyjánek et al., 2020) contain derivational
information for 30 and 21 languages respectively,
dwarfed by UniMorph’s 169 languages for inflec-
tion. Further, the typological diversity of languages
covered is still limited and dominated by high-
resource (Indo-)European languages, with many of
the world’s most morphologically rich languages
(such as so-called polysynthetic languages) entirely
excluded from existing datasets.

While existing derivational datasets are limited
in terms of typology and language resource status,
there is another, closely related resource available
for a much broader array of languages: finite-state
morphological transducers (FSMTs). These mod-
els encode both lexical and morphological infor-
mation and exist for a wide range of languages,
especially very low-resource, morphologically rich
languages. This information is stored in a very
different form than existing inflectional and deriva-
tional morphological resources, however, and is
typically not viewed as a dataset, but as a tool.

In this work, we explore the possibility of using
FSMTs to create derivational morphology datasets.
We focus on the Universal Derivations (UDer)
format. This format is richer than that of Uni-
Morph, capturing not just derivationally-related
pairs, but the tree structure of entire derivationally-
related families of forms. This makes it particu-
larly suitable for capturing derivational information
in highly agglutinative, morphologically-rich lan-
guages. In this work, we focus on the Inuit-Yupik
language family. These languages are known for
having an extremely high degree of synthesis, while
being heavily agglutinative, and have frequently

been cited as canonical examples of polysynthe-
sis, with a higher type-token ratio than any other
language family (Park et al., 2021). Further, sev-
eral languages in the family (kal, ess, iku, esu)
have FSMTs publicly available. We produce Uni-
versal Derivations-style datasets for Greenlandic
(kal; ∼44,000 speakers) and Saint Lawrence Is-
land (SLI) Yupik (ess; ∼500 speakers), using pub-
licly available FSMTs and small text corpora. We
make our code and derivational networks in Uni-
versal Dependencies format available online.1

2 Method

Most FSMTs are primarily designed for morpho-
logical analysis; as such, they may generate forms
which, while seemingly valid, do not occur (e.g.
paradigm gaps). To avoid including such items
in our derivational networks, we use existing text
corpora for the two languages and use the FSTMs
to analyse these corpus–thereby restricting us to
attested surface forms. We use the digital corpus of
SLI Yupik2, consisting of ∼300,000 unannotated
tokens and ∼1,000 manually annotated tokens, and
the monolingual Greenlandic corpus collected by
Jones (2022), comprising 1.98 million tokens. We
use (Chen and Schwartz, 2018)’s FSMT for SLI
Yupik and the Apertium morphological analyser
for Greenlandic to provide morphological analyses
for the corpora (Forcada and Tyers, 2016). For am-
biguous words in the SLI Yupik corpus, we use the
first analysis from the transducer.

As described in Figure 1, our method works by
first analyzing words in the corpus, then repeat-
edly modifying the analysis and generating forms
matching the modified analysis.

Universal-Derivations-style derivational net-
works typically present words in their standard-

1https://github.com/ColemanHaley/fst2dernet/
2https://github.com/SaintLawrenceIslandYupik/

digital_corpus
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Figure 1: Our method for producing derivational networks from FSMTs. Words in a corpus are first analyzed (A)
using the FSMT. We then modify (M) the analysis to have standard inflectional features, and then use the FSMT
to generate (G) the standardized form. Next, we recursively modify to strip derivations and generate intermediate
forms, producing a chain of derivationally related words. We join chains of derivationally related words to form a
network. Red lexemes are attested in the corpus, while black forms are inferred from attested derived forms.

ized or citation forms. In Inuit-Yupik languages,
this is the 3rd person singular indicative form of
verbs3 and the absolutive singular form of nouns.
For words in our corpora in non-standardized in-
flections, we feed a standardized version of the
analysis to the FSMT to produce the citation form
of the word. We treat clitics as special derivational
morphemes which occur after inflections.

We now have standardized, analysed forms for
all the words in the corpora. But how to go from
these to derivational families? We note that an anal-
ysis containing several morphs implies the exis-
tence of intermediate words, regardless of whether
they were seen in the corpus. Because Greenlandic
and SLI Yupik are exclusively suffixing, there is
no ambiguity about the sequencing of morphs. We
can therefore recursively strip off one derivational
morpheme at a time to produce a new word. Check-
ing for the part of speech implied by the rightmost
derivational morpheme, we add back on the ap-
propriate standardized inflectional features to the
analysis, and use the FSMT to produce a surface
form for this word if it is unobserved.

We release generalized code for this procedure
as well as versions specialized to the analysis for-
mat of each of the two FSMTs used here. Our
generalized code allows users to specify the format-
ting of inflectional features, part of speech, clitics,

3Inuit-Yupik languages mark transitivity inflectionally, pro-
ductively forming transitive and intransitive variants of verbs.
However, because this is a common paradigm gap, we retain
the observed transitivity of verbs.

and derivational morphs in the analysis, as well as
the set of default features for each part of speech,
allowing the extension of our method to other lan-
guages with suffixing morphology. Future work
could extend our method to languages with both
prefixing and suffixing derivation with the use of a
model or rule-based system to determine the order
of morpheme application/scope.

3 Results

Our derivational networks cover 53,245 lexemes
for SLI Yupik and 127,663 lexemes for Green-
landic, on par or surpassing highly-resourced Euro-
pean languages such as Dutch, French, Italian, and
English.Further, these lexemes are spread across
6,344 (SLI Yupik) and 11,088 (Greenlandic) dis-
tinct derivational families. In contrast to less rich
languages, a majority of these families are non-
trivial (containing at least two lexemes): 4,256 and
6,021; respectively. Further, in both languages
almost 1 in 10 derivational families contained
20 or more lexemes (599 ess; 1,015 kal). The
largest derivational families in each language con-
tain many hundreds of lexemes: 359 for the neutral
root piiq in SLI Yupik, and 1,584 for Greenlandic,
far surpassing any single lexeme in existing UDer
languages. Finally, we note an impressive range of
unique derivational relations/morphemes covered:
397 in SLI Yupik and 327 in Greenlandic.

While this data cannot be considered gold-
standard, existing FSMTs and small corpora can
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yield large, empirically-grounded derivational net-
works for extremely low-resource morphologically
rich languages. These networks could serve to
speed up native speaker annotation, or as silver-
standard data in certain types of analysis. These
findings corroborate the noted derivational richness
of Inuit-Yupik languages. Future work could focus
on improving these networks, extending to other
languages, building tools for human annotators, or
refining these techniques for language with ambigu-
ous morpheme sequencing or parts of speech.
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1 Introduction

I investigate a distribution-based characterization
of lexical aspectual classes.

The grammatical aspect of a verb is morphology
which reflects either an internal perspective or an
external perspective on the time course of an event.
For example progressive aspect was laughing in
Mary was laughing when I arrived takes an inter-
nal perspective, while perfective aspect laughed in
Mary laughed when I arrived takes an external per-
spective. Not all verbs are felicitous in all aspects.
For example, verbs denoting static situations usu-
ally sound worse in the progressive: *I am knowing
French. It has long been theorized that each verb
in a language has an aspectual class which cap-
tures something about the temporal shape of the
described event and thereby explains its compati-
bilities with different grammatical aspects (for an
overview, see Filip, 2020). Indeed, past statistical
work explicitly comparing aspectual class labels
with the distribution of grammatical aspects has
found strong statistical effects (Wulff et al., 2009;
Hundt et al., 2020; Bardovi-Harlig, 1998; Andersen
and Shirai, 1994), and these are thought to facilitate
verb morphology acquisition (Wulff et al., 2009;
Shirai and Andersen, 1995).

I propose to flip the script, asking to what extent
statistical association with grammatical aspect is
an adequate characterization of aspectual class. I
propose that aspectual class is precisely the lexical
information which contributes to aspectual choice.
Therefore, it should be detectable by statistically
computing each lexical item’s contribution to as-
pectual choice.

This builds on proposals by Brent (1991) and
Klavans and Chodorow (1992) to treat the stative-
nonstative aspectual class distinction as gradient
based on association with the progressive. It is
similar in spirit, but orthogonal, to the work of
Nerbonne and Van de Cruys (2009) who treat as-

pectual class as characterized by compatibility with
temporal adverbials.

2 Method

I fit a Bayesian mixed-effects logistic regression
to a corpus of natural spoken and written text in
English (Zeldes, 2017). I did not presuppose any
lexical aspectual classes for any verbs. Rather, I fit
a model predicting aspectual choice (progressive
or perfective), and I included lexical item as a pre-
dictor. I then used the fit weights for each lexical
item to characterize its lexical aspectual class. A re-
gression model allowed me to include other known
predictors of aspectual choice in order to balance
out their effects - namely, tense, matrix verb as-
pect, preceding verb aspect, subject type (singular,
plural, mass, or none), object type, perfect mor-
phology, voice, adverbs, subordinating conjunc-
tions, verbal particles, genre, "for"/"in" preposition
modifiers, and specific document/author. Mixed-
effects regression allowed me to take advantage
of frequent lexical items without them overpower-
ing the analysis. A Bayesian model allowed me
to obtain estimates for the effects of not just lex-
ical item in general, but each individual lexical
item. I also allowed effects varying by lexeme of
tense, "for"/"in", and subject/object type, as these
are known to affect aspectual class behaviour.

I fit the model using the R package BRMS
(Bürkner, 2017, 2018, 2021) with four chains of
7,500 sampling steps. Intercept and linear coeffi-
cient priors were normal with standard deviation
2.5 and mean either -2.5 (intercept) or 0 (coeffi-
cients). Contact the author for data and code.

3 Results

3.1 Non-lexical predictors
I report results for a subset of predictors.

I replicated some results of Hundt et al. (2020):
present tense verbs are more often progressive than
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past (pd > 0.999, pROPE < 0.001, 95%CI =
[1.10, 1.88]) or future (pd > 0.999, pROPE <
0.001, 95%CI = [1.51, 3.18]) tense. On the other
hand, I found a more consistent result of voice than
Hundt et al.: active voice facilitates progressive
aspect more than passive (pd > 0.999, 95%CI =
[1.69, 2.89]).

Matching findings of Rautionaho and Hundt
(2022), verbs immediately preceded by a pro-
gressive verb showed more progressive aspect
than those preceded by a perfective (pd >
0.999, pROPE < 0.001, 95%CI = [0.53, 1.16]).
A temporal adverbial headed by “in” decreased
the probability of progressive compared with
no temporal phrase (pd = 0.982, pROPE <
0.001, 95%CI = [−5.76,−0.43]), but a “for”
adverbial was not clearly distinguishable from
none (pd = 0.760, pROPE = 0.003, 95%CI =
[−1.39, 1.83]).

I found significant variation by document (st.
dev. pROPE < 0.001, 95%CI = [0.46, 0.84])
and genre (st. dev. pROPE < 0.001, 95%CI =
[0.58, 1.44]), indicating that style and genre affect
aspectual choice, as explored in theoretical (e.g.
Smith, 2003; Egetenmeyer, 2021) and corpus (e.g.
Mavridou et al., 2015) literature.

3.2 Lexical aspectual classes
I found statistically significant variation by lexical
item in all measured effects (all st. devs. pROPE <
0.001).

I extracted fit estimates of the effect of each lexi-
cal item. All plots in this section are computed for
verbs with at least 25 occurrences, and due to com-
putational constraints, they use a subset of 1,000
samples from the model’s posterior distribution.

