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Abstract

Computational models of pragmatic language
use have traditionally relied on hand-specified
sets of utterances and meanings, limiting their
applicability to real-world language use. We
propose a neuro-symbolic framework that en-
hances probabilistic cognitive models by inte-
grating LLM-based modules to propose and
evaluate key components in natural language,
eliminating the need for manual specification.
Through a classic case study of pragmatic
question-answering, we systematically exam-
ine various approaches to incorporating neural
modules into the cognitive model—from eval-
uating utilities and literal semantics to gener-
ating alternative utterances and goals. We find
that hybrid models can match or exceed the
performance of traditional probabilistic models
in predicting human answer patterns. However,
the success of the neuro-symbolic model de-
pends critically on how LLMs are integrated:
while they are particularly effective for propos-
ing alternatives and transforming abstract goals
into utilities, they face challenges with truth-
conditional semantic evaluation. This work
charts a path toward more flexible and scal-
able models of pragmatic language use while
illuminating crucial design considerations for
balancing neural and symbolic components.

1 Introduction

Imagine you are a barista in a café with only three
items in stock: iced coffee, soda, and Chardonnay.
If a customer asks: “Do you have iced tea?”, you
might naturally respond “I’m sorry, we don’t have
iced tea, but I can make you an iced coffee!”. This
situation exemplifies pragmatic question answer-
ing, where answerers commonly go beyond the
literal question being asked (Clark, 1979). Classi-
cal accounts of the semantic meaning of questions
and answers (e.g., Hamblin, 1973; Groenendijk and
Stokhof, 1984; Hakulinen, 2001), maintain that po-
lar questions like “Do you have iced tea?” are fully
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resolved by a polar answer {yes, no}. Yet humans
routinely provide a relevant selection of additional
information (e.g., mentioning the iced coffee, but
not the Chardonnay).

Understanding what, exactly, makes an answer
relevant has been a central question in the field
of pragmatics, with extensive work investigating
the contextual factors that shape answer selection
(e.g. van Rooy, 2003; Stevens et al., 2016; Rothe
et al., 2017). One recent framework for model-
ing these pragmatic choices is the Rational Speech
Act framework (Frank and Goodman, 2012; De-
gen, 2023), which has been successfully applied to
both question and answer selection (Hawkins et al.,
2015; Hawkins and Goodman, 2017; Hawkins
et al., to appear). The probabilistic cognitive mod-
els (PCMs) developed within this framework offer
significant advantages through their transparent,
explicit task decomposition and systematic error
analysis (Farrell and Lewandowsky, 2018).

However, these models are typically limited to a
small set of predefined examples, restricting their
applicability to real-world scenarios. In contrast,
Large Language Models (LLMs) offer a comple-
mentary set of capabilities. They can process open-
ended natural language input and generate flexible
responses, but often struggle with subtle pragmatic
patterns (Hu et al., 2023; Ruis et al., 2023; Tsvilo-
dub et al., 2024b) and lack the degree of explain-
ability that makes PCMs so valuable for cognitive
modeling (Zhao et al., 2023).

To address these complementary strengths and
limitations, we explore a family of neuro-symbolic
models, with different combinations of both ap-
proaches to leverage their respective strengths
and to overcome known shortcomings.! Our ap-

'We use the term neuro-symbolic in the sense of a model
that has neural network components (here, LLMs), that are
scaffolded by a symbolic task analysis, i.e., integrated in a
particular computational procedure. Other senses of the term
also exist (Bhuyan et al., 2024).
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Figure 1: Probabilistic cognitive model (PCM) of prag-
matic question answering. The PCM, built in the Ratio-
nal Speech Act framework, implements recursive back-
and-forth reasoning of rational agents. The questioner
chooses a question based on their decision problem and
an expectation of responses that any question might pro-
voke. The respondent chooses a relevant response based
on the decision problem inferred from the question.

proach builds on the task analysis developed in
previous work on pragmatic question-answering
(Hawkins et al., 2015; Hawkins and Goodman,
2017; Hawkins et al., to appear) in two ways. First,
we use it as a scaffolding structure that determines
the computational steps, with LLMs executing spe-
cific subtasks that would traditionally require man-
ual specification in a PCM (Sections 3.2-3.3). Sec-
ond, we verbalize (parts of) the scaffolding struc-
ture in a single prompt, relying on a single LLM
call to solve the respective computational task (Sec-
tion 3.4). This dual approach enables us to sys-
tematically investigate the tradeoffs between fine-
grained task decomposition and end-to-end neural
processing.
Our key contributions are as follows:

* A novel neuro-symbolic framework that ex-
tends probabilistic models of pragmatic ques-
tion answering to more open-ended natural
language.

* A systematic investigation of how different in-
tegrations of neural and symbolic components
affect model behavior.

* Empirical validation against human data,
demonstrating that neuro-symbolic models
can match or exceed traditional probabilistic
approaches in predicting human behavior.

2 A Probabilistic Cognitive Model of
Relevant Question-Answering

The probabilistic cognitive model we use for task
analysis and scaffolding, which we refer to as the

QA model (Hawkins et al., to appear), captures
a rational pragmatic respondent that chooses an
answer by reasoning about how a pragmatic ques-
tioner chooses a question (see Figure 1 for overview
and Appendix A for technical detail). The ques-
tioner is grounded in a context-independent base-
level respondent. The pragmatic questioner selects
a question based on the response they expect to
get from the base-level respondent, who answers
austerely without considering the wider context.
The pragmatic respondent, in turn, reasons about
the motivation of the speaker for asking the ques-
tion (i.e., infers their goal from the question) and
chooses responses that are expected to be relevant
to the questioner’s goal.

To implement expected relevance of an answer,
the QA model builds on decision-theoretic ac-
counts of relevance of questions and answers (van
Rooy, 2003; Benz, 2006), which formalizes rele-
vance in terms of a decision problem (DP). The
DP includes a real-valued utility function of how
useful different alternatives (e.g., iced coffee, soda,
Chardonnay) are for a given goal (e.g., getting an
iced tea). The questioner selects questions that have
a high expected relevance (i.e., high expected util-
ity) of information from the base-level respondent.
The pragmatic respondent uses the questioner’s
goal-oriented choice of question to infer from the
question what kind of DP the questioner likely
has. These inferences then guide the respondent’s
choice of information that will likely increase the
expected utility for the questioner, traded off with
response costs. We use a probabilistic implementa-
tion of the QA model in WebPPL (Goodman and
Stuhlmiiller, 2014) from Hawkins et al. (to appear)
as a starting point and baseline. As commonly done
for probabilistic modeling, for these simulations
we specified the space of possible answers, pos-
sible questions, the literal semantics and the DP
utility function specifically for the main experimen-
tal materials (see Section 3.1 and Appendix A.1).

Before diving into neuro-symbolic model evalu-
ation, we first validate whether the task decomposi-
tion stipulated in the QA model is actually borne
out in human intuitive reasoning. To this end, we
conducted an exploratory answer explanation ex-
periment. Participants (N=50) were recruited via
Prolific and shown four trials with contexts wherein
a person asked for a target item while several alter-
native options were available, similar to the initial
café example, which constituted the main materi-
als we describe in more detail in Section 3.1. The



question was followed by a character replying “no”
and providing one, most relevant, competitor al-
ternative. Participants were asked to type an ex-
planation of why that response was reasonable and
what would justify mentioning the particular option
over a different one. We then analyzed the types
of provided explanations, distinguishing between
explanations that appealed to (1) abstract similar-
ity of options, (2) questioner goals, desires, inten-
tions, or preferences, and (3) features that were
functionally relevant for the questioner goal (e.g.,
being and iced non-alcoholic drink). If participants
spontaneously reason about questioner goals and
respective relevant option features as formalized in
the QA model, we hypothesize that the proportion
of (2) and (3) will be higher than (1). We found
that 0.43 of responses appealed to goals (2), 0.20
to goal-relevant features (3), and 0.21 to general
similarity (1). 0.13 of responses were unclassifi-
able (e.g., only appealed to respondent politeness).
We interpret this as mild prima facie support for
the task decomposition implemented in the proba-
bilistic QA model. In the next section, we analyze
how systematically replacing different components
of the QA model with LLM modules affects the fit
to human data.

3 Evaluating Neuro-Symbolic QA models

We investigate the neuro-symbolic framework start-
ing with models where only one component of the
task is supplied by an LLM. We then incrementally
increase the number of LLM-based modules and
change their types, while observing the changes of
the fit to human data and the qualitative changes in
the predictions. The driving motivation is to make
PCMs more generally applicable (open-ended). For
that, two steps are necessary. For one, we would
like to be able to generate an in principle open-
ended set of alternatives over which to reason or
which to choose from. Consequently, we test if
LLM:s can provide plausible sets of responses, ques-
tions, and questioner goals for the QA model; we
call LLMs in this role proposers (cf. Sumers et al.,
2023; Tsvilodub et al., 2024a). For another, once
we have open-ended sets of alternatives, we need to
be able to obtain information about them for down-
stream computation, i.e., we also use LLMs in the
role of evaluators for judging literal semantics of
answers and for assessing the utility of options.

3.1 Experimental setup

For all reported simulations below, we use
GPT-40-mini for the LLM modules, with the sam-
pling temperature 7 = 0.1. All simulations are run
for five iterations. We report additional results with
the open-source LLM Qwen-2.5-32B-Instruct
in Appendix D. We use experimental materials,
human data and the one-shot LLM prompt from
Tsvilodub et al. (2023) to investigate what kinds
of alternative options (e.g., iced coffee or Chardon-
nay), if any, different neuro-symbolic QA models
mention in the predicted responses, given a polar
question (e.g., “Do you have iced tea?”) and differ-
ent options in context.

The materials include 30 commonsense vi-
gnettes similar to the initial barista example. The
context always included three possible options, but
not the requested target (i.e., iced tea). The options
always included a best-fitting alternative called the
competitor (e.g., iced coffee), a conceptually sim-
ilar option that was deemed less relevant for the
questioner’s goal (e.g., soda), and an unrelated op-
tion irrelevant for the uttered request (e.g., Chardon-
nay). Experimental subjects provided answers by
freely typing into a text box. Responses were cate-
gorized as “target,” “similar,” and “unrelated.” In
addition to these three categories, corresponding
to mentioning each of the single options, the cate-
gorization also distinguished responses that men-
tioned all options, as well as responses that men-
tioned no options.

If a respondent is engaging in pragmatic rea-
soning, we would expect her to prefer competi-
tor responses over other types. Tsvilodub et al.
(2023) found that humans are, in fact, relevantly
overinformative, strongly preferring competitor re-
sponses (0.52 of responses) over exhaustive re-
sponses (0.10), no options responses (0.20), similar
(0.18) or unrelated responses (0.00). We investi-
gate how well neuro-symbolic models match hu-
man behavior, operationalized via Jensen-Shannon
divergence between the observed human data and
the models’ categorical predictions.

3.2 Integrating LLM Evaluators in the PCM

We assess a class of models that, starting from the
QA model, systematically incorporate LLLM mod-
ules into the PCM architecture which take over two
functions: (i) the evaluation of utility of an option,
and (ii) the evaluation of the truth of a response.
Figure 2 (lower panel) shows a schematic overview
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Figure 2: Upper panel: Improvement of the model fit to

uniform response distribution baseline (higher is better, y-
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human data in terms of Jensen-Shannon divergence over a
axis) of all analyzed models (z-axis). The horizontal line

indicates performance of the probabilistic model. Dots indicate the means across simulations, error bars indicate
95% bootstrapped CIs. Lower panel: Overview of tested models. Each box shows a schematic of one model,
labeled on the z-axis in the plot above it. The models are ordered from closest to the PCM on the left (only one
component is LLM-based), to a model only using a single LLM with a single prompt on the right.

of the tested models.

First, we implement an LLM utility evaluator for
instantiating the utility function in the questioner’s
decision problem (resulting in the “LLM utilities”
model). The utility function defines real-valued
utilities for the different alternatives (e.g., the iced
coffee, soda), conditioned on a target object (e.g.,
iced tea). In the original QA model, the utilities
were elicited in a human rating experiment wherein
participants were asked to provide slider ratings
for each possible option (e.g., iced tea, iced cof-
fee, soda, Chardonnay), given another option as
the goal (see Appendix A.1). To replace the human
input with an LLM, we prompted the utility eval-
uator in a way identical to the instructions of the
human elicitation experiment, namely to predict
the full space of utilities via ratings on a scale with
range 0—100 instead of slider ratings. Importantly,
the prompt (and the original human experiment)
only asked for abstract ratings, independent of the
functional context in which the options occurred in
the question answering scenario (see Appendix B
for all full prompts). The remaining model com-
ponents (e.g., the set of alternative utterances, the

semantics) remained symbolic in this model.

Beyond replacing the utility component, another
function-based component to replace with LLMs
for open-ending the PCM is semantic evaluation.
Semantic evaluation is necessary for the base-level
and for the pragmatic respondent and assesses
whether a response is true in a particular context.
While base-level and pragmatic respondent have
slightly different responses at their disposition ow-
ing to the fact that the base-level responder is not
reasoning about the context (see Appendix A), the
semantic evaluation is essentially the same. For
an answer like “No, but we have iced coffee.” the
module has to check whether the polar answer part
(e.g., “yes”, “no”) is true for a context (e.g., the
café has soda and iced coffee), given the question
(e.g., “Do you have iced tea?”). It also has to evalu-
ate whether the added information (e.g., “We have
iced coffee.”) is actually correct. We explored mod-
els with different combinations of these evaluators.
The “LLM semantics” model uses an LLM-based
semantic evaluator for both the base-level and the
pragmatic respondent, while using the same utility
component as the original QA model (based on



the human experimental data). The “LLM seman-
tics & utilities” model employs all described LLM
evaluators. The “LLM base-level semantics &
utilities” only uses an LLM-based base-level re-
spondent, a rule-based pragmatic respondent, and
the LLM utility evaluator. The predictions of all
models are compared in Section 4.

3.3 Integrating LLM Proposers in the PCM

Next, we integrate LLMs as proposers for sets of
alternatives required by the QA model. We start
with sampling the possible questioner goals with a
goal proposer. The LLM was prompted to generate
plausible text-based goals, given the context and
question (see Figure 11). While the set of possible
goals in the PCM only contained four DPs (each
defining a preference for one of the options: target,
competitor, similar, unrelated option), the proposer
may sample any text-based questioner goal descrip-
tion. These sampled text-based goals are connected
to a DP representation via the utility evaluator (Sec-
tion 3.2). The evaluator was prompted to generate
the utilities for the available options, conditioned
on each proposed goal. The “LLM semantics, util-
ities, DPs” model uses the goal proposer together
with the evaluators from Section 3.2, while the sets
of possible utterances and questions are symbolic
(i.e., pre-specified manually).

Further open-ending the QA model, we intro-
duce a response proposer and a question proposer
which provide the set of alternative questions and
pragmatic answers that the respective pragmatic
agents reason over. In both cases, the LLM was
concisely prompted to generate n alternatives to an
observed utterance or question given the context vi-
gnette (see Figure 9, Figure 10). We set n = 10 for
the response proposer, and n = 3 for the question
proposer. Here, we address the empirical ques-
tion whether LLMs, out of the box, can be (easily)
prompted to produce the expected types of alter-
native pragmatic responses in the context of the
QA model (no options, competitor, similar, unre-
lated, all options). Based on exploratory qualitative
analyses described in Section 4 in more detail, we
append “no-options” and “all-options” responses
constructed in a rule-based manner to the set of
sampled alternatives. The observed question was
always added to the set of sampled alternatives
provided by question proposer.

The question and response proposers were tested
as part of the fully neuro-symbolic replication of
the PCM (“full NeSy” model). This model im-

plements the full task decomposition of the QA
model, capturing the pragmatic respondent’s re-
cursive reasoning (Figure 1) fully via the modules
described above. The base-level respondent uses an
LLM-based semantic evaluator to (symbolically)
select an informative, true response to a given ques-
tion (assuming that the decision problem is known).
For the pragmatic interpreter, the different possible
questions are supplied by an LLM-based question
proposer. An LLM-based utility evaluator rates the
usefulness of potential options to (symbolically)
compute the questioner’s expected utility of each
question (based on the expected behavior of the
base-level respondent). Finally, the pragmatic re-
spondent estimates likely DPs among the neurally
sampled alternatives, given the question, symboli-
cally via Bayes rule (where the likelihood term is
approximated via samples of generated questions
given a DP). Given her posterior beliefs about the
DPs, the respondent chooses a response from the
set provided by the response proposer that maxi-
mizes her utility function. The respondent’s util-
ity function combines the expected utility of a re-
sponse with informativeness, formalized as a KL,
divergence term (see Appendix A for details). We
assume flat priors and no utterance costs through-
out the model.

3.4 Scaffolding Prompted LLMs with
Cognitive Modules

All previous models have implemented computa-
tional components suggested by the original QA
model with LLM-based proposers and evaluators.
These LLM-based components implemented rather
“local”, smaller computational elements of the task
analysis suggested by the QA model. Alternatively,
we may also use LLMs to replace larger chunks
of computation, such as the full pragmatic ques-
tion answering agent, or even the full task analysis
captured by the QA model. In the following, we
introduce three models that instantiate this general
strategy.

We first consider a model called prompt-based
questioner, of which we consider two versions,
one prompted with questioner goals, and one
prompted without goals. This model decomposes
the pragmatic respondent’s task into its two high-
level components suggested by the PCM: inferring
the questioner’s goal based on the observed ques-
tion, and selecting a response that optimizes the
questioner’s utility given the inferred DP. We imple-
ment a purely prompt-based pragmatic questioner



module that supplies the first component. This
prompt-based questioner is used by the pragmatic
respondent of the “full NeSy” model for inferring
the distribution over DPs sampled with an LLM-
based goal proposer. The prompt-based questioner
takes a questioner goal, the context, and prompts
the LLM to provide a likelihood of someone ask-
ing the given question (see Fig. 12). The elicited
likelihoods for all questions and DPs are then renor-
malized and used by the pragmatic respondent. We
then compare the role of conditioning this mod-
ule on the goal, and also use a goal-free prompt
where the LLM is asked to assess the question like-
lihood based on the context only (prompt-based
questioner without goal, see Fig. 13).

For comparison, we also consider a purely mono-
lithic prompting of the LLM. In particular, the
one-shot chain-of-thought model has a chain-
of-thought prompt which verbalizes the reasoning
steps suggested by the QA model in the chain-of-
thought for a single example item (see Figure 14).
That is, this model is fully LLM-based, using only
one call to one neural module (i.e., the LLM).

4 Results

Quantitative results We used the human answer
proportions reported in Section 3 as reference and
quantitatively compared models in terms of fit to
the human data by calculating the Jensen-Shannon
divergence (JSD) between the human and the mod-
els’ predictions. Specifically, we calculated the
score A; of model M; in comparison to the perfor-
mance of a baseline B given by a flat distribution
over all answer categories:

A; = JSD(B,humans) — JSD(M;, humans)

where JSD(B, humans) = 0.154. We report A;-s
in Figure 2 (upper panel; higher JSD differences
are better, indicating closer fit to human data). The
figure additionally shows the reference value pro-
vided by the PCM (solid line).

We found that most tested models with interme-
diate or high degrees of task decomposition came
close to the original PCM (the CIs overlap with
the PCM reference line or lie above it), indicating
that the neuro-symbolic framework provides a po-
tentially viable method for explaining human data.
Visually, the “full NeSy” model and the “prompt-
based questioner with goals” fit human data best
in terms of A. The PCM + LLM models tended
to improve with a higher number of LLM mod-
ules, but generally provided a somewhat worse

fit than the PCM (the means are below the line).
Supporting LLMs with a theoretically motivated
task decomposition led to significant improvement
within the LLM + scaffolding models: the “prompt-
based questioner” models showed a better fit than
the “one-shot CoT” model. Therefore, overall we
found that the neuro-symbolic approach to open-
ending pragmatic PCMs showed quantitative fit to
human data on par with established cognitive mod-
eling, while offering a more realistic interface to
natural language inputs and outputs.

Qualitative results Next to the quantitative anal-
yses, we analyzed qualitatively the differences be-
tween model predictions and the performance of
the single modules. Figure 3 shows the proportions
of different response categories (e.g., competitor,
no-options responses etc.) predicted by the differ-
ent models, next to PCM predictions and human
data from Tsvilodub et al. (2023). The figure re-
veals that although many neuro-symbolic models
have similar fit to human data in terms of A, there
are qualitative differences in the predicted response
proportions. The two models with “LLM seman-
tics” overpredicted the proportion of unrelated re-
sponses, while the “LLM base-level semantics &
utilities” model overpredicted the all-options re-
sponse rate and slightly underpredicted the com-
petitor rate.

Comparisons of the base-level and pragmatic re-
spondent semantic modules revealed that the base-
level semantics module performed reliably, while
the pragmatic respondent semantic module made
mistakes more frequently, including when evalu-
ating unrelated responses. This may have led to
the overprediction of the unrelated responses, as
shown by the comparison of the “LLM semantics
& utilities” and the “LLM base-level semantics &
utilities” models because the former only differs
from the latter by using an LLM-based pragmatic
respondent semantics evaluator. We correlated the
utility evaluator predictions with data elicited from
humans for the PCM (see Figure 5) and found a
very high correlation (R = 0.92), so we can likely
rule out the utility evaluator as the source of over-
prediction of the unrelated category.

The comparison of the PCM + LLM models to
the “full NeSy” model highlights the difference
in response proportions that is driven by adding
LLM proposers for the set of available responses
and questions. The addition of response and ques-
tion proposers decreased the rate of unrelated re-
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Figure 3: Proportions of different response categories produced by humans (left column) and predicted by different
models. The categories are based on which options are mentioned in the response.

sponses and slightly increased the rate of similar
and exhaustive responses. Since the “full NeSy”
model included the pragmatic respondent semantic
evaluator module, we can conclude that seman-
tic evaluations might work more reliably with the
LLM’s own proposals than with the pre-specified
sets of responses and questions. These observations
are in line with one of the well-known challenges
of neuro-symbolic modeling concerning difficulty
of converting between neural and symbolic rep-
resentations that is required in order to reliably
compute truth values for open-ended sentences and
contexts (Bader et al., 2004), as well as with de-
bates around LLMs’ ability to provide reliable eval-
uations (Bavaresco et al., 2024).

We also explored decreasing and increasing the
n of alternative responses proposed by the LLM.
We found that results with n < 10 proposals were
unlikely to contain the “all options” or “no options”
responses. For n = 10 this was more often the
case, but we appended these two response types
to set of alternatives manually nonetheless, to en-
sure availability of all conceptually meaningful re-
sponse types. Sampling n = 50 responses ensured
full coverage of response types but became compu-
tationally expensive. Generally the proposals often
contained multiple instances of one response type
(e.g., multiple competitor responses), an observa-
tion we return to in the discussion. However, this
is unlikely the sole driving force beyond the fit of
the framework, as the “LLM semantics, utilities,
DP” model showed a similar competitor response

proportion, while operating on a fully prespecified
set of responses.

We qualitatively assessed the samples of the goal
proposer module that generates possible text-based
questioner goals, given the vignette. We compared
the samples to human data from a web-based ex-
periment wherein participants were asked to write
three plausible goals of the questioner, given the
vignette context (see Appendix C for details and
human results). We focused on analyzing whether
the LLM-proposed goal focused on getting the tar-
get mentioned in the question, on a more general
information gain, or on specific situation aspects.
We observed that, while LLM proposals were plau-
sible, they focused on the target and specific goals
around the target more, while humans showed more
diversity in their specific goals, e.g., often involv-
ing social aspects of the described situation.

Turning to the LLM + scaffolding model type,
comparing the “prompt-based questioner model
without goals” and the “prompt-based questioner
model with goals” revealed a trend towards predict-
ing unrelated and similar responses more uniformly
in the goal-free model, which is expected given
that the distinction between these types of answers
is based on reasoning about the questioner’s goal.
However, these differences are small and indicate
that, even under certain (ablating, from a theoret-
ical perspective) prompt variation, LLMs may be
able to approximate pragmatic behavior.

Taken together, our key results are:



* the neuro-symbolic modeling approach fits
human data quite closely, potentially making
it a framework for computational modeling of
pragmatic question answering performing on
par with the PCM;

* at least some level of task decomposition
when using LLM modules is required for a
good fit to human data;

* LLM modules are generally good proposers,
although attention should be paid to types of
proposals that are expected for explanatory
purposes;

* LLMs are good evaluators for functions based
on abstract world knowledge like the utility
evaluator;

* LLMs may struggle with truth-conditional se-
mantics of certain utterances, but perform well
when evaluating yes/no responses to polar
questions.