Figure 1 shows random intercepts representing
lexical effect on log-odds of progressive on one
axis, and on the other, lexical effect on the present
tense vs. past tense contrast. Remarkably, canoni-
cally stative verbs exactly coincide with those that
strongly disfavor progressive aspect (from believe,
downward). Moreover, in this plot and others not
pictured, stative verbs cluster together in the lexi-
cal effects of any other predictors. Thus the lexical
aspectual property of dynamicity emerges readily
as a predictor of aspectual choice. The verbs which
most favor progressive aspect are all standard ex-
amples of activities - dynamic verbs with duration
but no endpoint.

Meanwhile, the verbs try, think, and keep on the
far left of Figure 1, meanwhile, highlight a limi-
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Figure 1: A scatterplot of verbs with at least 25 oc-
currences. Lexical effect on log-odds of progressive
aspect is on the vertical axis and also represented with
the color scheme; the horizontal axis shows the lexi-
cal effect on the difference in log-odds of progressive
between present and past tense contexts.

tation of my approach. These verbs appear in the
past progressive as readily as (or more readily than)
in the present progressive. I expect that these verbs
are often used to set up background information
in a story, a primary use of the progressive aspect
(Hopper, 1979). I was not able to control for com-
municative intent, and it may have contributed to
the behaviour of these lexemes.

Not pictured here, lexical items showed a very
tight direct relationship between their effect on the
present tense vs. past tense contrast and their effect
on the future tense vs. past tense contrast. So, the
most important axis of lexical variation in tense
effect captures how much the past tense specifi-
ally favors or disfavors progressive aspect. This
is counter to the prediction of a standard theory
of aspectual class in which the present perfective
(which conceptually forces an event to take place
at a single instant) is the most restrictive.

The Bayesian nature of the model allows me to
represent uncertainty in its predictions. Figure 2
shows 66% and 95% confidence intervals for lex-
ical effect on log-odds of progressive for a subset
of verbs. Due to the small corpus size, the model
is not highly confident in any lexical effects.
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Figure 3: A scatterplot of verbs with more than 25
occurrences. The vertical axis shows lexical effect the
difference in log-odds of progressive between contexts
with plural objects or with no object, which is also
represented with the color scheme; the horizontal axis
shows the lexical effect on the difference in log-odds of
progressive between plural subjects and no subject.

Figure 2 also shows, with asterisks, the empiri-
cal log-odds-ratio of progressive computed for each
verb. We see the regularizing effect of modelling.
For example, the linear model was able to abstract
away from many confounding predictors and iden-
tify that have lexically behaves like the other stative
verbs, despite its differing counts.

Figure 3 shows the lexical effect on the plural ob-
ject vs. no object contrast on the vertical axis, and
the lexical effect on the plural subject vs. no subject
contrast on the horizontal. Verbs for which plural
objects strongly favor the progressive are mostly
of two kinds: stative verbs and verbs of creation
and presentation (e.g. cause and bring). For the
former, it is possible that plural objects facilitated
an eventive coercion which allowed these verbs to
be progressive, possibly by making them gradable.
For the latter, this fits with their traditional classifi-
cation as incremental theme verbs whose aspectual
class is linked to their object. Of note, however, is
the fact that incremental consumption verbs like
read do not pattern in the same way.

Not pictured, the words watch and “wear” had
especially negative plural object vs. singular ob-
ject contrasts. This suggests that these two words
specifically disfavor progressive when they have
plural objects. Since each of these usually de-
scribes a long sustained interaction with a single
object, their use with plural objects may have been
restricted to habitual contexts, which disfavor pro-
gressive. This, again, is a place where not control-
ling for communicative intent may have created
unexpected results.

For subjects, the lexical effect on plural subject -
no subject contrast was closely tied to the lexical
effect on the singular subject - no subject contrast
(not pictured). This suggests that the largest lexical
effect on subject behaviour was in the effect of hav-
ing no subject. This may have been an oversight
on my part: I did not include model the possi-
bility of lexemes varying in the effect of passive
voice. Verbs which are on the left in Figure 3 (e.g.
watch, do, develop) may just be ones for which the
progressive-disfavoring effect of passive voice is
less strong.

Finally, the lexical aspectual behaviour of these
verbs never appears discretized. We see continu-
ous variation between verbs on all axes. Verbs are
known to be able to shift between aspectual classes
(Filip, 2020). My data suggest that verbs have dif-
ferent propensities to do this, placing them on a
continuum of aspectual behaviour.
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4 Outlook

I established that different verbs do contribute dif-
ferently to aspectual choice, and this effect can be
seen in a corpus without incorporating prior knowl-
edge of aspectual classes. This lends support to
the existence of aspectual classes (or possibly an
aspectual continuum) as well as the potential for
children to learn them using their associations with
different aspects.

This method could be used to discover aspectual
class on a new language. Aspectual class is difficult
to discover due to sensitivity to context and brit-
tleness under translation. Our statistical technique
does not rely on translation, and so could be used
to derive language-internally-motivated aspectual
classes. I plan to investigate adaptations to smaller
corpora to move toward such an application.

My next steps will be creating a more
cognitively-grounded model of aspectual choice.
This might follow the model which Gantt et al.
(2022) use to derive aspectual categories from sur-
vey data or the BayesCat model which Frermann
and Lapata (2016) use to learn semantic categories
of nouns from a corpus.
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Abstract

This work presents a computational analysis
of the productivity of Russian aspectual pre-
fixes. Using multiple complementary meth-
ods, including the Tolerance Principle (TP),
Baayen’s hapax-based measures (P and P*),
and semantic similarity scores, we evaluate the
extent to which different perfectivizing prefixes
are synchronically productive. We construct a
large-scale verb lexicon annotated for aspect,
and leverage multiple corpora to identify novel
prefixed word forms. Our findings reveal that
productivity is not uniformly distributed across
prefixes: some, like za- and po-, are frequent
and semantically broad, while others, such as
niz-/nis-, are rare and exhibit narrow unpro-
ductive usage, with most appearing productive.
Finally, we examine the relationship between
productivity and semantic transparency using
cosine similarity, finding little evidence that
meaning preservation drives rule productivity
in the case of Russian prefixes.

1 Introduction

The morphological productivity of aspectual pre-
fixation in Russian has been a subject of long-
standing debate. In Slavic languages, the grammat-
ical aspect is encoded in verbal morphology, distin-
guishing between perfective (PF) and imperfective
(IMPF) actions. The IMPF aspect often correlates
with atelicity, indicating events that do not have an
inherent end-point or culmination, while the per-
fective aspect indicates completion. Perfectivizing
prefixes, those that attach to IMPF base forms to
derive PF verbs, are considered the most common
morphological process for forming PF verbs in Rus-
sian (Forsyth, 1972). However, it remains unclear
to what extent these prefixes function as productive
processes. While the meanings of some derived
verbs can be interpreted compositionally, others
exhibit varying degrees of idiosyncracy. Frequency
(Bauer, 2001), semantic coherence (Aronoff, 1976)

and the ability to produce new forms (Hockett,
1954) are the three criteria for productivity that
are often mentioned in the literature. Through a
series of computational experiments, we measure
the productivity of prefixation in forming PF verbs
from simple IMPF verbs. Specifically, we assess:

• The productivity of perfectivization via prefix-
ation.

• The semantic relatedness of PF verbs to their
base forms.

• The correlation between productivity mea-
sures and semantic relatedness, as well as
between productivity measures and a neolo-
gisms baseline.

2 Methodology

To quantify morphological productivity, we employ
corpus-based and dictionary-based approaches.
Specifically, we use two measures based on hapax-
legomena, introduced by Baayen (Baayen, 1992):
between-rule productivity P* and within-rule P pro-
ductivity, along with the Tolerance Principle (TP)
(Yang, 2005). Additionally, we propose a modified
version of P* that incorporates dis-legomena (i.e.,
terms that occur exactly twice in the corpus), to cap-
ture potentially novel low-frequency forms. Fur-
thermore, we compute TP using dictionary-based
counts, while Baayen-style metrics rely on corpus
statistics. This allows us to compare rule productiv-
ity from both a usage-driven and a lexicon-driven
perspective.

2.1 Lexicon and Corpus Preparation

We begin by compiling a verb lexicon of 32,489
unique lemmas, each annotated for aspect. This
lexicon is based on two sources: an online version
of the Russian Morphological Dictionary 1 and a

1https://github.com/sshra/database-russian-morphology
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precompiled Russian lemma lexicon based on the
Grammatical Dictionary of the Russian Language
(Zalizniak, 1977). The resulting combined lexicon
is used to compute the TP threshold per prefix. Sep-
arately, we use a tagged corpus in CoNLL-U format
(Nivre et al., 2016) to compute corpus-based de-
rived statistics for Baayen-based measures. Due to
computational expenses of processing the full Rus-
sian dataset, a subset of approximately 3,500,000
sentences was randomly selected. A variety of gen-
res and styles are represented in the subset, from so-
cial media posts to literature passages and technical
documents. Subsequently, we parse each sentence
using the SynTagRus treebank of Russian model
(Nivre et al., 2008) from DeepPavlov (Burtsev et al.,
2018) trained on the UD corpora.

Prior to computing productivity measures, we
preprocess the data by extracting simple verb forms
and the prefixes they occur with, along with their
aspects, for both approaches. We repeat the pro-
cess of prefix extraction twice to account for prefix
stacking. We also create a separate category for
bi-aspectual verbs that have identical surface forms
in PF and IMPF, and treat them as having a null pre-
fix. We only use this category in TP computation
for now. Additionally, we remove secondary IMPF
verbs from our final set. As a result, we obtain
valid prefix-aspect pairs, as defined in both imple-
mentations. We also map allomorphs of a given
prefix to the same underlying form (e.g., nis- and
niz- or s- and so-), giving us a total of 23 high-level
prefixes.

2.2 Productivity Metrics

As a theory of rule learning, TP establishes a thresh-
old for how many exceptions a productive rule can
tolerate. Unlike frequency-based heuristics, TP
models the cognitive plausibility of generalizations,
explaining, for example, how minority rules, such
as certain German plural patterns (Yang, 2016), can
still be productive. The TP threshold is given by
the formula:

ΘN =
N

lnN

where N is the total number of candidate items (in
this case, all simple verb lemmas derived with a
given prefix), and e is the number of exceptions
(that is, IMPF verbs prefixed with the same prefix).
A prefix is considered productive if and only if:

e ≤ ΘN

In other words, a prefix that surpasses the threshold
in forming PF verbs compared to IMPF verbs is
likely productive under TP.

To complement the TP-based analysis, we cal-
culate two metrics derived from the corpus-based
statistics. The idea behind this approach is that,
since productive affixes tend to give rise to novel
words, their frequency distributions are likely to
contain a large number of low-frequency forms.
Therefore, a good estimate of the affix produc-
tivity might be computed as a proportion of low-
frequency forms associated with the affix. Then
P* is the proportion of all hapaxes in the corpus
that are attributed to rule r, out of all hapaxes in the
corpus. P, on the other hand, is the proportion of
all words in the corpus that are attributable to r and
appear only once, out of all words attributable to r.
P* is used to compare the differential productivity
of various affixes, while P measures the growth rate
of the words derived via r.

To establish a baseline for productivity, we tar-
get neologisms chosen from the online dictionary
of Russian neologisms of the 21st century.2 Most
reported neologisms are recent borrowings from
English related to social media or technological
concepts (e.g., guglit’ ‘to be googling’ IMPF; za-
guglit’ ‘to have googled’ PF). We then compile a
separate corpus for each neologism using the Rus-
sian web corpora database 3 to retrieve sentences
containing the neologisms’ base forms preceded by
a given prefix. A full list of the neologisms used
is provided in Appendix A. We also leverage the
CC-100 dataset for Russian (Wenzek et al., 2020)
to compute Baayen’s productivity statistics and se-
mantic similarity.

For semantic analysis, we use the pretrained neu-
ral embedding model DeepPavlov ruBERT (Ku-
ratov and Arkhipov, 2019) to compute contextual
embeddings for each token in a sentence, as well as
embeddings for each verb from its subtoken com-
ponents. We compute the average embedding score
for each unique lemma and determine cosine sim-
ilarity scores for each base verb – prefixed verb
pair. Finally, we use Spearman’s rank correlation
to measure the relationship between cosine simi-
larity and productivity metrics, as well as between
productivity measures and the neologisms baseline.

2https://russkiiyazyk.ru/leksika/slovar-neologizmov.html
3https://int.webcorpora.ru/drake/
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Figure 1: Prefix Productivity Based on the Tolerance
Principle

Figure 2: Between-Rule Productivity per Prefix

3 Results

Most prefixes passed the TP threshold, with the
exceptions being s-/so-, pre-, pred-, and niz-/nis-.
Figure 1 shows the TP results by prefix.

In contrast, P and P* yielded different rankings:
pere-, pre-, and ob- scored highest under P, while
po- and za- were most productive under P*. Both
P and P* assigned niz-/nis- a score of zero. Results
from between-rule P* measure are presented in
Figure 2.

The neologism analysis showed strong align-
ment with P*, with po-, za-, and s- being dominant
in recent coinages. Prefixes such as niz-/nis-, nad-
and pred- were entirely absent from the neologism
corpora, reinforcing their low productivity.

Cosine similarity between base and prefixed
forms, computed using ruBERT, fell mostly be-
tween [0.2–0.37]. Prefixes like po- and nad-
preserved meaning best, while niz-/nis- showed
the largest shifts. Outlier-rich prefixes like za-
and pro- suggest semantic variability within high-
productivity classes. To get a clearer perspective
on the distribution of prefixes, we plotted them in
Figure 3 using the cosine similarity between each
unprefixed–prefixed pair across all verb lemmas.

Finally, visualizing P* against cosine similar-
ity, as shown in Figure 4, revealed no strong lin-
ear correlation, underscoring that semantic trans-
parency and productivity do not always go hand in

Figure 3: Cosine Similarity per Prefix

Figure 4: Cosine Similarity vs. Between-Rule Statistics

hand. However, both modified P* and P* exhib-
ited the strongest correlation with neologism-based
frequency, suggesting their utility in modeling cur-
rent language trends. Table 1 presents correlation
results.

Correlation Metrics Spearman’s ρ
Cosine Similarity & TP .367
Cosine Similarity & P −.065

Cosine Similarity & P* .297
Cosine Similarity & Modified P* .473
Cosine Similarity & Neologisms .286
Neologisms & TP .371
Neologisms & P* .830
Neologisms & Modified P* .743

Table 1: Spearman correlation coefficients between se-
mantic similarity, productivity metrics, and neologism
counts.

4 Discussion

Our results offer empirical evidence that Russian
perfectivizing prefixes exist along a productivity
continuum. The divergence in rankings across
TP, P, and P* illustrates how dictionary-based and
corpus-based models capture different nuances of
rule behavior. The fact that most prefixes pass the
TP threshold underscores their learnability, while
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hapax-driven P* offers a stronger match to actual
coinage trends. TP mainly diverged in its assess-
ment of s-/so- and pre-, which emerged as unpro-
ductive. This warrants further investigation, as
finer-grained semantic or phonological features
may underlie these patterns and require more care-
ful distinction.

We highlight niz-/nis- as a clear outlier across all
metrics. It is not seen in any corpus of neologisms
and is semantically the most divergent, suggesting
that it is unproductive. Meanwhile, za- and po-
illustrate how high productivity can coincide with
semantic polysemy. These findings complicate the
idea that productivity and semantic transparency
necessarily align.

One interesting class of verbs that merits further
attention is bi-aspectual verbs—forms that are com-
patible with both PF and IMPF contexts without
overt morphological marking. In our analysis, we
incorporated these verbs into the TP framework us-
ing a null prefix. Surprisingly, this class emerged as
productive, supporting the idea that even prefix-less
surface forms contribute to learnable morpholog-
ical generalizations. A natural extension of this
work would be to further refine how these verbs are
integrated into prefixal paradigms.

We also acknowledge certain limitations, partic-
ularly around potential false decompositions. Some
verbs exhibit suppletive forms or root alternations
that can challenge prefix and suffix identification
algorithms. While our pipeline attempts to mini-
mize such cases, they could still influence prefix
frequency or similarity metrics in subtle ways.

Importantly, our analysis offers a joint evaluation
of productivity and semantic relatedness at scale us-
ing modern computational tools. While prior work
has often assumed productivity as a binary feature
or assessed it through intuition, our study quantita-
tively profiles prefixal behavior across thousands
of verbs and aligns that with neologism usage and
semantic drift.

5 Conclusions

Our findings suggest that almost all Russian PF pre-
fixes are in fact productive, with one potential ex-
ception being both surface forms of the same under-
lying prefix niz-/nis-. This work provides a large-
scale, computational account of aspectual prefix
productivity in Russian. By combining Baayen’s
corpus-based productivity metrics, Yang’s TP, and
BERT-based semantic similarity, we show that:

• Prefixes differ in productivity, with P* best
predicting real-world lexical innovation.

• Productivity does not always imply semantic
transparency; highly productive prefixes like
za- may exhibit broad or polysemous shifts.

• Discrepancies across metrics point to the need
for multiple, complementary perspectives on
morphological productivity.

Looking ahead, a deeper investigation into the
semantic properties of base verbs—particularly
those compatible with s-/so- and pro-, which were
deemed unproductive by TP—may uncover finer-
grained subregularities that the current TP-based
approach classifies as exceptions. As Yang (Yang,
2023) observes, productivity does not always align
with statistical dominance: minority patterns can
be highly productive when conditioned by specific
features. In our case, such conditioning is likely
tied to semantic and phonological factors. Pur-
suing more granular semantic distinctions within
each prefix class may therefore reveal minor but
genuinely productive subrules that are obscured in
aggregate analyses.
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A Neologisms

Neologism Gloss # Sents
spamit’ to spam 13,239
frendit’ to add as a friend 153
guglit’ to google 74,075
yuzat’ to use 37,430
donatit’ to donate 1,642
trollit’ to troll 2,469
čatit’ to chat 3,529
fotkat’ to take pictures 20,583
kserit’ to take a photo copy 155,328
skanit’ to scan 50,803
skrinit’ to screen 6,137
mejkapit’ to do make-up 32
piarit’ to promote 46,034
startapit’ to start-up 70
kopipastit’ to copy-paste 4,487
follovit’ to follow 2,663
lajkat’ to like 27,007
tegat’ to tag 1,576
šedulit’ to schedule 34
bathertit’ to be talked down to 36
hedlainit’ to make into a headline 11
monitorit’ to monitor 12,625
spoilerit’ to spoil (as in spoiler alert) 5,433
kreativit’ to be creative 7,632
brifit’ to brief 17
loginit’(s’a) to log in 12,175
čekinit’(s’a) to check in 2,171
tvitit’ to tweet 1,611
kommitit’ to commit 451
instagrammit’ to post on instagram 261
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Visual groundedness as an organizing principle for word class:
Evidence from Japanese
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1 Introduction

Since classical times, one of the fundamental ideas
in linguistic theory is that words are divided into
categories with shared syntactic and morphological
behaviour. Often called “word classes” or “parts
of speech”, these classes represent an intersection
between linguistic form and semantic function. For
example, nouns prototypically refer to objects, and
verbs to actions or events.

What is the theoretical status of the relationship
between meaning and word class? Within any word
class in a given language, exceptions to their seman-
tic properties abound. Nevertheless, there is a great
degree of cross-linguistic consistency in the rela-
tionship between the meaning of lexical items and
their syntactic behaviour–the vast majority of lan-
guages clearly handle object words differently from
action words. Property words also tend to have spe-
cial morphosyntactic expression across languages,
differing from both nouns and verbs. But for each
of these distinctions, there are languages where it
is not clearly relevant (Bisang, 2010).

How can a theory explain both these strong uni-
versal tendencies and well-established deviations
from them? Recent work in computational linguis-
tics has attempted to formalize aspects of the rela-
tionship between meaning and form (Rauhut, 2023;
Haley et al., 2025). In this work, we focus on Ha-
ley et al. (2025)’s notion of (visual) groundedness.
Groundedness formalizes the notion of how much
information a word conveys about an utterance’s
“meaning” in context–how meaningful vs. gram-
matical a word is. Haley et al. (2025) showed that
visual groundedness shows a clear relationship to
the distinction between lexical and functional word
classes across 30 languages, demonstrating substan-
tial cross-linguistic consistency–the same classes
have similar groundedness across languages. No-
tably, nouns > adjectives > verbs in terms of visual
groundedness, despite all being lexical classes.

If word classes are organized in part by the (vi-
sual) groundedness of the meanings they express,
then variation in word classes should be associated
with differences in groundedness of the expressed
meanings. In this study, we focus on Japanese prop-
erty words, which have the unusual property of con-
stituting two formally very distinct word classes,
rather than a single “adjective” class. Building
on the insight that one of these classes is more for-
mally “nominal” (na-adjectives) and one more “ver-
bal” (i-adjectives), we hypothesise that we should
see analogous trends in function: one class serv-
ing more prototypically nominal functions and one
more prototypically verbal. In terms of visual
groundedness, this corresponds to higher values
for the nominal class.

2 Japanese Adjectives

The two1 word classes in Japanese typically de-
scribed as adjectives are i-adjectives and na-
adjectives. These classes are clearly distinguished
from each other in Japanese in terms of their syntax
and morphology:

(1) yama-ga
mountain-NOM

takai
high

/
/

takakatta.
high.PAST

‘The mountain is/was tall.’ (i-adjective)

(2) Taroo-ga
Taro-NOM

sizuka
quiet

da
COP

/
/

sizuka
quiet

datta
COP.PAST

‘Taro is/was quiet.’ (na-adjective)

While clearly distinct from nouns and verbs, i-
adjectives have an analogous inflectional paradigm
to verbs (inflecting for aspect and polarity) and can
take their syntactic position as in (1), but as shown
in (2), na-adjectives must be combined with the
copula like nouns. Both i-adjectives and verbs can
modify nouns simply by appearing pre-nominally,

1Some linguists identify a third major class, which is iden-
tically syntactically distributed to nouns, which we do not
concern ourselves with here.
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but nouns and na-adjectives require a (distinct) at-
tributive marker to modify nouns.

This split is not attributable to phonology or se-
mantics, nor is it a conjugation class. Some stems
can belong to both classes. Attempts to describe it
under existing semantic hierarchies (Morita, 2010;
Oshima et al., 2019) have proven largely unsuc-
cessful.