5 Related work

Our work is situated at the intersection of several
strands of like-minded work in different areas, in
addition to the work we build on directly (Hawkins
et al., 2015; Tsvilodub et al., 2023). The idea and
promise of neuro-symbolic models has been stud-
ied in artificial intelligence for many years (Bhuyan
et al., 2024). Further, our framework is closely re-
lated to recent work outlining various approaches
to combining scaffolding structures, computational
modeling or cognitive architectures with LLMs
(e.g., Nye et al., 2021; Collins et al., 2022; Sumers
et al., 2023; Wong et al., 2023; Kambhampati et al.,
2024). Combining LLMs with PCMs specifically
in the context of computational pragmatics has re-
ceived some attention in recent work (e.g., Lew
et al., 2020; Franke et al., 2024; Tsvilodub et al.,
2024a) but the present work focuses specifically on
systematically comparing and evaluating families
of related models with varying degrees of neural or
symbolic computation.

On an algorithmic level, our models combine
several LLM calls in a particular architecture,
which has been widely used in recent prompt tech-
niques (Nye et al., 2021; Prystawski et al., 2023;
Yao et al., 2023), and systems that use LLM calls
to retrieve information (e.g., Lewis et al., 2020), to
access different tools (e.g., Schick et al., 2023) or

to solve complex reasoning tasks (e.g., Creswell
et al., 2022; He-Yueya et al., 2023).

Systems with multiple LLM calls per input have
also been specifically applied to question answer-
ing (Wang et al., 2023), mainly with a focus on
improving factual accuracy of responses, or on
training systems to improve their question asking
capabilities (Andukuri et al., 2024). Therefore, our
case study addresses a highly relevant task, with
a novel focus on modeling pragmatic, human-like
answering behavior.

6 Discussion

Taken together, in this case study we outlined and
systematically assessed a neuro-symbolic frame-
work for computational pragmatic modeling that
uses probabilistic cognitive models as scaffolding
structure that integrates LLM components for more
flexible interfaces with language and background
knowledge. The experiments on a case study of
pragmatic question answering revealed that such
modeling can be a viable candidate in the toolbox
for more flexible models of human behavior in
question answering. The systematic comparison
of neuro-symbolic models with different degrees
of task decomposition suggests fine-grained differ-
ences in how LLMs perform on different subtasks
common to PCMs.

Our case study has several limitations, but also
opens up paths for future work. For one, the full
neuro-symbolic models implement Bayesian in-
ference via enumeration, which results in compu-
tational bottlenecks when scaling the number of
proposals and options in context. Related work
connecting LLMs and Bayesian inference might
be a promising avenue for improvements (Lew
et al., 2023). Additionally, the current main re-
sults are based only on one closed-source LLM
(but see Appendix D for exploratory results with an
open-source LLLM), and only use zero-shot prompt-
ing (except the CoT model). In this initial case
study, we prioritized using relatively simple, non-
engineered prompts, but nonetheless LLM prompt-
ing comes with potential risks of hallucination, er-
rors and biases (e.g., Bender et al., 2021; Ji et al.,
2023; Liu et al., 2023).

Finally, the use of LLMs as proposers and evalu-
ators opens up interesting questions. For instance,
response proposals supplied by the LLM might con-
tain a trend towards certain response types, which
can arguably be seen as a learned prior over human



preferences reflected in the training data. Addition-
ally, cognitive models usually assume utterance
costs for human language production and compre-
hension, but such online processing costs might not
have a clear counterpart in LLMs. Further, vary-
ing performance of LLM evaluators might suggest
that some aspects of semantics might be amortized
in training data (White et al., 2020). Our results
suggest that LLMs might not approximate differ-
ent aspects of human intuitive knowledge equally
well, touching upon important considerations of
replacing human judgements with LLMs (Shiffrin
and Mitchell, 2023; Lohn et al., 2024). For the
LLMs + PCM models, one other potential source
of improved performance with scaffolding of the
LLM could be due to higher inference time com-
pute budget that comes with decomposing the task
into several LLM calls (Yu et al., 2024).

In sum, we presented a detailed case study as a
starting point for exploring neuro-symbolic mod-
els of human language use, showing that task de-
composition supplied by a cognitive model can
be leveraged in synergy with recent LLMs, work-
ing towards open-ending pragmatic computational
modeling.
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A QA model

Below, we report the QA model by Hawkins et al.
(to appear), described in Section 2, in more formal
detail.

The base-level respondent that provides literal
responses r to a question g given the world w is
defined as follows:

1

0 otherwise.

if r is true in w & safe for ¢

Ro(r | w, q) {
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The notion of safety is couched in prior work on
semantics of questions and answers (Pruitt and
Roelofsen, 2011) and entails that, for the tested
vignettes, only the literal answers € {‘yes’, ‘no’}
are evaluated here.

The pragmatic questioner selects a question
given their decision problem, based on the re-
sponses they expect from the base-level respondent
Ry. Formally, a decision problem (DP) is a tuple
D= <W, AU, 7r5V>, consisting of a set of world
states W, a set of options .4, a utility function
U: W x A — R, and a probability distribution
7T(5V € A(W) capturing the questioner’s prior be-
liefs about the world states. Then, the value of a
decision problem D is the expected utility under a
policy R? that chooses options according to their

expected utility:
[Z/{ (w,a) ] ]

The pragmatic questioner then selects a ques-
tion by soft-maximizing the expectation over the
values of the decision problems D!"? given likely
responses from the base-level respondent, resulting
in Q(q | D) (see Figure 4), where C(r) and C(q) are
the production costs associated with the response
and question, respectively.

The pragmatic respondent then reasons about the
pragmatic questioner’s choice of question in order
to infer their likely decision problem:

V(D) E

a~NP

E

wNﬂ'QW

Dlq

T (D) o< Q¢ | D) 7, (D)

Finally, the pragmatic respondent chooses a re-
sponse by soft-maximizing the expected utility of
the response given their posterior beliefs about the
questioner DP. Utility is defined as a (parameter-
ized) combination of informativity (defined via KL
divergence) and action-relevance (defined via the
decision problem value), resulting in R (r | ¢) (see
Figure 4).

A.1 Parameterization of the QA model

As commonly done for probabilistic modeling, in
order to run simulations with the QA model param-
eters of the model were specified by the modelers
or with elicited human data (Hawkins et al., to ap-
pear). For each vignette, the set of alternative ques-
tions included polar questions about the availability
of each of the possible options individually, and a
wh-question inquiring about all possible options.
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Figure 4: Formal definitions of the pragmatic questioner Q(q | D) and respondent Ry (r | q).

The set of available pragmatic answers included
answers of all categories described in Section 3.1.

In order to specify the utility functions of the
questioner DPs, a web-based experiment was run
with human participants. Participants (N = 453)
were asked to provide slider ratings for each pos-
sible option (e.g., iced tea, iced coffee, soda,
Chardonnay), given another option as the goal. The
full space of possible combinations was elicited.
The slider ratings were on a scale of 0-100. Impor-
tantly, participants were asked to rate how happy
they think a person would be to receive an option,
given the target, resulting in abstract conditional
preferences. The DP utilities for each vignette were
bootstrapped from human preferences in the QA
model simulations. Human results for ratings of
the alternatives, given the option used as the target
in the free production experiments as the goal (e.g.,
the iced tea) are shown in Figure 5 (left) together
with respective LLM module predictions. Human
and GPT-4o0-mini ratings correlated highly, and
supported the intuitive ordering of the relevance of
alternatives (e.g., the competitor received higher
ratings than the unrelated option for a given target).

B Prompts

Prompts for all LLM modules are presented below
in Figures 6-14.

B.1 Semantic Evaluators

The base-level semantic evaluator only evalu-
ates the set of literal responses { ‘yes’, ‘no’}. The
pragmatic respondent semantic evaluator evaluates
the set of possible overinformative responses. In
models where the set of pragmatic responses is pre-
specified, the possible responses are of the form
“I'm sorry, we don’t have {target}. {continuation}”,
where the continuation was constructed for all re-
sponse types (no-options, competitor, similar, unre-
lated, all-options responses).
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C Human Experiment on Goal Inference

In an exploratory goal inference study, participants
(N=35) were shown vignette contexts without the
available options, followed by the question asked
by a speaker. Participants were asked to name
three plausible goals in three separate text fields
that the questioner might have in mind when ask-
ing the question. We focused on distinguishing
whether participants named goals focused on ac-
quiring the target mentioned in the question, on
acquiring more general information, or on goals
related to more specific aspects of the situation.

Participants were most likely to infer specific
goals (0.42 of the responses), followed by rarget-
related goals (0.35 of the responses). More general
information-seeking goals were less likely (0.17
of the responses), and some responses were non-
classifiable (0.06).

We then manually analyzed the proposals of the
LLM goal proposer module. Qualitatively, the
target-related goals mostly were about acquiring
the target or an item with the same functional fea-
tures (e.g., when the target was veggie pizza, the
functional feature would be being a vegetarian op-
tion), both for humans and LLMs. The specific
goals produced by humans often involved more
details than just acquiring the target, e.g., acquir-
ing the target for a friend, or mentioned different
specific preferences participants came up with. In
contrast, the specific goals produced by LLMs were
less likely to mention social aspects like acquiring
something for a friend, and more likely to pro-
duce possible more specific questioner preferences
(e.g., “asking about certain dietary restrictions”).
The more general goals produced by humans and
LLMs often mentioned learning about the set of
available alternatives.
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Figure 5: Left: GPT-40-mini utilities plotted against human utilities, R = 0.92. Right: Qwen-2.5-32B-Instruct
utilities plotted against human utilities, R = 0.93.

1-shot CoT | 1-shot example | 1-shot explanation | O-shot
Qwen-2.5-32B-Instruct | 0.21 0.15 0.25 0.28
Qwen-2.5-14B-Instruct | 0.16 0.24 0.22 0.39
Qwen-2.5-7B-Instruct | 0.33 0.19 0.50 0.17

Table 1: Jensen-Shannon divergence between human response proportions and the proportions of different response
categories predicted by Qwen models of different sizes under various prompting (lower is better).

Utility Evaluator Prompt

Base-level Evaluator Prompt
I In this study we are interested in
how you think about other
people. I Safe answers to questions only
> On each trial, you will be given provide information that the
some information about a person questioner genuinely does not
'Suppose someone wants to know, given what they asked.
have Italian food.' > True answers to questions only
3 provide information that is
4 Then we'll ask how happy you think true given the context.
this person would be about 3
other things, given this 4 Here is an everyday situation
information. For instance, we where someone asks a question:
might ask: 'How happy do you {context + question}
think they would be if they had 5 Here is a potential answer to the
French food instead?' question: {utterance}
5 You'll use ratings from 0-100 to 6
answer the questions. Return 7 Is the answer safe and true in
the rating only. this context, according to the
6 definition above?
7 Suppose someone wants {goal}. How 8§ Return 'yes' or 'no' only.
happy do you think they would
be if they got {option}?

Figure 7: Base-level Evaluator Prompt

Figure 6: Utility Evaluator Prompt
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Pragmatic Respondent Semantic Evaluator

Prompt

Goal Proposer Prompt

I True answers to questions only
provide information that is I You will be given a context in
true given the context. which a person asks a question.

2 > What plausible different goals

3 Here is an everyday situation might the person be interested
where someone asks a question: in, given what they asked?
{state} 3 Your task is to generate {

4 Here is a potential answer to the num_samples} alternatives in a
question: {utterance} comma separated list.

6 Is the answer true in this context

, according to the definition
above?
7 Return 'yes' or

Figure 11: Goal Proposer Prompt

no' only.

Figure 8: Pragmatic Respondent Semantic Evaluator

Prompt
rompt-based questioner with goals
P t-based t th goal
Response Proposer Prompt
I We are interested in how likely a
| Safe answers to questions only person would be to ask the
provide information that the following question in a simple
questioner genuinely does not context, given their goal.
know, given what they asked. > Please return only the likelihood,
> True answers to questions only provided on a scale between 0
provide information that is and 1.
true given the context. 3 Goal: {goal}
3 4 Context: {state}
: Here is a question someone could s {utterance}
ask in an every day situation:
{question}
5 Here are the available options: {
options} Figure 12: Prompt-based questioner with goals
6
7 Generate {num_samples} literal
answers to the question.
8 Return them as a numbered list.