3 Method

Groundedness is formally defined as the pointwise
mutual information between a word/linguistic unit
in the context of an utterance, and the meaning of
that utterance. We focus on visual groundedness–
representing meaning with an image. This simplify-
ing assumption makes estimating (visual) ground-
edness with existing datasets and neural models
tractable, and has interesting connections to rel-
evant notions like imageability and perceptual
strength. In particular, for an image I and word
wt in an utterance W = w1, w2, w3...wt..., we for-
malise groundedness as:

Groundedness(wt) = log p(wt | I,w<t)

− log p(wt | w<t) (3)

This allows us to compute groundedness as a dif-
ference in surprisal between an image captioning
model and a (domain-matched) language model. In
contrast to typical psycholinguistic norms like con-
creteness and imageability, groundedness is com-
puted at the (word) token level. This implies the
same word may be more or less grounded in differ-
ent contexts.

We use the model released by Haley et al. (2025)
as a language model and PaliGemma as the image
captioning model. We use the sudachipy2 part
of speech tagger to tag words as i-adjectives and
na-adjectives. We focus on the Crossmodal-3600
(XM3600) dataset (Thapliyal et al., 2022), because
of its high quality of manual captioning.

As noted by Haley et al. (2025), single grounded-
ness estimates can be noisy, so we filter for only ad-
jective types which occur at least 5 times in our cor-
pus. This is especially important as na-adjectives
are less frequent than i-adjectives in our corpus.

4 Results

Across our corpus of 7185 captions, we find 399 na-
adjective tokens and 3058 i-adjective tokens. These

2

tokens belong to 42 i-adjective types and 26 na-
adjective types. On average, the na-adjectives dis-
play higher groundedness than i-adjectives (3.41 vs.
1.98). Our data has a nested structure, with many
tokens of a single word type, and this word type in-
fluences groundedness independently of word class
(i-adjective vs. na-adjective). To better estimate the
effect of word class itself, we use a linear mixed ef-
fects model, with fixed effects of position and word
class and a random effect for word type. Under this
model, we find a significant effect of word class
(p = 0.029). Specifically, we find that na-adjective-
hood increases groundedness by 0.89± 0.40 bits.

Two terms are used to compute our visual
groundedness measure: surprisal under a language
model and surprisal under an image captioning
model. Is the association between groundedness
and the word class distinction above primarily due
to one of these terms? Of particular concern is the
first term: perhaps na-adjectives are just a priori
more surprising in the linguistic signal (e.g. ex-
pressing lower-frequency concepts). If we find a
strong correlation between word class and LM sur-
prisal, it may be that the information provided by
the image is dominated by these effects. Fitting the
same fixed and random effects as before to instead
predict LM surprisal, we do not find a significant
effect (p = 0.133, β = 1.17 ± 0.77). Similarly,
we do not find a significant effect of word class
on the captioning surprisal alone (p = 0.591, β =
0.38± 0.61). So it is only through the interaction
between these two factors (groundedness) that an
association with word class emerges.

5 Conclusion

Together, our results suggest that na-adjectives are
used to express more visually grounded meanings
than i-adjectives in Japanese. In contrast to prior
work which failed to find a semantic organizing
principle for this distinction (Morita, 2010; Oshima
et al., 2019), our work suggests that the formal
similarities i-adjectives and na-adjectives display
to verbs and nouns respectively are not arbitrary,
but reflect their semantic character.

While still exploratory, our results suggest an
exciting role for groundedness in computational
linguistics. Together with Haley et al. (2025), these
results point to the utility of groundedness not just
for explaining cross-linguistic consistency in word
class organization, but also variation. Beyond this,
groundedness can also be a useful tool for framing
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and answering questions about the relationship be-
tween form and meaning in a particular language,
not just cross-linguistically. While groundedness is
only somewhat correlated with norms like concrete-
ness or imageability, concreteness allows the ask-
ing of related questions where such norms are not
available–no relevant concreteness or imageability
norms exist for Japanese adjectives. Future work
should further validate these results on a larger
array of words and datasets, and with new and im-
proved models, and also explore such traditional,
human-annotated norms.
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1 Background 

Individuals with autism experience significant 
difficulties with pragmatic language, with 
contributing skills often challenging to measure 
quantitatively with standard tools. Contributing 
factors to pragmatic difficulties in autism include 
differences in speech prosody (e.g., rate, rhythm, 
intonation; Patel et al., 2020), as well as differences 
in gaze-speech coordination that contribute to 
observable differences in social communication 
(Nayar et al., 2018). Together with  differences in 
the phonetic properties of speech noted in autism, 
these factors may implicate underlying attentional 
and physiological differences (e.g., articulatory and 
visual timing) as mechanistic contributors to 
clinically appreciable and perceptually “odd” 
communication styles (e.g., reciprocity, turn-
taking) in individuals with autism, their first-
degree relatives, and individuals with related 
genetic conditions (i.e., the FMR1 premutation; 
Nayar et al., 2018, 2019, 2021). Thus, fine-grained 
and accurate characterization of speech in autism is 
important for informing mechanistically focused 
intervention strategies grounded in a clearer 
etiological understanding of pragmatic differences 
in autism.  

2 Objectives: 

This study used a novel, deep-learning based 
measure of phonetic similarity derived from the 
embedding space of Hidden-unit Bidirectional 
Encoder Representations from Transformers 
(HuBERT; Hsu et al., 2021), a state-of-the-art pre-
trained speech model using self-supervised 
learning, to represent speech differences 
manifested in autistic individuals relative to non-
autistic controls. Variability represented through 
this measure was examined vis-a-vis established 
acoustic and performance metrics of speech and 
language profiles (i.e., speech rate, speech rhythm, 
speech errors, naming time) in autism. The ability 
for HuBERT to capture further variability in latent, 
higher order factors of autism, such as modulation 

of visual attention, was examined using metrics of 
attentional coordination of speech and gaze. 
 
3 Methods 

Analyses included speech samples from 50 autistic 
individuals and 45 non-autistic controls from the 
rapid automatized naming (RAN) task, which 
involved naming serial arrays of common 
numbers, letters, colors, and objects as quickly and 
accurately as possible. RAN is a deceptively simple 
but powerful cognitive measure that indexes 
speech, gaze, and their integration with important 
implications for pragmatic language skills in 
autism. Building on Chernyak et al. (2024) and 
Kim et al. (2025), error-free, word-sized speech 
samples from RAN trials were projected into the 
high-dimensional perceptual space of HuBERT, 
without the need for pre-selecting acoustic features 
of interest or manual alignment of speech and text 
samples. The distance of autistic speech samples 
from identical non-autistic speech samples was 
computed using dynamic time warping between 
embeddings from the 8th transformer layer of 
HuBERT, based on equivalent model performance 
across the 8-12th layers in our prior work (Chernyak 
et al., 2024). Using Pearson’s correlations, average 
distance metrics were analyzed for associations 
with acoustic (i.e., speech rhythm and rate; Tilsen 
& Arvaniti, 2013), performance-based (i.e., 
naming time, speech error rate; Nayar et al., 2018), 
and gaze metrics of RAN (i.e., visual regressions, 
perseverations) to examine the potential link 
between HuBERT distance measures and the 
attentional coordination of speech and gaze. 

4 Methods 

Analyses revealed that the HuBERT distance 
metric was significantly correlated with the 
following RAN metrics: speech error rate (r (48) = 
0.366, p < 0.01), speech rate (r (48) = -0.316, p < 
0.05), naming time (r (48) = 0.531, p < 0.001), and 
visual regressions (r (48) = 0.424, p < 0.01; see 
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Figure 1). All significant findings survived 
Bonferroni correction for multiple comparisons. 
Variability captured by HuBERT speech 
representations may index subtle prosodic 
differences in pitch, voice quality and intensity, and 
articulatory variability subserving higher-order 
speech and language characteristics of autism, 
including atypical speech rhythm. Results also 
suggest that speech representations of HuBERT not 
only capture meaningful variability of speech in 
autism but also co-vary with eye gaze patterns that 
speak to the measure’s sensitivity in tapping latent, 
higher-order linguistic and cognitive factors 
contributing to the communication profiles of 
autism. 
 
5 Conclusions 

This study demonstrates the potential utility of self-
supervised pre-trained speech models, such as 
HuBERT, which does not require pre-defined 
acoustic features or speech-to-text alignment, to 
capture nuanced variability in the linguistic 
patterns of autism. The results show clear 
associations with meaningful variability in speech 
and gaze coordination, underscoring the feasibility 
of automating linguistic assessments in clinical 
settings while also providing insights into speech 

and its multidimensional, cross-modal 
relationships with broader cognitive processes in 
autism.  
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Pragmatic Competence in LLMs: The Case of Eliciture
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Large language models (LLMs) consistently pro-
duce coherent and meaningful sentences and dis-
courses, hence demonstrating impressive linguis-
tic abilities. Various studies have examined these
abilities to assess the extent to which they parallel
known properties of human language interpretation.
Whereas much of this research has focused on eval-
uating their syntactic and semantic abilities, fewer
studies have examined their skills in the domain of
pragmatics. Problems in pragmatics pose unique
challenges to LLMs due to their heavy dependence
on inference, world knowledge, and context (Chang
and Bergen, 2024), and indeed results of previous
studies have been mixed. On the one hand, early
transformer models like GPT-2 struggle with scalar
implicatures and presupposition (Cong, 2022) and
fail at detecting and evaluating discourse coherence
(Beyer et al., 2021). On the other hand, Hu et al.
(2023) found that more recent large-scale language
models achieved high accuracy in pragmatic tasks
that involve reasoning about the intended meaning
of the speaker.

In this paper, we evaluate LLMs on a novel
type of pragmatic enrichment that Cohen & Kehler
(2021) term CONVERSATIONAL ELICITURE. Con-
sider (1a), which invites the addressee to infer that
not only are the children detested by Melissa and
are arrogant and rude, but that they are detested by
Melissa because they are arrogant and rude.

1. (a) Melissa detests the children who are ar-
rogant and rude. [IC, ExplRC]

(b) Melissa detests the children who live in
La Jolla. [IC, noExplRC]

Note that this inference is not triggered by any
syntactic relationship or other type of linguistic
felicity requirement that applies to the sentence.
Thus, unlike other more commonly studied prag-
matic inferences where sentence felicity is at stake
(e.g., implicature, presupposition), elicitures are
non-mandated. This can be seen in (1b), which is
perfectly felicitous despite the fact that it will not
typically convey an eliciture that casually relates
Melissa’s detesting to where the children live.

Previous psycholinguistic studies have demon-
strated that people use eliciture inferences in sen-
tence processing tasks such as relative clause (RC)
attachment (Rohde et al., 2011; Hoek et al., 2021)
and pronoun interpretation (Kehler and Rohde,
2019). Here, we ask two questions regarding the
pragmatic abilities of LLMs: Whether LLMs draw
elicitures (Exp. 1), and whether LLMs are able to
leverage elicitures to guide downstream syntactic
processing (Exp. 2).

1 Experiment 1: Detecting Elicitures

Models. We evaluated the performance of eight
LLMs: three closed-source models (GPT-3.5-turbo,
GPT-4, and GPT-4o) and five open-source mod-
els (GPT-2, Llama-3.2-1B, Llama-3.2-3B, and the
instruction-tuned versions of the latter two models).
The pragmatic abilities of the closed-source models
are evaluated via prompting. Since results yielded
by prompting might not be an accurate reflection
of the underlying linguistic abilities of interest (Hu
and Levy, 2023), we evaluate the inferential behav-
ior of the five open-source models by measuring the
log probability of a continuation (described below).
Stimuli. We used 60 sets of items in a 2x2 design
varying whether the verb in the matrix sentence is
an implicit causality (IC) verb (e.g., detest in (1)) or
non-IC verb (e.g., babysit in (2)), and whether the
relative clause (RC) conveys a causal eliciture in
the IC condition (ExplRC, e.g., “who are arrogant
and rude” in (1a)) or not (noExplRC, e.g., “who
live in La Jolla” in (1b)). Since both the IC verb
and the explanation RC are required to draw the
eliciture inference, the ExplRCs that give rise to an
eliciture in the IC variants are not intended to do
so in their corresponding non-IC variants (2a).

2. (a) Melissa babysits the children who are
arrogant and rude. [nonIC, ExplRC]

(b) Melissa babysits the children who live in
La Jolla. [nonIC, noExplRC]

Tasks. For the closed-source models, we presented
each model with the target sentence and explicitly
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Figure 1: Proportion of explanation answers given by the three closed-source models (a) and the log probabilities of
the continuation assigned by the three open-source models (b). The error bars represent 95% confidence intervals.

asked it if the sentence contains an answer to why
the event in the matrix clause occurred. We mea-
sured the number of “yes” responses to the question
and confirmed that the explanation provided by the
model matches the content of the RC.

For the open source models, we used the same
240 sentences with the continuation “, and I don’t
know why.” appended to the end. This continuation
should have a lower log probability (i.e., higher
surprisal) if the model has inferred that the RC
answers the why-question via causal eliciture. We
summed the log probability of each token in the
continuation, including punctuation.
Results. The results are shown in Fig. 1. All closed-
source models revealed evidence of inferring elici-
tures. Although GPT-3.5-turbo overgenerated elici-
tures, it was still more likely to infer that sentences
with IC verbs and paired explanation RCs provided
answers to the why-question. GPT-4 and GPT-4o
show a much stronger pattern, whereby they almost
exclusively produced explanation answers in the
IC/ExplRC condition.

Turning to the open-source models, results from
the Llama models revealed that in IC contexts, the
continuation was less likely in sentences in which
the RC provides an explanation than when it does
not. Further, there is a reliable effect of verb type in
the noExplRC conditions, suggesting that when the
RC does not provide an explanation, the continua-
tion is less likely for nonIC verbs than for IC verbs.
This result is expected since non-IC verbs are less
likely to prompt an expectation for an explanation
of the event in the matrix clause (Kehler et al.,
2008) and hence raise the question Why?. Thus,
explicitly stating “I don’t know why” is predicted
to be more surprising in the nonIC/noExplRC con-
dition than in the IC/noExplRC condition. Lastly,
the interaction between verb type and RC type was
significant, suggesting that the type of RC affected
IC verbs more than nonIC verbs. In contrast, GPT-

2 showed none of the predicted effects. In sum,
these results suggest that all Llama models were
able to draw the eliciture inference, but not GPT-2.
Discussion. All closed-source models provided
more explanation responses in the IC/ExplRC con-
dition than in the other three conditions. Further,
all Llama models showed the effects of verb and
RC content as well as their interaction on the con-
tinuation that expresses the ignorance of the cause,
suggesting that regardless of the model size and
instruction-tuning, these models are able to draw
eliciture inferences. In contrast, GPT-2 does not
show any patterns that would suggest the inference
of eliciture. This result is in line with previous
findings of a large improvement in performance on
pragmatic tasks for models with greater than 1B
parameters (Hu et al., 2023).

One might worry that the expected patterns we
observed in the model performance are not due to
the inference of eliciture, but are instead driven
by the establishment of lower-level (e.g., word)
associations. We believe this interpretation is un-
likely given our 2x2 design. Specifically, since
sentences in the IC/ExplRC and IC/noExplRC con-
ditions minimally differ in the content of the RC,
the observed differences in the model responses
and log probabilities cannot be attributed solely to
the properties of IC verbs. Similarly, sentences in
the IC/ExplRC and nonIC/ExplRC conditions have
the same RC but different verb types, and thus the
differences between conditions cannot be solely
driven by the RC either. Taken together, the re-
sults suggest that all closed-source models and the
Llama models show the ability to draw elicitures.

Since all of the models besides GPT-2 show evi-
dence of being able to draw elicitures, our findings
raise the question of whether these models can
leverage them to guide syntactic processing. In
Exp. 2, we examine the effect of eliciture in a case
study using ambiguous RC attachment.

389



2 Experiment 2: Anticipating Elicitures

Background. Rohde et al. (2011) reported on an
experiment using examples like those in Exp. 1,
except where the direct object of the main verb is a
complex NP containing singular and plural NPs as
possible attachment sites for an ensuing RC (3).

3. (a) Melissa babysits the children of the mu-
sician who is/are ...

(b) Melissa detests the children of the musi-
cian who is/are ...

The well-documented low-attachment bias in En-
glish predicts that the auxiliary is in (3a), which
agrees in number with the lower NP, will be read
faster than are, which agrees with the higher NP
(Frazier, 1978; Carreiras and Clifton, 1999, in-
ter alia). However, Rohde et al. (2011) predicted
that this bias would shift toward high attachment
for (3b), due to (i) IC verbs creating a high ex-
pectation that an explanation will ensue, (ii) that
an ensuing RC might provide one through elic-
iture, and (iii) any such explanation would be
about the direct object of the matrix verb, which is
the high attachment option for the RC. Their pre-
dictions were confirmed. Here we examine whether
LLMs show evidence of the same behavior.
Models. The behaviors of the same models exam-
ined in Exp. 1 were evaluated.
Stimuli. We modified the 60 stimulus sets from
Exp. 1 to take the form of (3). We counterbalanced
and randomized the order of the two noun phrases,
such that half of the items have the plural NP as the
high attachment site, and half have the singular NP
as the high attachment site.
Tasks. For the closed-source models, we presented
each of the two auxiliaries as possible continuations
and asked the model to select between them. The
order of the answer choices, reflecting either the
high or low attachment bias, was balanced across
items.

For the open-source models, we obtained the
raw probability of each auxiliary and calculated
the log-odds ratio by taking the difference, i.e.,
log(phigh)− log(plow). Higher log-odds ratios in-
dicate a greater model bias toward high attachment.
Results. The results are shown in Fig. 2. There
was a significant effect of verb type for GPT-4,
showing a greater high attachment preference with
IC verbs than with nonIC verbs. Neither GPT-
3.5-turbo nor GPT-4o showed the expected high
attachment preference for IC verbs. For the open-
source models, the log-odds ratio obtained from

all Llama models was higher for IC sentences than
nonIC ones, suggesting that the high attachment
preference is stronger with IC contexts. GPT-2
did not show a difference in attachment preference
between the two verb types.
Discussion. Among the three closed-source mod-
els, only GPT-4 shows an increase in the high-
attachment preference when an IC verb is used
than when a non-IC verb is used. Even though GPT-
3.5-turbo and GPT-4o exhibited evidence of draw-
ing elicitures when explicitly prompted in Exp. 1,
neither showed a significant difference in the at-
tachment preference between the two verb types.
A possible reason for this finding is that GPT-4’s
performance is enabled by having more parame-
ters than the other two models. This hypothesis
remains speculative, however, since the number of
parameters and the specifications of the model ar-
chitectures have not been made public. In addition,
the non-significant results might be a by-product of
the prompting task, since prompting may require
additional metalinguistic knowledge, and hence
model performance may not always align with raw
probabilities that reflect linguistic abilities (Hu and
Levy, 2023).

On the other hand, among the five open-source
models, all Llama models showed a stronger bias
for the high attachment site when an IC verb is
used than when a nonIC verb is used. Together
with the results in Exp. 1, this suggests that these
models can not only infer elicitures but also antici-
pate them as a source of information when process-
ing the RC. In contrast, GPT-2 does not show the
expected pattern, suggesting that it lacks the abil-
ity to use pragmatic inferences in RC attachment
decisions. This result is likely due to its failure to
draw elicitures in the first place, as demonstrated
in Exp. 1.

3 General Discussion

The pattern we observe shows that larger and more
recent LLMs demonstrate the greatest sensitivity
to the presence of eliciture. On the one hand, the
negative results for GPT-2 cast doubt on its abil-
ity to draw elicitures, aligning with prior studies
showing at-chance performance on other pragmatic
tasks (Beyer et al., 2021; Hu et al., 2023). At the
same time, our findings contribute to the positive
evidence of the pragmatic abilities of more recent
LLMs. In Exp. 1, the three closed-source models
were all able to detect eliciture in the IC/ExplRC
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Figure 2: The proportion of responses that show high attachment bias in the three closed-source models (a) and the
log-odds ratio between the probability of the critical word that reflects either high or low attachment bias in five
open-source models (b). The error bars represent 95% confidence intervals.

condition, although GPT-3.5-turbo overgenerated
elicitures to varying extents in the other three condi-
tions. Similarly, all four Llama models revealed the
predicted interaction whereby the log probabilities
of the continuation “, and I don’t know why.” were
lower in the IC/ExplRC condition than the others.

In terms of the use of pragmatic inference in
syntactic processing, the results of Exp. 2 suggest
that the Llama models were also able to make pre-
dictions about ensuing elicitures, which in turn en-
abled them to make predictions about a syntactic at-
tachment decision, as reflected by the relevant pref-
erence for a specific word (i.e., auxiliary). More-
over, even though all closed-source models were
able to draw the eliciture inference when prompted,
only GPT-4 displayed evidence that the anticipation
of eliciture impacted the prediction of an auxiliary
in the IC condition, reflecting a greater bias toward
high attachment compared to the non-IC condition.
Further research with other models and larger data
sets will be necessary to pin down the properties
of LLMs and their training that most contribute to
their ability to detect and utilize eliciture.
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1 Introduction

Linguistic and model-theoretic analyses of long-
distance phonology postulate the existence of
phonological tiers (Goldsmith, 1976; Heinz et al.,
2011). For example, vowel harmony may be an-
alyzed as a process that projects vowels (but not
consonants) onto a tier and ensures that all sounds
on the tier have the same feature (e.g., [±front] in
Turkish vowel harmony, Clements et al. (1982)).

Li and Zhou (under review) recently demon-
strated that convolutional neural networks (CNNs)
learning a toy example of vowel harmony (§2) on
short strings robustly generalize the pattern to much
longer strings. One explanation is that these CNNs
have independently recovered an “algorithm” that
is consistent with the tier projection analysis. Al-
ternatively, these models may have uncovered an
approximation of this system, or an entirely differ-
ent system that robustly generalizes to long lengths.
This work investigates these hypotheses via various
interpretability methods. In particular, we search
for evidence for a “strong” implementation of tier
projection, in which these CNNs exactly implement
the tier-projection and feature-matching analyses
described above.