Figure 9: Response Proposer Prompt Prompt-based questioner without goals

tion Pr P ¢ I We are interested in how likely a
Question TOPOSEr XT0mp person would be to ask the

following question in a simple

S h the followi context.
| uppog:af-pfgjgf} as ¢ foliowing > Please return only the likelihood,
> The person is in the following asgo¥1ded 9 & SRl BREUEERn

everyday situation: {context}
3 Generate {num_samples} well formed
short questions(s) the person
might naturally ask in the
context to achieve their goal.

3 Context: {state}
4 {utterance}

Figure 13: Prompt-based questioner without goals

Figure 10: Question Proposer Prompt
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One-shot chain-of-thought prompt

I You are hosting a barbecue party.
You are standing behind the
barbecue. You have the
following goods to offer:
sausages, vegan burgers,
grilled potatoes and beef
burgers.

> Someone asks:
zucchini?

pork

Do you have grilled

4 Let's think step by step. You
reason about what that person
most likely wanted to have.
That they asked for grilled
zucchini suggests that they
might want vegetarian food.
From the items you have pork
sausages and beef burgers are
least likely to satisfy the
persons desires. Vegan burgers
and grilled potatoes come much
closer. Grilled potatoes are
most similar to grilled
zucchini. You reply:

6 I'm sorry, I don't have any

grilled zucchini. But I do have

some grilled potatoes.

Figure 14: One-shot chain-of-thought prompt
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D Simulation Results with an
Open-Source LLM

Additionally to the main experiments performed
with GPT-40-mini, we ran all experiments with an
open-source LLM — Qwen-2.5-32B-Instruct
(Team, 2024), providing insights about advantages
and open questions for our neuro-symbolic model-
ing framework when it is based on LLMs that can
be run locally.

The experimental settings were the same as re-
ported in 3.1. Quantitative results comparing the
predictions of the different models to human results
in terms of JSD improvement over a random base-
line A, introduced in 4, are shown in Figure 15.
The results indicate that some models with LLM
evaluators (i.e., semantics and utility evaluators,
models (1) and (3)) perform on par with the models
based on a powerful closed-source LLM, as well
as close to the original probabilistic model. The
high correlation between DP utilities predicted by
Qwen and human results (Figure 5, right) corrob-
orates that such evaluations can also be reliably
elicited from an open-source model. Similarly to
GPT-based models, the performance of the utility
evaluator was more robust than for the literal se-
mantic evaluators, as indicated by the better fit to
human data for model (1). However, for model
(2) and for models introducing a proposer (models
(4)—(5)) the fit of the models decreased. Manual
evaluations of the single modules in these models
indicated that, qualitatively, the generated evalua-
tions and proposals were adequate for the respec-
tive modules. However, this LLM struggled more
to follow formatting instructions, so that process-
ing the proposals for passing them to the neural
evaluator modules was more brittle. Simulation
runs which resulted in unrecoverable parsing er-
rors were excluded form analysis.”> Models which
use a Qwen-based prompted questioner module
((6)—(7)) improved the fit to human data over the
random baseline, although the role of conditioning
the questioner prompt on the goal was opposite to
the GPT-based models.

Qualitative results comparing the proportions of
different response types under different models are
shown in Figure 16. The qualitative patterns sug-
gest that Qwen-based models preferred responses
mentioning a relevant alternative (i.e., competitor
responses) over no options or exhaustive responses.

%For this reason, no results of the full neuro-symbolic
model are reported.
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(1-7), and with different prompting strategies (8-9).

LLM-only predictions, both in the one-shot chain-
of-thought and the zero-shot prompting conditions,
on the other hand, showed a larger proportion of
exhaustive responses. We also report the JSD val-
ues for predictions from different sizes of Qwen
under different prompting strategies from Tsvilo-
dub et al. (2023) and human results in Table 1.
These results suggest variation in the effectiveness
of such prompting for different model sizes. For
the two larger models, prompts that verbalize the
PCM improve results over zero-shot prompting, al-
though for the 32B model, ablated prompts further
improve the fit to human data, suggesting substan-
tial variation of human-likeness of the predictions
when using only neural modules.
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In sum, most neuro-symbolic Qwen-based mod-
els scaffolded with the PCM showed a better fit to
human data than the random baseline, while the
predictions of the LLM alone, even under one-shot
chain-of-thought prompting, showed worse fit than
the baseline. Additionally, given the open availabil-
ity of the LLM, light-weight fine-tuning for bet-
ter formatting instruction-following might offer a
promising avenue for more robust neuro-symbolic
modeling with open-source LLMs. Therefore,
we can cautiously conclude that, given sufficient
instruction-following capabilities for formatting,
the neuro-symbolic framework might allow open-
source LLMs to produce more human-like response
patterns.
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Abstract

Discourse parsing within the Rhetorical Struc-
ture Theory (RST) framework has inspired ex-
tensive research; however, it remains prone to
significant levels of annotator disagreement,
particularly in the labeling of relations and nu-
clearity. This paper investigates systematic dis-
crepancies in RST annotations, focusing on
two expert-annotated corpora of closely related
languages. We first compare different RST
treebanks to assess the availability of parallel-
labeled data and highlight their usefulness for
studying disagreement. We then perform both
quantitative and qualitative analyses of annota-
tion divergences, identifying factors that con-
tribute significantly to inconsistent interpreta-
tions. Finally, we propose two practical ap-
proaches for addressing disagreement: (1) fil-
tering out unhelpful biases and (2) capturing
legitimate ambiguity through more flexible an-
notation schemes.

1 Introduction

In the field of computational linguistics, discourse
parsing — particularly within the Rhetorical Struc-
ture Theory (RST) framework — offers a well-
established approach to analyzing the coherence
relations between different parts of a text. This
task involves identifying and classifying discourse
relations, such as the cause-effect relationship,
between individual units, like sentences or para-
graphs. Foundational work by Mann and Thomp-
son (Mann and Thompson, 1988) and advance-
ments by Daniel Marcu (Marcu, 1996, 2000) have
introduced methodologies for constructing trees
that represent discourse units and their connections,
ultimately reflecting the rhetorical composition of
texts. In RST, elementary discourse units (DUs)
are roughly analogous to clauses, but higher order
units can span indefinitely up to a complete text.
The framework employs 30 relations to capture the
full range of connections between these units. Re-
lated spans are classified into nucleus and satellite,
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where the nucleus represents the central or more
significant unit of the relation'.

The complexity inherent in discourse annotation
frequently leads to disagreements among annota-
tors at multiple levels. Even rigorously designed
RST corpora, such as RST-DT (Lynn Carlson,
2002), the Potsdam Commentary Corpus (Stede
and Neumann, 2014), and the Dutch Discourse
Treebank (van der Vliet et al., 2011; Redeker et al.,
2012), typically yield kappa scores reflecting at
best substantial agreement.
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)
‘ Dreparatm
L
®1® ®23@®
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1) ‘ nonvolim
BACKGROUND: L
PHOTO OF A V8 ®20 ®:0
VEGETABLE @ @® .
JUICE BOTTLE. 2) REMEMBER  3) MAYBE THAT'S
ALL THOSE WHY SPARKY
VEGETABLES  LIVED SO LONG.
YOU SLIPPED
UNDER THE
TABLE?
Figure 1: Example from RST website (Taboada

and Mann, 2006) in RSTWeb (Zeldes, 2016).
Cropped labels: preparation, nonvolitional cause

On the other hand, while the subject of disagree-
ment in discourse annotation has been widely ad-
dressed in theory, there have been relatively few
suggestions on how this issue could be addressed
in practice. Meanwhile, recent years have seen

"Beyond RST, other frameworks such as the Penn Dis-
course Treebank (PDTB, Prasad et al. 2008) and Segmented
Discourse Representation Theory (SDRT, Asher and Las-
carides 2003) have explored alternative approaches to labeling
discourse relations. For the former, there exists a body of
work dealing with disagreement (Yung et al., 2024; Scholman
and Demberg, 2017), showing that this problem is relevant for
either framework.

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 18-32.
Eugene, Oregon, July 18-20, 2025



the emergence of a large body of work on learn-
ing from disagreement, proposing a number of ap-
proaches to handling varying interpretations. In
natural language processing, transformer-based ar-
chitectures (Devlin et al., 2019; Liu et al., 2019)
are increasingly used to capture nuanced linguis-
tic phenomena, and this includes work on leverag-
ing label distributions and annotator-specific biases
(Rodrigues and Pereira, 2017; Mostafazadeh Da-
vani et al., 2022). Such strategies include aug-
menting the gold standard based on the spectrum
of opinions (Plank et al., 2014; Fornaciari et al.,
2021), learning from distributions of labels using a
soft metric (Sheng et al., 2008; Aroyo and Welty,
2014; Peterson et al., 2019; Uma et al., 2020), and
training separate models on labels coming from
individual annotators (Akhtar et al., 2020). How-
ever, despite these trends, deeper engagement with
disagreements in discourse-level tasks like RST
parsing has been limited.

Given this tendency, addressing the research gap
mentioned above becomes increasingly important.
To this end, we pursue several objectives in this

paper:
* Review existing RST resources with respect

to the extent of disagreeing annotations they
contain.

» Perform quantitative and qualitative analyses
of factors contributing to disagreement, using
suitable data sources.

* Based on the obtained results, propose prefer-
able ways of integrating disagreements into
RST annotation and RST parsing.

The scope of this paper primarily concerns RST
relations and nuclearity, leaving aside two other
major aspects of RST: segmentation of text into
EDUs and organizing these segments into spans.
While these areas are also subject to disagreement
and require thorough analysis, we exclude them
here for several reasons. Firstly, in most existing
corpora, inter-annotator agreement on these tasks
is much higher compared to relation and nuclearity
labeling (see Das et al. 2017 for details). Addi-
tionally, in most flavors of RST annotation, EDU
segmentation is grounded in syntax and leaves con-
siderably less room for subjective interpretation.
This is evident to the extent that some RST parsers
assume text segmentation is given; while debat-
able, this assumption remains widely adopted in
practical applications (Maekawa et al., 2024).
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Our results suggest that RST annotation is sub-
stantially influenced by individual preferences of
annotators, which sometimes conflict with the an-
notation manual. In such cases, considering the
entire range of disagreeing annotations seems re-
dundant. On the other hand, a larger portion of
disagreements is prompted by factors that allow
for multiple interpretations, making the adoption
of a spectrum of readings by individual experts a
generally feasible strategy.

2 Related Work

2.1 Theories of disagreements in discourse
annotation

The subject of discrepancies in RST analysis has
been widely discussed in the community, with par-
ticular attention given to the relational level.

In this context, two notions need to be distin-
guished: first, one annotator assigning multiple
complementary relations; second, several annota-
tors assigning multiple relations that may or may
not be complementary. We will refer to the for-
mer as "multi-level” annotation and the latter as
"disagreement." While our primary focus is on the
latter, the concept of multi-level analysis suggests
that diverging concurrent analyses may all be plau-
sible: if one annotator can assign multiple comple-
mentary relations to the same span, it is reasonable
to assume that several annotators can do the same.
For this reason, we consider the respective argu-
ments in the discussion, even though they do not
concern disagreement directly.

(1) The topic of multi-level analysis has been
widely discussed in the literature. For example,
Mann and Thompson, 1988 suggested that multiple
relations can be assigned to the same span. Simi-
larly, Moore and Pollack, 1992 argued that each re-
lation between rhetorical units should be annotated
on two levels: informational and intentional, as the
existing relation types exhibit significant overlap
with respect to these domains. Arguments in favor
of multi-level annotation have since appeared in
numerous works (see Taboada and Mann, 2006 for
a systematic overview).

However, Sanders and Spooren, 1999, followed
by Stede, 2008a, oppose this suggestion, claiming
that complex annotation would be redundant in
most cases, as the relations involved are typically
either exclusively informational or exclusively in-
tentional. Meanwhile, Taboada and Mann, 2006
notes that postulating multiple relations may be jus-



tified in ambiguous cases that cannot be resolved
based on the context.