2 Model and toy language

We follow the architecture of the CNN string recog-
nizer described in [4]. Strings are passed as a block
of one-hot character encodings into a convolutional
neural network consisting of 4 one-dimensional
layers. The output of this CNN is passed through
a global max-pool, followed by a single fully con-
nected layer that outputs for each string a binary
classification score between 0 and 1. Strings with
score above 0.5 are treated as belonging to the rec-
ognizer’s string language (e.g. the set of strings
obeying an unbounded vowel harmony rule). Each
convolutional layer is parameterized with a kernel
size of 3, a channel size of 256, and a stride of 1

with same padding.
CNNs were trained on an artificial string accep-

tance task designed to emulate a pattern of transpar-
ent unbounded vowel harmony. Artificial strings
are sampled by generating syllables roughly obey-
ing the sonority sequencing principle with a vowel
inventory {a, e, o, u, ä, ë, ö, ü}, with the constraint
of vowels agreeing in the presence of trema (V̈) or
absence of trema (V) in harmonious strings. Mod-
els learned to recognize if a given string obeys the
vowel harmony rule, obtaining perfect test accu-
racy even over strings much longer than those seen
during training.

3 CNNs do not implement exact tier
projection

We first investigate the hypothesis that these CNN
models are explicitly performing “hard" tier projec-
tion. That is, there exists some intermediate layer
of the CNN in which vowels (but not consonants)
are being projected. If this is the case, we hypoth-
esize that unprojected consonant strings such as
[spl] and [spr] should not be distinguishable from
one another in terms of activation at that layer. We
tested this prediction by decoding the consonants
[l] from [r] and the voiceless stops [p,t,k] from each
other. For each set of sounds, we selected all at-
tested length-3 consonant clusters where sounds in
the set can appear interchangeably. We obtained
activations for all of these clusters and decoded the
presence of one target sound in the sound set (e.g.,
[spr] has [p], but [str] and [skr] do not). We find
that all sound sets are reliably decodable (Fig. 1A).

Although the performance of the decoder drops
off towards later layers, it remains substantially
higher than that of a conservative baseline. We
observe a similar trend when we attempt to decode
sound presence in CVCVC sequences (e.g., is [p]
present in [palar] vs. [torel]?). However, we note
that while decoding accuracy falls off in later lay-
ers for all sounds, consonants consistently fall off
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Figure 1: A. Decoding accuracy (via ridge regression) for [l] against [r] and [p, t, k] against each other. B. Decoding
accuracy for presence of individual sounds. Error bars/ribbons in (A, B) indicate range of accuracies across 5 runs.
C and D. Intermediate activations projected along the first two principal components obtained from PCA over all
possible CVC inputs (C) and all possible CVCVC inputs (D). Activations are taken after the application of ReLU in
each layer, and flattened for PCA. Each individual set of activations is colored by the identity of the vowel in the
CVC sequence (C) and by the sequence of vowel features in the CVCVC sequence (D).

more than vowels (Fig. 1B). While we conclude
that these CNNs have not learned to perform tier
projection exactly, some prioritization for vowels
over consonants is observed.

4 CNNs demonstrate feature-based
abstraction over vowels

We now turn to ask whether among the vowels,
some abstraction has formed to facilitate the com-
putation of vowel harmony, such as that of V̈ as a
category vs. V. We investigate this by applying prin-
ciple component analysis (PCA) to the activations
of each convolutional layer in response to all pos-
sible CVC sequences (Fig. 1C), and separately for
all CVCVC sequences (Fig. 1D). Applying PCA to
the CVC inputs, we find evidence that CNN repre-
sentations do reflect abstract vowel features, with
the V-V̈ distinction being strongly captured by the

first principal component (PC) in all layers of the
network. Applying PCA to the CVCVC outputs
yields similar findings, with the first PC capturing
the distinction between the two harmonious fea-
ture combinations (VV vs. V̈V̈) and the second PC
capturing the distinction between the two dishar-
monious feature combinations (VV̈ vs. V̈V). We
do note, however, that neither of these dimensions
seem to reflect the distinction between harmonious
and disharmonious feature sequences itself. Pre-
liminary examination suggests that this distinction
may be found in the third principal component,
though perhaps in a less robust manner than the
distinctions described above.
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5 Discussion

5.1 A soft implementation of tiers

Altogether the results indicate that the trained
CNNs are not implementing an algorithm that fully
resembles strict tier projection. However, results
do point toward a soft implementation of tiers. Un-
der this hypothesis, the concept of tiers still maps
onto a layer of the network, but the layer still has
capacity (and learns) to represent other contrasts
that are irrelevant to the pattern at-hand. In the case
of this toy example, we observe vowel representa-
tions become progressively abstract across layers
(Fig. 1C) and track vowel bigram information (Fig.
1D), but consonants, which are theoretically irrel-
evant, are still reliably decodable across all layers
(Fig. 1A and 1B). The main prediction is that vow-
els have “privileged” representations (e.g., better
signal within-model) over consonantsthat support
computations for the task at hand. This is most evi-
dent in the decoding results of Fig. 1B, where vow-
els consistently better decoded than consonants.

5.2 Alternative theories and their
implementations

So far, the possible implementations that have been
discussed in this work pertain to a specific frame-
work (tier-based analyses of harmony patterns). It
could be the case that the CNNs examined in this
study are implementing an algorithm that is con-
sistent with other theories of harmony. Some the-
ories, which assume different forms of input (e.g.,
articulatory accounts of harmony, Gafos (1999)),
may render the models incompatible or be consid-
ered as an implementation of intermediary repre-
sentations. That aside, the methods utilized in this
work can be generalized to test hypotheses about
what theories a model has learned to implement. A
phonological theory makes predictions about what
instances (e.g., phonological strings) have shared or
contrastive representations. Translating these pre-
dictions to signals from model read outs, it predicts
that contrastive representations to be decodable or
occupy a representational subspace.

5.3 Disambiguating between representations
of grammaticality and tier-based
representations

We found via PCA that the model has learned to
linearly represent the distinction between harmonic
and disharmonic vowel sequences. Considering
that this is theoretically the only contrast that the

model needs to learn to distinguish, these findings
are currently confounded with a grammaticality
(in other words, output True/False oriented) repre-
sentation and an algorithmic abstraction of vowel
sequences. This should become distinguishable
when a model is equipped to learn multiple pat-
terns. Eventually, all patterns have to converge to
some representation that supports final True/False
decisions, but should have different specific, de-
tectable, representational content for each pattern
learned.

6 Conclusion
Our results suggest that these CNNs have con-
verged to a robust solution for unbounded vowel
harmony, albeit one that is different from the mech-
anism of explicit tier projection. In particular, we
find that vowels and consonants are both highly
decodable from intermediate activations, contrary
to what is predicted by an exact tier projection ac-
count. However, the intermediate activations of
the CNN do reflect robust representations of the
vowel features over which harmony is computed,
with preliminary evidence for representation of the
distinction between harmony and disharmony.
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1 Introduction

The predominant approach to analyze ‘causal-
noncausal’ alternation in linguistics is by showing
that one of the forms tends to be more coded (morpho-
logically or phonologically) than the other (Haspel-
math, 1993). For instance, in Hindi, the causal (or
causative) form of the verb freeze takes the causative
morpheme /-va/ (/j@m/ ‘freeze’ – /j@m-va/ ‘caused to
freeze’). Hence, the causal form is more coded than
the noncausal one in this case.

Haspelmath in his series of works (Haspelmath,
2008; Haspelmath et al., 2014; Haspelmath, 2016,
2021), further extends the idea by introducing the
notion of ‘form-frequency’ correspondence and pre-
dictability. He proposes that the form and frequency
of a lexical item are correlated such that items that
are more frequent are less coded or shorter compared
to infrequent items. In case of the causal-noncausal
alternation, if the noncausal verb is more frequent
than its causal counterpart then the causal form is
more coded resulting in a ‘causal alternation’. But
if it is the causal form that is more frequent, then
the noncausal form takes an extra coding which is
known as an ‘anticausal alternation’. Table 1 shows
examples from Swahili.

gloss C NC
causal
alternation gandisha ganda freeze 20 82

anticausal
alternation vunja vunjika break 883 336

Table 1: C= causal occurrence, NC= noncausal occurrence.
Verb pairs from Swahili such that in a causal alternation the
noncausal form is more frequent than the causal form, and vice-
a-versa in case of anticausal alternation (Haspelmath, 2008).

Causal-noncausal alternations, as in the above ta-
ble, also reflect on the lexical properties of a verb
such that verb pairs forming a causal alternation like
‘freeze’ are spontaneous events. They occur automat-
ically without any external agent while anticausal
alternations like ‘break’ are non-spontaneous events
and occur due to the intervention of an external agent
(Haspelmath et al., 2014). For instance, in English
when the noncausal verb ‘die’ changes to the causal
verb ‘kill’ there is an addition of external argument
as shown in (1). Here, (1-a) denotes a change of
state for the argument ‘Sam’ but (1-b) expresses the
cause meaning such that John caused Sam to die.
Hence, valency change is a crucial property of causal-
noncausal alternations.

(1) a. Sam died.
b. John killed Sam.

However, the scope of previous studies has been
limited to lexical and morphological causative alter-
nations, and the use of other predicates as causatives
have been neglected. This work aims at analyzing
Light Verb Constructions (LVCs) in Hindi, where
nominals alternating with the light verbs /k@rna/ ‘do’
and /hona/ ‘be’ signal causal and noncausal meaning,
respectively (Ahmed and Butt, 2011; Vaidya et al.,
2019). Examples are shown in (2) and (3). In (2)
noun /cori/ ‘theft’ appears with the noncausal verb
/hui/ ‘be’ and does not require an external agent. On
the other hand when the same noun appears with
causal verb /ki/ ‘do’ as in (3) it takes an external
agent /l@Dka/ ‘boy’. This alternation of meaning and
structure is similar to our previous examples in (1).

(2) gehnõ-ki
jewellery-GEN.F

cori
theft.F

hui
be.PERF.F

‘There was theft of jewellery.’

(3) l@ rke-ne
boy.3.SG.M-ERG

gehnõ-ki
jewellery-GEN.F

cori
theft.F

ki
be.PERF.F
‘The boy stole the jewellery.’

Since, light verb causal alternations as in (2) and
(3) are derived from the same lexical item, that is
the noun here, Haspelmath (1993) recognize them as
‘equipollent’ alternations or constructions with ‘sym-
metric’ coding that is both forms are coded (Haspel-
math, 2021). This is in contrast with other previ-
ously investigated phenomena where one form is
more coded than the other.

Further, unlike lexical and morphological
causatives where the core meaning of an event comes
from the verb, in case of LVCs the predicating noun
carries the meaning of an event. Hence, properties
like type of arguments and their semantic roles
(like agent and patient) are also intricately tied
to nouns instead of verbs. For instance, the noun
/cori/ ‘theft’ in (1) and (2) is an agentive noun such
that even when there is no agent in (1), there is
still presupposition that there was an agent of the
stealing event. In contrast, Hindi also has nouns like
/izafa/ ‘increase’ that generally do not presuppose an
external agent.

(4) ĩdh@n-ki
fuel.M-GEN.F

qimat
price.F

mẽ
in

izafa
increase.M

hua
be.PERF.SG.M

hE
be.PRS.SG

‘There is an increase in the price of fuel.’

In Hindi, the argument structure of LVCs is also
dependent on the lexical properties of the nouns. For
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instance, nouns like /bEth@k/ ‘meeting’ in (5) when
occurs with the causal verb /k@rna/ ‘do’ they take
only one argument /m@ntri/ ‘minister’. While nouns
like /vIcar/ ‘thought’ in (6), when they combine with
the same light verb it takes two arguments, /m@ntri/
‘minister’ and /pr@stav/ ‘proposal’.

(5) k@l
yesterday

m@ntrIyõ-ne
ministers.3.PL.M-ERG

bEth@k
meeting.3.SG.F

ki
do.PERF.F

‘The ministers held a meeting yesterday.’

(6) k@l
yesterday

m@ntrIyõ-ne
ministers.3.PL.M-ERG

pr@stav-p@r
proposal3.SG.M-on

vIcar
thought.3.SG.M

kIya
do.PERF.M

‘The ministers considered the proposal yester-
day.’

Nouns also have selection restrictions on the
light verbs such that not all light verbs can com-
bine with a noun to form an LVC (Butt, 2010).
For example, nouns like /yad/ ‘memory’ can oc-
cur with different light verbs forming different
LVCs (/yad k@rna/ ‘intentionally remembering some-
thing/someone’, /yad hona/ ‘having a memory of
someone/something’, /yad ana/ ‘unintentionally re-
membering something/someone’) but nouns like
/p@reshani/ ‘trouble’ can only combine with light verb
/hona/ (p@reshani hui ‘had a trouble’).

Considering how nouns affect both the structure
and meaning of an LVC, it is interesting to ask if
nouns in such constructions also affect the causalness
of an LVC in Hindi. Therefore, this paper extends the
notion of causality to the predicating nouns. In par-
ticular, we ask if the frequently expressed meanings
can help us identify a causal or anticausal alternation
for the nouns in a light verb construction. This is
crucial for identifying the argument structure of the
predicating noun and predicting the likelihood of the
light verbs it may occur with. This also helps to build
lexical resources like subcategorization frames.

2 Encoding Causalness

In this work we are interested in the general likeli-
hood that a noun occurs more with the causal verb
/k@rna/ ‘do’ or with the noncausal verb /hona/ ‘be’.
We show that nouns occurring more frequently with
the light verb /k@rna/ carry agent-oriented semantics
while those that occur more frequently with /hona/
do not.

Similar to previous works (Haspelmath, 2008;
Samardžić and Merlo, 2012, 2018), we study the
/k@rna/-/hona/ alternation by extracting their fre-
quency distribution from syntactically annotated cor-
pus of Hindi. We use the corpus to generate a list
of alternating nouns. Following Haspelmath et al.
(2014), we then calculate their degree of causalness
for an LVC by dividing the total number of /k@rna/ al-
ternation multiplied by 100 by the sum of its /k@rna/
and /hona/ alternations. Nouns that have high degree
of causalness tends to occur more as causatives and
nouns with low degree tends to occur more as inchoat-
ive. As discussed above, in /k@rna/-/hona/ alternation
there is no derived or marked form therefore evalu-

ation in terms of form-frequency correspondence is
not possible. Hence, to check for the validity and
variability of our findings we test for agency and re-
producibility. In Hindi, one way to express agency
is via using ergative marker /-ne/ on the subject. We
test if the agentive nouns have high probability of
occurring with the ergative marker than others. We
then show that this pattern is observable in other cor-
pus of the language as well. For this, we find a list of
commonly occurring LVCs across these corpora un-
der study and found that the predicates have similar
distribution.

3 Method and Results

Noun gloss Caus
HUTB

Caus
HTB

%E
HUTB

%E
HTB

ghoSNa
announce-
ment 97.7 83.3 82.9 62.5

fEsla decision 93.9 60 74.7 40

pal@n
comp-
liance 87.5 90 37.5 0.0

Sadi marriage 57.1 61.1 42.8 55.6
bEth@k meeting 37.5 66.7 15.6 41.7
prar@mbh start 25 33.3 25 16.7
izafa increase 16.7 28.6 8.3 0.0

Table 2: A sample of alternating LVC pairs from HUTB corpus
and HTB. Caus=Causalness, %E= percentage of ergatives

To find the LVCs having /k@rna/-/hona/ alterna-
tion, we have selected the Hindi-Urdu Dependency
Treebank (HUTB) (∼ 4m tokens) (Bhatt et al., 2009).
HUTB is a manually annotated corpus that already
identifies LVCs by using the label ‘pof’ (part-of)’
and therefore LVcs can be automatically retrieved.
Since, this work depends heavily on the number of
LVCs that we find in the corpus we have taken only
the news section ∼ 3.7m tokens) as the size of con-
versation data (∼ 25k tokens) is too small. We find
the frequency of all the LVCs in which the nominal
alternates with both the light verbs. A total of 121
alternating LVCs were found. However, to remove
any chance occurrence from our analysis we remove
pairs with frequency less than 1 for both the alterna-
tions giving us a list of 53 LVCs. A sample is shown
in Table 2.

Based on their degree of causalness we can see
that the nouns at the high end have higher probabil-
ity of taking an external argument than those at the
lower end. This further testified by the percentage of
ergatives they occur with.

To check the validity of the realization of causal-
ness for Hindi LVCs we try to find out whether an
LVC shows a consistent behavior across different cor-
pora or not. We conducted a comparative study by
finding commonly occurring alternations in a differ-
ent corpus. We compare our previous list of 53 nouns
with the Hindi TimeBank’s (HTB) fictional crime
part (∼ 0.2m tokens) (Goel et al., 2020). We found
25 such pairs that were common to both the corpora.
We can see that nouns do show a general tendency to
occur either as a causal item or as an noncausal item
across the different corpora (as shown in Table 2).

In order to verify the extent to which ergativity is
related to the causalness we’ve also calculated Spear-
man’s rank correlation coefficient. The coefficient
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amounts to 0.606 (level of significance = .01 (one-
sided)), indicating a robust correlation between the
two. However, the correlation coefficient for HTB
amounts to 0.323 (level of significance = .01 (one-
sided)). There are two reason for low correlation in
HTB. First, ergative marker /ne/ in Hindi appears
only with the subject of past perfective sentences and
as a result this test didn’t cover all the instances of
the subject. Second, the size of the HTB corpus is
smaller in comparison to HUTB.

4 Discussion

In this paper we’ve investigated nouns alternating
with the light verbs /k@rna/-/hona/ in terms of their
causal property. Constructions like LVCs are distinc-
tive as both the forms are coded therefore Haspel-
math’s original proposal of form-frequency corre-
spondence and predictability of the shortness of the
form does not translate to them1. Therefore, in this
work we have extended the idea to investigate the
property of ‘causality’ in nouns. We hypothesize that
nouns have a preference towards the predicting verb
which can be shown using the form-frequency cor-
respondence. Nouns that carry more agent-oriented
semantics prefer the causal verb /k@rna/ while those
that don’t prefer the noncausal verb /hona/.

We conduct a corpus study and show that nouns
in an LVC indeed have likelihood towards either the
causal-noncausal formation. Nouns with high degree
causalness encode agent-oriented semantics and tend
to occur frequently with causal verb /k@rna/ while
those with lower values occur with /hona/. This is
further verified by the correlation between causalness
and ergativity for HUTB. We also found that similar
patterns can be attested for the commonly occurring
LVCs in a different corpus for Hindi.

However, there were limitations to our work.
Since, Hindi has no fixed list for LVCs one may
find an instance of an LVC in one corpus but not in
others. Second, apart from ergativity, agency can
also be tested using other parameters like animacy
and volitionality of the subject. Our ongoing work
focuses on testing the subject of an LVC on these var-
ious parameters. Lastly, unlike previous studies the
numbers shown here are from one language only and
in future work, we aim to conduct a cross-linguistic
study.
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1 Introduction

This paper introduces the Unnatural Language
Toolkit (ULTK), an open-source Python library for
computational semantic typology research (https:
//clmbr.shane.st/ultk/). ULTK’s key features
include unifying data structures, algorithms for
generating artificial languages, and data analy-
sis tools for related computational experiments.
The language module organizes the basic data
structures for constructing meaning spaces, expres-
sions, and languages. A grammar submodule con-
tains methods for building and enumerating expres-
sions from custom Language of Thought (Fodor,
1975, 2008; Quilty-Dunn et al., 2022) grammars,
which allows for straightforward computation of
minimum length descriptions for symbolically ex-
pressible semantic representations. This approach
has been used successfully in many investigations
of concept learning (Feldman, 2000; Goodman
et al., 2015). The second main module of ULTK,
effcomm, organizes efficient communication anal-
yses, which have become popular styles of expla-
nation in recent functionalist accounts of semantic
universals (Kemp et al., 2018). This module con-
tains functions for defining informativity based on
literal and pragmatic communicative agents and
algorithms for exploring the space of artificial lan-
guages.

After first elaborating on the structure of these
two modules, we then provide two case studies,
illustrating two major styles of explanation in com-
putational semantic typology research: (1) an effi-
cient communication analysis of modal semantic
typology, and (2) an analysis of the relative ease of
learning of monotone versus non-monotone quan-
tifiers. ULTK’s accessible design, documentation,
and open-source nature are intended to reduce bar-
riers for researchers when implementing computa-
tional linguistic typological experiments.

2 Language module

Figure 1: Structure of a ultk.language.Language, us-
ing the English modal vocabulary as an example.

In ULTK, a Language (Figure 1) is a collec-
tion of Expressions; an Expression is a map-
ping between a surface form and a Meaning; a
Meaning maps a Universe’s Referents to an ob-
ject of arbitrary type (e.g., bool if the meaning is
boolean). A Referent is a wrapper for any hash-
able Python object, which could be as simple as an
index or as complex as a model-theoretic structure.
A Universe is a collection of Referents. In this
way, a bool Meaning corresponds to the charac-
teristic function of a set. To capture probabilistic
meanings, it is natural to use float meanings.

Grammar This submodule contains classes and
functions for building Grammars and generating ex-
pressions. These are often used for semantic repre-
sentations: at its core, this module enables compos-
ing functions to arbitrary depth according to their
input and output types. A Grammar is made up of
arbitrary Rules, with GrammaticalExpressions
formed by combining rules with licensed input and
output types (Piantadosi, 2014). A Rule minimally
consists of a name, a left-hand side (output type) a
right-hand side (sequence of input types), a func-
tion to apply, and optionally a weight (for defining
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Name LHS RHS Types Function

and bool bool , bool λ p1, p2: p1 and p2

or bool bool , bool λ p1, p2: p1 or p2

not bool bool λ p: not p

weak bool Referent λ m: m.force == "weak"

strong bool Referent λ m: m.force == "strong"

epistemic bool Referent λ m: m.flavor == "epistemic"

deontic bool Referent λ m: m.flavor == "deontic"

circumstantial bool Referent λ m: m.flavor == "circumstantial"

Name LHS RHS Types Function

union frozenset frozenset , frozenset λ s1, s2: s1 \| s2

intersection frozenset frozenset , frozenset λ s1, s2: s1 & s2

cardinality int frozenset λ s: len(s)

subset_eq bool frozenset , frozenset λ s1, s2: s1 < s2

diff bool frozenset , frozenset λ s1, s2: s1 - s2

empty bool frozenset λ s: len(s) == 0

nonempty bool frozenset λ s: len(s) > 0

Name LHS RHS Types Function

and bool bool , bool λ p1, p2: p1 and p2

or bool bool , bool λ p1, p2: p1 or p2

not bool bool λ p: not p

weak bool Referent λ m: m.force == "weak"

strong bool Referent λ m: m.force == "strong"

epistemic bool Referent λ m: m.flavor == "epistemic"

deontic bool Referent λ m: m.flavor == "deontic"

circumstantial bool Referent λ m: m.flavor == "circumstantial"

Name LHS RHS Types Function

union frozenset frozenset , frozenset λ s1, s2: s1 \| s2

intersection frozenset frozenset , frozenset λ s1, s2: s1 & s2

cardinality int frozenset λ s: len(s)

subset_eq bool frozenset , frozenset λ s1, s2: s1 < s2

diff bool frozenset , frozenset λ s1, s2: s1 - s2

empty bool frozenset λ s: len(s) == 0

nonempty bool frozenset λ s: len(s) > 0

Figure 2: The ULTK LoT grammars in our case studies,
modals (top) and quantifiers (bottom, snippet).

probabilistic grammars). A Grammar can be ini-
tialized by loading a Python module with arbitrary
functions parsed as Rules, or by loading a YAML
file (Figure 2). The grammar submodule can be
used to generate minimum length descriptions for
Meanings in order to quantify their representational
complexity for computational experiments; this can
be done by depth-bounded enumeration (with user-
specified uniqueness criteria) or by approximate
Bayesian inference over PCFGs.