(2) The issue of ambiguity in the RST frame-
work has been directly addressed in several works
by Manfred Stede (Dipper and Stede, 2006; Stede,
2008b,a), based on the experience of building the
Potsdam Commentary Corpus (Stede and Neu-
mann, 2014). The results of this work are sum-
marized in Stede, 2008a, which identifies several
sources of ambiguity in RST annotations, such as
vagueness in definitions and conflicting scopes of
relations, and argues that many of these can be
resolved through distinguishing several levels of
discourse annotation: thematic, referential, and oth-
ers. To that end, the work introduces a specialized
framework, MLA.

A related line of work (Iruskieta et al., 2015;
Wan et al., 2019) proposed changes to how the sim-
ilarity of structures should be measured in RST
annotations. The alternative metrics penalize dis-
crepancies on different levels (relation directional-
ity, nuclearity, relation type) differently, depending
on how important each factor is for the overall
structure.

Finally, some recent works suggest a permis-
sive approach to concurrent interpretations, advo-
cating for their incorporation into the gold standard.
(Das et al., 2017) compare amateur and expert RST
annotations in English and German and propose
treating competing expert analyses as a “complex
ground truth.” They suggest Underspecified Rhetor-
ical Markup Language (URML, Reitter and Stede,
2003) as a means of storing discourse graphs. On
the other hand, eRST, a proposal for RST enhance-
ment, allows for additional edges, i.e., concurrent
relations, in RST structures, provided these rela-
tions are realized lexically through discourse mark-
ers. Although this notion does not directly address
disagreements, it enables the integration of several
alternative analyses into one structure and permits
at least some alternative readings on the relational
level. In other words, parallel annotations in exist-
ing corpora can partially be integrated into eRST
graphs.

2.2 Analyzing Annotation Discrepancies

Qualitative analyses of disagreements have primar-
ily been conducted by corpus designers. For in-
stance, da Cunha et al., 2011 examined disagree-
ments in Spanish RST. A significant amount of
qualitative analysis of RST disagreements, which
ultimately remained unpublished, was carried out
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by the authors of the Dutch Discourse Treebank
(NLDT) based on their own material. While we
conducted our qualitative analysis independently
on a subset of their corpus, resulting in different hy-
potheses, we extend our gratitude to Gisela Redeker
for granting us access to their data and observations
(Redeker and van der Vliet, 2015).

3 Datasets with disagreements

Given the known complexities and disagreements
in RST annotations, it has become standard prac-
tice in corpus design to include at least a small
subset of texts annotated independently by multi-
ple annotators, facilitating measurement of inter-
annotator agreement. However, there are substan-
tial differences in how many documents receive par-
allel annotations, how many discourse units these
documents include, and how many annotators are
involved. These differences have implications for
how helpful the annotations are for learning from
disagreement: although the amount of suitable data
remains the most important factor, it is certainly
not the only one.

Despite this common practice, some datasets
lack parallel annotations. Specifically, the George-
town University Multilayer Corpus (Zeldes, 2017),
currently the largest RST treebank, used a develop-
ment procedure that purposefully avoids measuring
the relative annotation quality; as a result, the cor-
pus does not have parallel markup®. The Basque
RST treebank did not have parallel annotations on
the level of whole documents, as its developers
measured disagreement on granular tasks, such as
the assignment of causal relations (Iruskieta et al.,
2013); aside from that, only reconciled annotations
are available in the public release. For several cor-
pora, there exist a number of parallel annotations,
but these have not been made publicly available
for various reasons. This applies to the Potsdam
Commentary Corpus (Stede and Neumann, 2014)
and APA RST (Hewett, 2023).

Some resources are offered by the RST Dis-
course Treebank (Lynn Carlson, 2002), formerly
the largest RST dataset, containing 385 newswire
texts from the Wall Street Journal section of the
Penn Treebank. Fifty-three texts from this main cor-
pus body received parallel annotations, providing a
relatively large set of parallel RST structures that
was published with the main corpus. Still, some

2Secondary edges from eRST graphs cannot be fully con-

sidered as such, since, for instance, they are not independent
from primary ones.



Corpus N annotators | N docs | N EDUs Notes

Dutch RST 3 80 2344 Docs unevenly split: 80 /74 /13
Kobalt RST 2 42 2216

CSTNews 6.0 2 5 97 3 or 4 versions for some docs.
Russan RST 3 3 225

APA RST 3 36 - *Non-public

RST DT - 52 2938 *Non-attributed
Spanish RST - 80 694 *Non-attributed

Table 1: Parallel data in RST corpora. N EDUs assumes the gold standard segmentation.

factors limit the utility of this data for analyzing
disagreement.

* Firstly, the primary corpus annotations are not
independent of the parallel annotations, as the
former result from a reconciliation process
involving these parallel versions.

» Secondly, annotations are not explicitly at-
tributed to individual experts, limiting the
analysis of annotator-specific perspectives or
biases.

The Spanish RST treebank shares the latter
two issues, although it remains one of the largest
sources in terms of parallel texts, comprising
around 700 discourse segments distributed across
80 parallel documents.

For a number of RST treebanks, the opposite
is true, i.e., the data is attributed and produced
by workers independently, but its amount is in-
sufficient to conduct a feasible quantitative analy-
sis. Such is the case with the Brazilian (CSTNews
6.0, Cardoso et al., 2011) and Russian treebanks
(Toldova et al., 2017). We provide the number of
annotated documents for these and other corpora
in Table 1.

Finally, several corpora feature substantial
amounts of attributed parallel annotations, though
these are not publicly available and must be re-
quested directly from their creators. A notable
example is the Dutch Discourse Treebank (NLDT),
which offers three annotation versions for each of
its 80 documents (comprising 2,344 EDUs). Typ-
ically, two experts annotated each text indepen-
dently (with a third annotator occasionally partici-
pating), followed by a reconciled version (van der
Vliet et al., 2011; Redeker et al., 2012). For our
analysis, we selected 74 texts annotated by the two
experts responsible for the largest annotation share.
Although the annotations are not anonymized, for

the purpose of our study, we treat the annotators
anonymously, labeling them experts A, B, and C.

Another corpus with the desired properties is
Kobalt RST (Wan, 2021), a subset of the Kobalt
corpus annotated with discourse trees. Similarly,
its 42 documents (comprising 2216 EDUs) have
three versions: two readings by experts and a rec-
onciliation. Although Kobalt covers a very specific
genre of discourse, i.e., argumentative essays by
non-native German speakers, it remains suitable
for analyzing RST disagreements, such as eliciting
individual biases of annotators. We do not incorpo-
rate the reconciled annotations in our experiments,
as we aim to preserve the raw perspective of each
annotator.

Remarkably, both Kobalt and NLDT were anno-
tated by trained experts holding at least a master’s
degree in linguistics or related disciplines. This ex-
pertise level (see Das et al. 2017) and their higher
motivation as opposed to crowd annotators ensure
the quality of their work. Another similarity is
that Kobalt and NLDT concern related languages
allowing for a cross-language comparison (which,
however, has to account for lexical and syntactic
differences). These similarities are another reason
why we use both Kobalt and NLDT in our further
analysis.

4 An analysis of disagreements in the
datasets

In this section, we compare disagreements across
the two corpora more closely by reporting confu-
sion matrices and inspecting the label pairs where
annotators show consistent divergences. To avoid
dealing with matrices that are too nuanced and
sparse, we only accounted for cases of disagree-
ment on relations and disregarded cases where ex-
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perts agree on a relation but disagree on nuclearity>.
We pay special attention to whether the experts’
markup exhibits systematic disagreements. To that
end, we consider the most frequently confused rela-
tions, dividing them into two categories: "symmet-
rical" cases, in which annotators A and B confuse
relations X and Y equally frequently or at least
similarly often, and "asymmetrical" cases, where
confusing X and Y is only typical for annotator A
or B.

In the first category, we note several tendencies:
firstly, problematic relation pairs often involve the
ELABORATION relation. Although the annotation
manuals for Kobalt and NLDT, the former based
on PCC (Stede and Neumann, 2014), treat it differ-
ently, it still remains a frequent option that experts
resort to when unable to assign a more precise label.
While the notion of this relation being problematic
has been around for a long time, it is even more
evident in a cross-lingual comparison on attributed
material. Of more interest is that CAUSE in Kobalt
is often confused with other relations by both an-
notators, sometimes multinuclear and non-causal
(LIST). Inspecting the data instances manually, we
notice that 81% of these are lexically unspecified
and involve adjacent sentences, as in (1).

e))

[Uberregionale Produkte werden so stark wie nie

. SE/LIS . . .
konsumiert .] 2T Die heutige Generation prof-

itiert von einem vielfiltigen Warenangebot dank der
Globalisierung ... .]kobalt_DEU_004

Understandably, in this setting, experts struggle
to agree on the relative importance of sentences,
since normal heuristics, like the deletion test*, are
harder to apply. Likewise, the causality of the
relation is also debatable, as human opinions on
whether one statement entails another can diverge
greatly, as shown by other text understanding tasks
(Nie et al., 2020). Some other prominent disagree-
ments, such as those involving JUSTIFY and MO-
TIVATION in NLDT (Redeker and van der Vliet,
2015), also occur in this underspecified setting.

We report the most frequent disagreements from
the second category in Table 2 & Table 3. One
of the tendencies we find remarkable is the great
number of disagreements over multinuclear rela-
tions. This could offer insight into the high value

3We report the most frequently confused relations in the
appendix in Table 5 & Table 6.

“The deletion test involves removing each part of a relation
in turn to determine whether the entire span would retain its
original meaning. The part that is harder to delete is consid-
ered more important.
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of length as a feature, since multinuclear relations,
especially JOINT, which can be used to link arbi-
trary parts of text, tend to occur in an intersentential
position and thus their respective spans are longer
in length. Based on the provided numbers, it can be
argued that annotators tend to develop a preferred
reading for ambiguous cases and assign a specific
label based on past experiences. Such is the case
with NONVOLITIONAL CAUSE from NLDT, which
annotator A considers applicable to a wider range
of situations: overall, in our subset of corpus data,
expert A uses NONVOLITIONAL CAUSE 111 times,
while expert B only 86. Other relations with a simi-
lar skew are BACKGROUND (40 vs. 23), JOINT (57
vs. 27), and, to a lesser extent, CONJUNCTION (231
vs. 262).

Incidentally, some of the confusions we observe
in Kobalt are also characteristic of other RST cor-
pora: da Cunha et al., 2011 report CONCESSION
and ANTITHESIS to be frequently confused in the
Spanish treebank. On the other hand, unlike Span-
ish RST, MEANS and CIRCUMSTANCE are almost
never confused in the two corpora, suggesting that
the authors’ explanation based on connective poly-
semy is correct.

Relations Ann. A | Ann. B
conjunction-list 26 2
joint-list 2 7
concession-antithesis 8 0

Table 2: Frequent preferences in Kobalt

Relations Ann. A | Ann. B
joint-conjunction 1 22
nonvol-cause-nonvol-res 12 3
list-joint 11 1
summary-preparation 8 1
nonvol-cause-circumstance 7 1

Table 3: Frequent preferences in NLDT

4.1 Results: discussion

The previously made observations shed some light
on how various cases of disagreement are dis-
tributed in the corpora; we argue that a significant
part of these does not constitute an informative
signal. One example of this is ELABORATION:
keeping this label as an alternative to more spe-
cific relations may not be particularly helpful for



understanding the text by either human or machine
readers, since the more specific relation often im-
plies that one discourse unit elaborates on the other.
Preserving ELABORATION may also have unde-
sired effects during parser training, as parsers tend
to develop a bias towards it as the most frequent re-
lation. A further example is constituted by relation
types that experts subjectively prefer — possibly,
contrary to annotation rules. For instance, the con-
fusion between CONJUNCTION and LIST observed
in Kobalt may be a case of this, as the respective
manual suggests that LIST should only be assigned
when lexical or graphic signals explicitly indicate
an enumeration. In cases like that, only one anno-
tator is "correct" with respect to the manual.

However, there also remain plausible diver-
gences in the analyses that can prove informa-
tive if preserved in the annotation, such as the
CAUSE/LIST example above. The factors behind
cases like that include both conflicting or ambigu-
ous signals (several DMs etc.) and underspecifi-
cation; the latter leads to conflicting readings es-
pecially frequently (as another example, consider
MOTIVATION and JUSTIFY in NLDT).

In order to determine the more suitable strategy
for preserving the meaningful disagreements, it is
essential to consider the relative impact of these
factors. In the following section, we propose a
computational experiment for that purpose.

5 Modeling disagreements

5.1 Motivation

Our experiment aims to quantify the relative impact
of surface variables on annotator disagreement, par-
ticularly, on discourse relations. In order to do so,
we train a classifier for a binary objective: whether
two annotators agree or disagree on the relation
class given two related discourse units. Our as-
sumption is that signals that consistently prompt
diverging interpretations will emerge as important
features, while irrelevant signals will not make an
impact. To that end, we pick XGBoost as a classi-
fier model that can leverage feature combinations
and robustly estimate their contribution (Chen and
Guestrin, 2016). As an example, Liu et al., 2023
and Pastor and Oostdijk, 2024 both used XGBoost
to analyze hard and easy signals in RST parsing.
We also consulted both of these works when deter-
mining the set of features.
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5.2 Enhancing datasets

For our experiments, we ensured that both corpora
were annotated for relevant syntactic and discourse
variables, such as UD tags and discourse markers.
This required additional intermediate steps as de-
scribed below.

Concerning syntactic features, we addressed
the problem of dependency tagset mismatch. For
NLDT, syntactic dependency markup using the
Universal Dependencies (UD) standard was pub-
lished in 2023 as part of the DisRPT shared task
(Braud et al., 2023). In contrast, the dependency
annotations available for Kobalt use the Hamburg
Dependency Treebank (HDT, Borges Volker et al.,
2019) annotation standard, which, aside from dif-
ferent tags, also displays a number of differences
in tree-building rules (Shadrova, 2020). To ensure
that both of our models used syntactic features of
similar granularity, we converted the existing de-
pendency annotations from the HDT to the UD
standard using a robust converter developed by
(Hennig and Ko6hn, 2017) and obtained standard
CONLL-U files.

Discourse features presented a different chal-
lenge, namely, the need for a uniform way of an-
notating both datasets with discourse markers. The
task of detecting and disambiguating discourse con-
nectives has drawn significant attention in the con-
text of PDTB-style discourse parsing, with several
tools developed specifically for these tasks (Dip-
per and Stede, 2006; Bourgonje and Stede, 2020).
However, these tools only target German and lack
a Dutch counterpart. Another development in this
direction is the creation of discourse connective
inventories for both languages: DimLex (Stede and
Umbach, 2002) and DisCoDict (Bourgonje et al.,
2018), in which all entries are additionally anno-
tated for possible non-connective readings.

In our approach, we leveraged natural language
instructions and used OpenAlI’s text-to-text gen-
erative model O1-mini (OpenAl, 2023) to high-
light DM candidates. We purposefully based the
model’s instructions on a relaxed definition of dis-
course markers (compared to PDTB), synthesized
from Fraser, 2009’s account. Our motivation was
to cover the entirety of discourse marker candidates
to assess their impact on experimental results. The
respective prompts are provided in Section A in the
appendix.

In the absence of gold DM annotations, we tested
the efficiency of this solution using a rule-based



baseline that, while imperfect on its own, provides
a reliable approximation of ground truth. Specifi-
cally, this baseline highlights all entries from Dim-
Lex or DisCoDict in the text using regular expres-
sions; however, we discard all matches except those
that occur at an EDU-initial position (assuming the
existing EDU segmentation). This choice is based
on the understanding that a large portion of DM
candidates, such as “und” or “en” (“and”) or “als”
(“when”), occur at the start of a clausal EDU when
acting as subordinating conjunctions and, conse-
quently, as discourse connectives.

We then tested O1-mini’s robustness in detect-
ing these EDU-initial DM candidates, resulting in
accuracy scores of 79% and 83% on Kobalt and
NLDT, respectively. This, along with a manual
inspection we conducted, demonstrates that both
O1-mini’s predictions and the baseline show rea-
sonable reliability.

Regarding sources of errors, we note that a large
portion of misclassifications occurs due to GPT
selecting markers that do not fall into the defini-
tion of a discourse connective in PDTB terms and
are thus absent from the lexicons we used. These
alleged false positives include instances such as
“gelukkig” (“luckily”) or “overigens” (“besides”);
whether these can truly be regarded as connectives
remains an open question.

5.3 Predicting disagreements

Similarly to Liu et al., 2023 and Pastor and Oost-
dijk, 2024, we do not train the classification algo-
rithm on the text of the two discourse units but only
supply it with pre-extracted features. Originally,
the features we use were found to be related to item
difficulty and could, thus, help predict disagree-
ments; we supply the full list below:

Discourse unit length in symbols;

Number of discourse markers (dm_count),
type of the head DM, i.e., a DM that is the
highest in the constituent hierarchy of the sec-
ond span (dm);

Dependency function of a discourse unit’s syn-
tactic head (DEPREL of the head in CONLL-U
terms);

Number of elementary discourse units
(roughly, number of clauses) in the first and
the second discourse unit, and in total;

Genre, when applicable;
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* Intra-, inter- (involving two sentences), or mul-
tisentential status of the relation (Redeker and
van der Vliet, 2014) as three binary features;

* Lastly, the label assigned by one of the two an-
notators, which helps understand whether the
experts are in two minds over some particular
relation types.

As in the parser-oriented study (Liu et al., 2023),
we split our features into two groups. The first
group comprises surface features that experts can
utilize when annotating a text, while the second
group includes the full set of features. The surface
feature group includes the following attributes: DU
length, the number and type of discourse markers,
the syntactic function of the head, and the inter-,
intra-, or multisentential status.

Dataset | All | Surface
Kobalt | 0.75 0.73
NLDT | 0.68 0.59

Table 4: Mean F1 score of XGBoost (5-fold CV)

For each dataset, we separately utilize two sub-
sets of features: surface-only features ("realistic")
and all features. We report the average F1 score
across a 5-fold cross-validation in Table 4 and pro-
vide the relative weights for all factors in Figure 2.
It can be seen that, in general, the classifier does
not attain an optimal score, especially on NLDT,
where the model based on surface features performs
slightly above chance. This may indicate that the
collected features are insufficient or, at least, do not
correlate well with disagreement in NLDT.

5.4 Results: discussion

Despite different classification scores, the two mod-
els exhibit a clear pattern in terms of the features
they select as relevant. Concretely, discourse unit
length always emerges as the most important factor.
When the "label" feature is included, it is always
the next deciding factor, suggesting that annotators
consistently disagree over specific relations: e.g.,
one picks CAUSE while another picks EXPLANA-
TION. Lastly, the head’s syntactic function and
DM type also make a contribution in all settings,
although their role in Kobalt seems to be more
prominent. Importantly, DM variable appears not
as informative as other factors>.

Evidence from PDTB annotation also demonstrates that
agreement does not hinge on the presence of markers: inter-
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first/second argument of the relation.

The first notion aligns well with some of the ex-
isting hypotheses about automatic discourse pars-
ing, namely, that humans and parsers struggle more
when analyzing relations between lengthy spans
of text, as in Nguyen et al., 2021; Shi et al., 2020.
Nevertheless, unit length proves to be consistently
more important than similar features that account
for syntax or tree position: longer spans are often
multisentential and include more elementary dis-
course units, but these factors do not emerge as
important.

6 Discussion

The results of our analysis allow us to speculate
about the best way of preserving meaningful RST
interpretations. As mentioned in Section 2, the two
existing alternatives are URML (Das et al., 2017)
and eRST (Zeldes et al., 2024); the former of these
two could incorporate all parallel readings, and
the latter only those that are lexically grounded,
i.e., based on one or two discourse markers. Here,

annotator agreement for implicit relations (85.1%, Prasad
et al., 2008) is only slightly lower than for explicit ones
(90.2%).
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we would like to address two properties of eRST
annotation that make it less feasible for this task.

The first of these is its definition of discourse
markers, which serve as a basis for secondary
edges. In this respect, eRST aligns completely with
PDTB’s notion of discourse connectives and its re-
spective restrictions: only subordinating conjunc-
tions, coordinating conjunctions, and adverbials
can have the status of discourse markers (Zeldes
et al., 2024). In this paper, we are not looking
to contribute to the vast theoretical discussion on
what lexical elements should be considered dis-
course markers; however, we must note that exist-
ing studies offer different answers to this question,
sometimes using the same linguistic material. For
instance, annotating the Wall Street Journal cor-
pus with PDTB-style discourse connectives (PDTB
2.0, Prasad et al., 2008) and with more vaguely
defined discourse markers (RST Signalling Corpus,
Das and Taboada, 2017; Das, 2014) results in a dif-
ferent number of unique markers being identified:
100 and 201, respectively. Partly, this is due to
the latter category including combinations like “but
also”, but also due to inclusion of broader lexical



categories.

Undoubtedly, adopting a stricter definition sim-
plifies the task for corpus annotators, resulting in
better reliability of their work. On the other hand,
it raises the question of whether using a broader set
of markers, such as that of the RST Signalling Cor-
pus, would allow for broader coverage of secondary
edges and better reflect the space of possible inter-
pretations of discourse—something that eRST, as
well as ourselves, seeks to address. For example,
such items as “naturally”, “of course”, and “after
all” are not listed as explicit in either PDTB 2.0
(Prasad et al., 2008) or PDTB 3.0 (Prasad et al.,
2019). However, we could model cases where “nat-
urally” would signal REASON relation and “after
all” would signal CAUSE. In eRST terms, it would
prompt the addition of a primary or a secondary
edge.

2

[We only left home at 8; ]M [naturally, we were

late.]

[He will do that for you, ]%[because, after all,

he is your brother.]

3)

These examples suggest that relaxing the existing
lexical criteria for secondary edges could, in theory,
improve coverage.

A further possible shortcoming of eRST is that it
cannot incorporate plausible readings of underspec-
ified relations unlike URML. This is especially im-
portant since in the existing corpora, the larger part
of relations is not signalled by markers (Taboada,
2006; Das and Taboada, 2017). Our observations
also confirm that disagreement is strongly associ-
ated with underspecification; thus, we argue that
a standard that aims to integrate parallel readings
will profit from allowing multiple graph edges in
underspecified cases.

7 Conclusion

The analyses presented in this paper highlight that
RST annotations exhibit a persistent and systematic
degree of inter-annotator disagreement. Drawing
on two expert-annotated corpora (Dutch and Ger-
man), we observe that divergent interpretations of-
ten arise from the inherent complexity of discourse
relations, especially when label definitions are un-
derspecified or conflated. Although some discrep-
ancies reflect an annotator’s systematic bias (e.g.,
favoring ELABORATION or LIST), in many cases,
multiple readings of a relation are equally plausi-
ble. Our experiments suggest that span length and
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certain label choices serve as strong predictors of
disagreement, indicating that large or complex dis-
course spans are particularly prone to ambiguous
interpretations.

From an applied perspective, two complemen-
tary strategies emerge. First, filtering out demon-
strable biases that run counter to annotation rules
can clarify the “true” consensus. Here, the judg-
ment needs to be based around surface signals han-
dled differently than prescribed; consequently, even
rule-based systems or simpler neural language mod-
els can prove helpful at this task.

Second, adopting flexible schemes that capture
legitimate ambiguity, such as URML or eRST, can
more comprehensively reflect discourse complex-
ity; of these two, we find URML better suited for
this (and only for this) specific task, as it gives
more freedom for genuine discrepancies to be in-
tegrated. Moving forward, these dual approaches
— tightening clearly defined guidelines while em-
bracing multiple valid analyses — hold promise for
improving both the reliability and the expressive
power of RST annotation.

Limitations

We acknowledge that our analysis focuses on RST
relations paying less attention to the partly over-
lapping problems of disagreements in nuclearity
and discourse unit spans. Furthermore, we high-
light that the features we used when predicting
disagreement do not offer an exhaustive picture of
factors behind annotation discrepancies. Consider-
ing additional variables, such as rhetorical "moves"
(Redeker et al., 2012) or syntactic signals beyond
clause boundaries, could make the analysis more
complete.
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A Connective detection prompts

A.1 NLDT connective detection prompt

**Instruction**

In the following Dutch text, identify all discourse
markers (DMs) and enclose them in <dm> tags.
**Definition of Discourse Markers (DMs):**

- DMs, also known as connectives, are lexical
expressions (e.g., *en*, *maar®*, *omdat*, *dus*,
*hoewel*, *toch*) that belong to different syntac-
tic classes such as conjunctions, adverbials, and
prepositional phrases.

- They are used to connect discourse components
(text segments) and signal the coherence relations
that hold between those components (e.g., contrast,
cause, elaboration).