3 Effcomm module

The effcomm module provides tools for analyz-
ing the communicative efficiency of languages.
The agent and informativity submodules imple-
ment Rational Speech Act-style agents and enable
the computation of literal and pragmatic informa-
tivity of languages (Frank and Goodman, 2012;
Degen, 2023). These tools for measuring infor-
mative communication, together with tools from
language.grammar for measuring the complex-
ity of languages, can be combined to study how
languages balance, or trade off, various pressures
efficiently. The effcomm module also includes
submodules for generating hypothetical languages
through various sampling strategies (sampling),
approximating Pareto-optimal solutions to effi-
ciency trade-offs via an evolutionary optimiza-
tion algorithm (optimization), and evaluating the
languages’ communicative properties (tradeoff).
The analysis submodule provides utilities for vi-
sualizing language distributions in trade-off space.
These components are designed to work together to

support end-to-end efficient communication analy-
ses of artificial or natural languages.

4 Case study 1: efficient communication
for modals

Efficient communication has been proposed as
an explanation for variation in semantic typology
(Kemp et al., 2018). Using ULTK, we replicate
Imel et al. (2024) by applying this analysis to
modals. To do this, we (1) convert attested modal
vocabularies to ULTK Languages, (2) generate ar-
tificial vocabularies, and (3) measure efficiency and
a notion of naturalness. For the latter , we consider
the degree to which a language satisfies the Inde-
pendence of Force and Flavor (IFF) semantic uni-
versal (Steinert-Threlkeld et al., 2023). We define a
modal Universe of (force, flavor) Referents and
construct Languages as sets of Expressions map-
ping these referents to truth values (Fig. 1).

Languages Natural vocabularies are de-
rived from a public database (Guo et al.,
2022), while artificial ones are gener-
ated via ULTK’s language.sampling and
effcomm.optimization modules. The former
samples meanings randomly while controlling IFF
satisfaction, and the latter uses an evolutionary
algorithm to approximate the Pareto frontier for
the complexity/communicative cost trade-off. This
step uses some convenience methods that ULTK
provides for turning data in fieldwork-natural
formats into its natural internal data structures
that are needed for an efficient communication
analysis; this helps lower the barrier-of-entry to
conducting such analyses.

Efficient communication Complexity is mea-
sured as minimum description length in a boolean
Language-of-Thought (LoT) (Kemp and Regier,
2012), using language.grammar to enumerate and
cache shortest expressions. Communicative cost
is measured in effcomm.informativity, which
models literal communication and uses commu-
nicative need priors estimated from English news
data. While the results we present here use literal
speakers and listeners, ULTK offers convenience
methods for iterating pragmatic agents to arbitrary
depth from a given language (Frank and Goodman,
2012; Degen, 2023).

Results Figure 3 plots complexity vs. commu-
nicative cost, with artificial languages colored by
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Figure 3: Replication of Imel et al. (2024) via
ULTK; see text for details. Full demo available
at https://github.com/CLMBRs/ultk/tree/main/
src/examples/modals.

naturalness and natural ones marked in red. Natu-
ral languages cluster closer to the Pareto frontier
(large points) than chance (t(15536) = 46, p ≈ 0),
and naturalness negatively correlates with Pareto
distance (ρ = −0.38, p ≈ 0). Similar replica-
tions of efficient communication analyses (e.g., kin-
ship (Kemp and Regier, 2012), indefinite pronouns
(Denić et al., 2022), quantifiers (Steinert-Threlkeld,
2021), connectives (Uegaki, 2021)) are under devel-
opment. ULTK provides abstractions and utilities
that allow for relatively simple replication of these
existing analyses and, therefore, makes it easy to
conduct new ones as well.

5 Case study 2: ease of learning for
(monotone) quantifiers

Semantic universals constrain natural linguistic
meanings (Croft, 2003). For example, all simple
determiners in natural languages are argued to be
monotonic (Barwise and Cooper, 1981). A pos-
sible explanation is that monotone quantifiers are
easier to learn (Steinert-Threlkeld and Szymanik,
2019; Chemla et al., 2019). Using ULTK, we repli-
cate one of the results contained in Haberland and
Steinert-Threlkeld (2025) (which contains full ex-
perimental details), showing that monotone quanti-
fiers are easier to learn than non-monotone quanti-
fiers. We generate a large number of quantifier ex-
pressions composed from a LoT grammar (see Fig-
ure 2). We measure ease of learning as the number
of steps required by a neural model to learn to cor-
rectly judge the truth-value of a quantifier. We gen-
erate 2000 quantifiers from the LoT grammar and
measure the speed at which both LSTM and Trans-

Figure 4: Replication of Haberland and Steinert-
Threlkeld (2025) via ULTK; see text for details.
Full demo available at https://github.com/CLMBRs/
ultk/tree/main/src/examples/learn_quant.

former models learn to verify expressions that are
both monotonic and non-monotonic. We find that
monotone quantifiers are typically learned much
faster than non-monotone ones (Figure 4). This
suggests that ease of learning may be a factor shap-
ing the lexical semantic typology of the world’s
languages, at least in this domain (see (Steinert-
Threlkeld, 2020; Steinert-Threlkeld and Szymanik,
2020; Maldonado et al., 2022; Maldonado and Cul-
bertson, 2019; Strohmaier and Wimmer, 2022) for
other case studies in other domains).

This case study demonstrates the potential of
using ULTK to answer questions about the rela-
tion between semantic universals and ease of learn-
ing. In addition to the LoT grammar, the library
provides basic tools for structuring Meanings and
other objects in a way that is consumable by exter-
nal machine learning libraries.

6 Conclusion

The Unnatural Language Toolkit (ULTK) is an
open-source library, enabling linguists to execute
computational typological research. Our intention
is to lower the barrier-to-entry to conducting effi-
cient communication and ease-of-learning analyses
of typological phenomena. In the limit, typolo-
gists and fieldworkers will be able to input data
structured in natural ways, and the library will
facilitate analyses in these these domains. The
two case studies presented here demonstrate the
possibility of this division of labor and the util-
ity of the ULTK library. Future work will ex-
pand both coverage of methods and improve the
ease of use to continue making this dream a re-
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ality. We welcome submissions of contributions,
questions, and suggestions to our code repository
(https://github.com/CLMBRs/ultk).
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1 Introduction

The past tense of "forgo" is forwent. So,
you would say: "I forwent this position."
It’s a bit formal or uncommon in modern
usage, but grammatically correct.

Above is a response from GPT-4o when asked what
the past tense for “forgo” is. Yet, most fluent En-
glish speakers would find forwent unnatural, inef-
fable (Gorman, 2023), and unacceptable (Embick
and Marantz, 2008). Most English speakers would
also be unable to find the right, natural form for
the past tense of forgo (Gorman and Yang, 2019).
Words such as forgo are instances of defective verbs
or morphological gaps in which expected forms are
absent—a problematic intrusion of morphological
idiosyncrasy (Baerman and Corbett, 2010).

While inflectional gaps are not a recently dis-
covered phenomenon, they "remain poorly under-
stood" (Baerman and Corbett, 2010) and document-
ing them requires extensive human expertise and
effort. For scarce linguistic phenomena in less-
studied languages, Wikipedia and Wiktionary serve
as among the few widely accessible and frequently
utilized resources, consistently ranked among the
most popular websites globally. With its extensive
reach and usage, crowd-sourced content is a poten-
tially valuable but underexplored resource although
its user-contributed nature has sparked controversy
on its overall trustworthiness.

In this study, we conduct computational analy-
ses of inflectional gaps by customizing UDTube
(Yakubov et al., 2024), a scalable state-of-the-art
neural morphological analyzer trained with Univer-
sal Dependencies (a collection of corpora of mor-
phologically annotated text in different languages),
to incorporate mBERT (Devlin et al., 2019) as an
encoder and annotate large corpora of text in Latin
and Italian (Conneau et al., 2020). The resulting
massive annotated data are then used to measure
the frequency of certain inflectional forms of in-

terest and validate lists of defective verbs scraped
and compiled from Wiktionary’s Latin and Italian
pages to verify which verbs are confirmed compu-
tationally to be inflectional gaps.

By bridging computational techniques with lin-
guistic analysis, the study contributes to linguistics
of less-explored languages and offers novel insights
and computational methodologies for scalable qual-
ity assurance and validation of crowd-sourced con-
tent, while addressing gaps in linguistic knowledge.

2 Data

This study uses Universal Dependencies (UD),
Common Crawl, and Wiktionary in the compu-
tational validation of morphological gaps. Univer-
sal Dependencies is a collection of multilingual
treebanks for syntactic and morphological analysis
across languages (Nivre et al., 2017). We utilize
the largest available treebanks for Italian and Latin
in the UD dataset. For corpora, we use an 8.3GB
dataset containing approximately 5 billion tokens
of diverse Italian text and a 640MB dataset with
approximately 390 million tokens of Latin text.

3 Methods

As shown in Figure 1, this study uses a compu-
tational approach to validate inflectional gaps in
Latin and Italian in three major steps: (1) Training
UDTube with Universal Dependencies, (2) Anno-
tating Large-Scale Text with UDTube1, and (3)
Validating Defective Forms.

4 Results and Conclusion

In the evaluation of defective lemmata listed in
Wiktionary against corpus evidence, lemmata are
classified into likely defective (based on expert-
recommended frequency threshold of 10), on the
edge, and likely not defective.

1The tuned morphological analyzer achieves 98% and 96%
accuracy on the Latin and Italian test sets, respectively.
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Figure 1: Workflow for computational validation of morphological gaps, using UDTube

Occurrences Latin Italian
Likely defective: ≤ 10 67.4% 79%
On the edge: 11− 100 25.4% 17%
Likely not defective: > 100 7.2% 4%

Table 1: Summary of defective forms in Wiktionary

Based on this result, Wiktionary’s list of defec-
tive verbs in Italian is 1.8 times less likely to con-
tain errors compared to Latin. The computational
results, together with manual verification by human
experts, suggest that while Wiktionary provides a
reliable account of Italian morphological gaps, at
least 7% of Latin lemmata listed as defective are
unlikely to be truly defective. This discrepancy
highlights potential limitations of crowd-sourced
wikis as definitive sources of linguistic knowledge,
particularly for less-studied phenomena and lan-
guages, despite their value as resources for rare
linguistic features. This study presents a novel
computational approach to validating defectivity in
a crowd-sourced linguistic resource and contributes
to expanding our morphological knowledge.
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