- The scope of a DM’s function is a single dis-
course sequence comprising adjacent text spans in
a relation.

- DMs can be present at the beginning, middle,
or end of a sentence (or segment).

- A DM signals relations that hold between two
adjacent text segments but does not create the rela-
tion; it guides the interpretation of the relation.
**QGuidelines: **

1. **Scope of DMs:**

- The function of a discourse marker applies to a
single discourse sequence comprising adjacent text
spans in a relation.

- DMs signal relations that hold between two
adjacent text segments.

- A discourse marker does not create the relation
between text segments; it only guides the interpre-
tation of the relation.

2. **Position of DMs:**

- DMs can be present at the beginning, middle,
or end of a sentence (or segment).

- They may appear within the sentence or at
clause boundaries.

3. **]dentification of DMs:**

- Use a list of common Dutch DMs to identify
potential markers, such as:

- ¥*Addition:** *en*, *ook*, *bovendien*

- **Contrast:** *maar®*, *echter*, *toch*



- **Condition: ** *als*, *indien*, *tenzij*

- **Cause/Reason: ** *omdat*, *want*, *door-
dat*

- **Concession:** *hoewel*, *ofschoon*, *des-
ondanks*

- ¥*Temporal:** *toen*, *terwijl*, *voordat*,
*nadat*

- ¥**Result/Consequence:** *dus*, *daardoor*,
*zodat*

- **Example:** *bijvoorbeeld*, *zoals*

- Ensure the word functions as a DM in context
by connecting two propositions or clauses.

- Confirm that the token’s part of speech cor-
responds to typical DM categories (conjunctions,
adverbials, prepositional phrases).

4. ** Annotation Format: **

- Enclose each identified DM within <dm> and
</dm> tags.

- Do not alter the original text other than adding
the tags around the DMs.

5. **Examples:**

**English Example:**

Input:

"A country is considered financially healthy
**if** its reserves cover three months of its im-
ports."

Output:

"A country is considered financially healthy
<dm>if</dm> its reserves cover three months of its
imports."

**Dutch Examples:**

**Example 1:%%*

Input:

"Drie nieuwe emissies beginnen vandaag te han-
delen op de New York Stock Exchange, **en**
één begon vorige week te handelen op de Nas-
dag/National Market System."

Output:

"Drie nieuwe emissies beginnen vandaag te
handelen op de New York Stock Exchange,
<dm>en</dm> één begon vorige week te hande-
len op de Nasdaqg/National Market System."

**Example 2:%*

Input:

"De Poolse rat zal deze winter goed eten. Tonnen
heerlijk rottende aardappelen, gerst en tarwe zullen
vochtige schuren over het hele land vullen **ter-
wijl** duizenden boeren de kopers van de staat
wegsturen."

Output:

"De Poolse rat zal deze winter goed eten. Ton-
nen heerlijk rottende aardappelen, gerst en tarwe
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zullen vochtige schuren over het hele land vullen
<dm>terwijl</dm> duizenden boeren de kopers van
de staat wegsturen."

**Task:**

- Read the following Dutch text.

- Identify all discourse markers based on the
guidelines above.

- Enclose each DM within <dm> tags.

- Ensure that the rest of the text remains un-
changed.

**Notes: **

- Pay special attention to words that can function
as DMs but may have other grammatical roles. Use
context to determine their function.

- The goal is to produce a text identical to the
input except for the addition of <dm> tags around
the identified discourse markers.

- Do not tag words that are not functioning as
discourse markers in the given context.

By following these instructions, you will iden-
tify and annotate all discourse markers in the text,
which will help in analyzing the coherence rela-
tions within the text and assist in computational
processing.

**Text to Process:**

A.2 Kobalt connective detection prompt

**]nstruction**

In the following German text, identify all dis-
course markers (DMs) and enclose them in <dm>
tags.

**Definition of Discourse Markers (DMs):**

- DMs, also known as connectives, are lexical
expressions (e.g., und, weil, obwohl) that belong
to different syntactic classes such as conjunctions,
adverbials, and prepositional phrases.

- They are used to connect discourse components
(text segments) and signal the coherence relations
that hold between those components (e.g., contrast,
cause, elaboration).

- The scope of a DM’s function is a single dis-
course sequence comprising adjacent text spans in
a relation.

- DMs can be present at the beginning, middle,
or end of a sentence (or segment).

- A DM signals relations that hold between two
adjacent text segments but does not create the rela-
tion; it guides the interpretation of the relation.
**QGuidelines: **

1. **Identify Potential DMs:**

- **Common DMs in German include:**



- **Conjunctions:** und (and), aber (but), oder
(or), denn (for), sondern (but rather), weil (be-
cause), obwohl (although), wenn (if), wihrend
(while), falls (in case).

- **Adverbials:** deshalb (therefore), trotzdem
(nevertheless), allerdings (however), aulerdem (be-
sides), folglich (consequently), inzwischen (mean-
while), dennoch (still).

- **Prepositional Phrases:** im Gegensatz zu (in
contrast to), aufgrund von (due to), trotz (despite),
infolgedessen (as a result).

2. **Position in Sentence:**

- DMs can appear at the beginning, middle, or
end of a sentence.

- Examples:

- Initial: <dm>Trotzdem</dm> geht er zur Ar-
beit. (Nevertheless, he goes to work.)

- Medial: Er geht <dm>trotzdem</dm> zur Ar-
beit.

- Final: Er
<dm>trotzdem</dm>.

3. **Confirm the Function:**

- Ensure the word or phrase is functioning as a
DM and not in another grammatical role.

- Exclude words that are not functioning as DMs
(e.g., "dass" as a complementizer). Exclude "dass"
as a complementizer. Exclude "dass" as a comple-
mentizer.

- Exclude "dass" as a complementizer.

- Exclude "und" if not interclausal.
**Examples: **

1. **Example (English DMs):**

- **Relation DMs:**

- Circumstance: when, as, with

- Condition: if, unless

- Contrast: but, however

- Concession: while, though

- Elaboration-additional: and, also

- Reason: because, due to

- List: and, in addition, moreover

- Temporal-after: since, after

- Temporal-before: before

2. **Example 1:%%*

Three new issues begin trading on the New York
Stock Exchange today, <dm>and</dm> one be-
gan trading on the Nasdaq/National Market Sys-
tem last week. On the Big Board, Crawford &
Co., Atlanta, (CFD) begins trading today. Craw-
ford evaluates health care plans, manages medical
and disability aspects of worker’s compensation in-
juries <dm>and</dm> is involved in claims adjust-
ments for insurance companies. <dm>Also</dm>

geht zur Arbeit,
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beginning trading today on the Big Board are El
Paso Refinery Limited Partnership, El Paso, Texas,
(ELP) and Franklin Multi-Income Trust, San Ma-
teo, Calif., (FMI).

3. **Example 2:**

The Polish rat will eat well this winter. Tons of
delectably rotting potatoes, barley and wheat will
fill damp barns across the land <dm>as</dm> thou-
sands of farmers turn the state’s buyers away. Many
a piglet won’t be born as a result, <dm>and</dm>
many a ham will never hang in a butcher shop.
<dm>But</dm> with inflation raging, grain in
the barn will still be a safer bet for the private
farmer than money in the bank. Once again, the
indomitable peasant holds Poland’s future in his
hands. <dm>Until</dm> his labor can produce a
profit in this dying and distorted system, even Sol-
idarity’s sympathetic new government won’t win
him over.

**Your Task:**

- Read the following German text.

- Identify all DMs as per the guidelines above.

- Enclose each DM within <dm> tags.

- Ensure that the rest of the text remains un-
changed.

**German Text:**



B Frequently confused relations

Relations Ann. A | Ann. B
elaboration-evidence 13 10
cause-list 7 8
cause-reason 5 5
cause-evidence 6 4
cause-elaboration 5 4
conjunction-list 26 2
joint-list 2 7
concession-antithesis 8 0

Table 5: Frequent two-sided (top) and one-sided (bot-
tom) relation confusions in Kobalt

Relations Ann. A | Ann. B
elaboration-interpretation 15 11
elaboration-nonvol-cause 15 11
elaboration-circumstance 14 11
elaboration-nonvol-result 12 11
elaboration-background 6 12
elaboration-conjunction 11 6
circumstance-condition 10 5
elaboration-preparation 8 7
justify-motivation 7 5
joint-conjunction 22 1
nonvol-cause-nonvol-res 12 3
joint-list 11 1
summary-preparation 8 1
nonvol-cause-circumstance 7 1

Table 6: Frequent two-sided (top) and one-sided (bot-

tom) relation confusions in NLDT

32



Aligning Embedding Spaces Across Languages to Identify Word Level
Equivalents in the Context of Concreteness and Emotion

Josephine Kaminaga*!, Jingyi Wu*!2, Daniel Yeung*!, and Simon Todd'

"University of California, Santa Barbara
{jkaminaga, jingyi_wu,dyeung,sjtodd}@ucsb.edu
2Cornell University
{jw28243}@cornell.edu

Abstract

The impact of emotionality and abstraction on
language processing has been heavily studied
in monolingual and, to an extent, bilingual set-
tings. Most of these studies were experiments
with humans that yielded mixed results regard-
ing the exact effect of emotionality or abstrac-
tion on cross-linguistic tasks. To elucidate this
relationship between translation, emotionality,
and abstraction, we used a neural network to
model a bilingual mapping within an English-
Mandarin semantic space. We sought to un-
derstand what our quantitative results implied
about structural differences between English
and Mandarin lexical semantic spaces. Over-
all, our model translated concrete and emotion-
laden words more accurately than abstract
and emotionally neutral words, suggesting that
strong concreteness and emotionality are more
consistently perceived across languages. On
a more detailed level, our model learned clus-
ters of some related groups of words in both
languages, but failed to create a 1-to-1 seman-
tic mapping, with several types of errors we
hypothesize are due to linguistic and cultural
differences. Our results indicate interesting
possibilities for using quantitative word-level
modeling as a tool to analyze the overlapping
impacts of bilingualism, emotionality, and ab-
straction on each other.

1 Introduction

Emotionality and abstraction have long been impor-
tant topics of analysis in psycholinguistics. Emo-
tionality is typically measured along the dimen-
sions of valence - the positivity/negativity of a word
- and arousal - the level of activation a word inspires,
or "the negative probability of falling asleep" (Al-
tarriba and Sutton, 2004). Abstraction is mea-
sured through concreteness: the extent to which a
word denotes a physical object, action, or property.

“Equal Contribution. Authors listed in alphabetical order.
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These measures form a basis for linguistic concep-
tual spaces and are dimensions along which words
are categorized and understood (Altarriba et al.,
1999; Altarriba and Bauer, 2004). A significant
body of work investigating the role of emotionality
and abstraction in the processing and interpretation
of words has been produced (Altarriba and Bauer,
2004; Altmann, 2001; Hinojosa et al., 2020; Majid,
2012). It has been shown, for example, that con-
creteness lends itself to quicker concept acquisition
and word processing, (Guasch and Ferré, 2021),
that highly emotional words are processed faster
than non-emotional ones (Kousta et al., 2011), and
that there is a "negative bias" wherein emotionally
negative stimuli take longer to process than emo-
tionally positive ones (Bromberek-Dyzman et al.,
2021; Mergen and Kuruoglu, 2017). While most of
these conclusions were drawn from monolingual
studies, it is worthwhile to study how emotionality
and abstraction impact word mapping in a bilin-
gual semantic space. How do these dimensions
characterize words in each language, and can these
characterizations be mapped accurately across lan-
guages?

Existing research in this area has shown that in-
creased levels of concreteness confer advantages in
monolingual word processing and bilingual word
translation (Binder et al., 2005; Guasch and Ferré,
2021; Ferré et al., 2017). These benefits may re-
sult from the referents of abstract words having
greater ambiguity and variety, and less tactile rep-
resentations, than concrete words (Pauligk et al.,
2019). Emotional valence confers similar process-
ing advantages in monolingual and multilingual
contexts (Kousta et al., 2011; Ferré et al., 2017).
This is likewise attributed to the constriction of the
available referent space, as strong values of emo-
tional valence highlight recognizability of certain
concepts (Kousta et al., 2011), which facilitates
processing of those concepts’ lexical representa-
tions. This effect is known to interact with concrete-
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ness levels, with enhanced effects for more abstract
stimuli (Kousta et al., 2011; Altarriba and Bauer,
2004). In summary, words with high valence or
concreteness represent concepts with increased rec-
ognizability, and confer processing advantages due
to their emotional specificity or tactile imageabil-
ity, respectively. We hypothesize the contexts in
which such words are used reflect this. Specif-
ically, there should be more similarity across the
contexts in which a concrete word is used, narrower
in variation than the contexts of abstract word us-
age. While some recent research in cross-linguistic
semantic alignment has suggested that concreteness
is uncorrelated with alignment, it was also found
that semantic domains with “high internal coher-
ence” have a “low dimensionality” that “seems to
enable high alignment” (Thompson et al., 2020).
This finding suggests that the narrower the variation
of a given concept’s associations, the greater ease
of cross linguistic alignment. If this is the case,
then our model should perform better on words
with narrower contextual variation.

The majority of bilingual studies on this topic
have focused on sequential bilinguals and the dif-
ference between L1 and L2 processing (Sharif and
Mahmood, 2023). The literature on the impact
of emotionality and abstraction for bilingual pro-
cessing has come to widely varied conclusions that
disagree based on the study structure and language,
the words used to test processing, and even the pop-
ulation discrepancies among studied bilingual com-
munities (Ferré et al., 2017). Given these results, it
is reasonable to turn our attention to simultaneous
bilinguals. They have learned both languages as
L1s, and the L1/L2 discrepancies (e.g. age and con-
text of L2 acquisition, and frequency of L2 usage)
that affect processing tasks would likely have less
of an impact (Liao and Ni, 2022; Pavlenko, 2012;
Ponari et al., 2015). This would create a more
even space in which to study cross-language dif-
ferences in emotionality and abstraction. However,
despite acknowledgment that this is a promising di-
rection of study, there are only a handful of papers
investigating how simultaneous bilinguals process
emotionality and abstraction (Sharif and Mahmood,
2023). Due to the lack of research into simultane-
ous bilingualism and given the extractable nature of
representations in computational modeling, using
computational methods to simulate simultaneous
bilingual spaces could yield fruitful results.

Computational modeling of language has a long,
interdisciplinary history of usage in linguistics and
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psychology (Grishman, 1989; Krahmer, 2010; Ju-
rafsky and Martin, 2008). It benefits from using
a diverse range of language corpora instead of be-
ing restricted to participants with highly specific
language experience. We postulate that if a model
learns the contexts in which words with varying
concreteness and emotionality are used across lan-
guages, it could mirror the patterns of simultaneous
bilingual human participants in cross-linguistic pro-
cessing tasks, such as interlingual lexical decision
tasks or translation pair production tasks. Such a
model would yield large amounts of information on
how the two dimensions impact word translation
and semantic space mapping in a bilingual environ-
ment, as the model’s outputs would provide explicit
access to cross-linguistic representations of words
that can be visualized to understand their structure.

Thus, in this paper, we develop a word-level
neural network translation model for English and
Mandarin Chinese. Given pretrained monolingual
embeddings from two languages, our model’s goal
is to learn a simultaneous semantic mapping be-
tween the two languages. While simpler alignment
methods, such as Orthogonal Procrustes (Schone-
mann, 1966), offer a useful baseline for aligning
embedding spaces, they assume a strict one-to-one
correspondence between words across languages.
This assumption does not hold in our setting, where
an English word can have multiple valid transla-
tions in Chinese depending on context. In contrast,
our encoder-decoder model can implicitly learn
one-to-many mappings and better capture the com-
plexity of cross-linguistic semantics.

We also considered using more modern architec-
tures, such as Transformer-based models (Vaswani
et al., 2017), which are widely used in contempo-
rary neural machine translation. However, Trans-
former models operate on subword token sequences
rather than whole-word embeddings, making their
learned representations harder to interpret in terms
of cross-lingual semantic structure. Since our goal
is to analyze how emotionality and abstraction
affect translation at the word level, the encoder-
decoder framework offers a more interpretable and
semantically meaningful approach.

By testing the model’s translation abilities on
words with different levels of emotionality and
abstraction, we can investigate the impacts of
differing emotionality and abstraction on cross-
linguistic processing, and analyze the between-
language structure of the two dimensions. As we
hypothesize the contexts of word use reflect the



traits of the concepts they represent, we theorize
that our model, through learning such contexts,
will have greater translation performance on words
with greater emotionality and concreteness levels,
reflecting results from prior human studies (Ferré
et al., 2017). Our model’s results are interpreted
in the context of using computational modeling to
improve accessibility of further research into two
related areas: How emotion and abstraction varies
structure between languages, and the bilingual pro-
cessing of these categories. !

2 Methods
2.1 Data

We chose English and Mandarin Chinese as our lan-
guages of investigation due to the relatively high
accessibility of emotionality/concreteness ratings
and corpora for them, as well as the accessibility
of simultaneous bilingual participants in the event
of a human-participant extension for this study.
Our training and testing data consisted of 38,000
pairs of English words and their Chinese transla-
tion equivalents. These pairs were sourced from
6 different online English-to-Chinese dictionaries
- Cambridge, Yabla, MDBG, Facebook MUSE
dataset, ECDICT, and CEDICT (Cambridge, 2024;
Yabla; MDBG; Conneau et al., 2017; Lin, 2024;
CC-CEDICT). We obtained these pairs by query-
ing each dictionary from a list of 119,354 English
words taken from the UNISYN English lexicon,
altogether covering a great variety of emotional,
abstract, and concrete words. All models in this pa-
per used the pretrained, 200-dimensional English
and Chinese embeddings, created by the Tencent
Al lab via a bidirectional skip-gram model. To en-
sure total overlap between the training data and the
pretrained embeddings, preprocessing was done on
the training data to filter out any pairs that included
words not in either set of embeddings.

After obtaining our dataset, it was separated into
the three aforementioned classes of words: con-
crete, abstract, and emotional. This was done by
using an online database of 40,000 English words
rated on mean concreteness/abstraction in a 5 point
scale from 1 (abstract) to 5 (concrete) (Brysbaert
et al., 2014). This database was then split into two
categories. Words with a lower concreteness rating

'There are many types of bilinguals; we assume both of
the model’s lexicons are stable and well defined, similar to
simultaneous bilinguals’. That is, we aimed not to model the
acquisition of a lexicon but rather to model the processing
behind mapping two fully formed lexicons.
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than the median rating were categorized as abstract,
and words with a higher concreteness rating than
the median rating were categorized as concrete.
Words within 1 point of rating from the median
were then categorized as “weak’ abstract and con-
crete words. Words that had exactly 2,3, or 4 as
a rating were excluded, as these were the exact
points on which we divided our dataset. Emotion
words are split into two categories: emotion label
words, or words that serve as representations for
emotions, and emotion-laden words, words with
high emotional values/associations. Using separate
databases of 497 emotion label words and 6453
emotion-laden words (Zupan et al., 2023; Moham-
mad and Turney, 2013), we identified the words
in our set that fit into either of these categories to
generate our emotion word set. Emotion words are
contextualized by their arousal and valence ratings,
or how pleasant/unpleasant and how intense a word
is. We utilized a dataset of these ratings for 14,000
English lemmas (Warriner et al., 2013) to tag and
measure the emotional properties of our emotion
words. As many emotion label words, such as
"grave", are polysemous with emotion-laden words,
we collapse the two categories into a singular emo-
tion word category for the purpose of testing.

We partitioned a lemmatized version of our
dataset (lemmatized using NLTK WordNet lem-
matizer (Bird et al., 2009)) by comparing every
word in these datasets against our list of concrete,
absolute, and emotion words. With this, we were
able to create a dataset split across the three cate-
gories. Each category’s data was then split into 10
equal batches, then each batch was linked across
categories. This way, we had proportional chunks
of the dataset to train or test on that each contained
10 percent of all the concrete, abstract, and emo-
tion words. This was done to ensure each batch
more consistently reflected realistic proportions of
all categories.

2.2 Latent Space Transformation

A common challenge in training Neural Networks
(NNs) is the variability of the learned latent rep-
resentations, even when the task and data distri-
bution remain fixed. Stochastic factors such as
weight initialization, data shuffling, and hyperpa-
rameter settings can lead to different latent spaces
across training runs (Wang et al., 2018). While
these embeddings may vary in their absolute coor-
dinates, they often preserve relative distances and
differ only by an isometric transformation. This
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Figure 1: Architecture design of the models in this paper. Note that the trained weights from the Zh-Zh Autoencoder
are directly transferred to the decoder in En-Zh Encoder Decoder model, as pointed by the dotted line.

variability complicates tasks like comparing rep-
resentations across models or reusing pretrained
components. To address this, Moschella et al.
(Moschella et al., 2022) proposed using relative rep-
resentations—computed as cosine similarities be-
tween selected anchor words and the rest of the vo-
cabulary—to provide a stable, geometry-invariant
alternative. By transforming the original latent
space to the one represented by relative embed-
dings, Moschella et al. demonstrated the desired
invariance to isometric and scaling transformations,
which makes zero-shot stitching of models possible.
Adopting the relative embeddings in our models
should presumably improve the translation accu-
racy as the latent spaces for English and Chinese
are invariant to the stochastic factors mentioned
above and are optimal in encoding the translation
information after transformation.

Mathematically, the transformation is achieved
as follows. Given a training set X, an embedding
function By : X — R? parameterized by 6 is
learned to map each sample z(*) € X to its absolute
representation e_;) = E@(m(i)). To transform e_ )
to relative representation, a subset A C X is chosen
as the anchor set. For every training data @ a
cosine similarity score

R OLPIE))

Sclepn, eaw) = == =
C(em(’)’ea(])) ||€I(i)||||ea(j)||

is calculated with respect to al?) € A. Then, the
relative representation is calculated as

Tpt) = (SO(%M ) 6a<1>)7 . 750(633(1) ) %(\A\)))

To generate the anchor word set, we did a single ran-
dom sample of 200 English words from a uniform
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distribution over all possible words in our dictio-
nary, following the procedure detailed in Moschella
et al. We used the Mandarin translation equivalents
of the English words to form the Mandarin anchor
word set.

2.3 Model Design

To translate from English to Mandarin, we devel-
oped an En-Zh encoder-decoder model, trained
on our custom dictionary. The model uses 200-
dimensional relative embeddings for English input.
During training, the encoder compresses the infor-
mation from these embeddings into a latent space.
This encoded information is then mapped to its cor-
responding Mandarin translations by a pre-trained
decoder. The decoder utilizes weights from a Zh-
Zh autoencoder trained specifically for this map-
ping process, enabling effective translation from
English to Mandarin. The code can be found here?.

2.3.1 Zh-Zh Autoencoder

The Zh-Zh autoencoder was trained to learn the
weights connecting the Chinese relative embed-
ding layer to its one-hot vector representation (a
binary vector where only one element is 1, indicat-
ing the presence of the Chinese word, and all other
elements are 0). As shown in the left of Figure
1, the relative embedding for a specific Chinese
word is selected by the one-hot vector. The autoen-
coder then learns the weights that transform the
embedding back to the corresponding one-hot vec-
tor. To expedite training, we initialized the weights
for this mapping as the transpose of the pretrained
weights from the one-hot vector to the embedding

2https://github.com/Jenniebn/wordLevelTrans



layer rather than random initialization. The learned
weights were then used in the decoder of the En-
Zh model to map the Chinese embeddings back
to one-hot vectors. The autoencoder was trained
using the Adam optimizer with cross-entropy loss,
with a starting learning rate of 0.01.

2.3.2 En-Zh Encoder Decoder

Given the possibility of multiple correct Mandarin
translations for each English word, the En-Zh
model’s training objective is framed as a multi-
label classification task. The model aims to pre-
dict a set of Mandarin translations by learning the
mapping between the English and Mandarin latent
spaces. As shown on the right of Figure 1, arandom
set of one-hot encoded English words are input to
the model, and processed through a 75-dimensional
hidden layer with leaky ReL.U activation. With
frozen weights from the Zh-Zh autoencoder, the
decoder converts the vector into corresponding vec-
tors representing the translated Mandarin words. A
trainable bias term is added before the output to ad-
just the decision threshold from 0.5. A binary cross-
entropy (BCE) loss weighted by positive classes
is employed to address the class imbalance. The
model is trained using the Adam optimizer with an
initial learning rate of 0.01.

The positive class weight for the BCE loss was
determined empirically. Initially, without a positive
class weight, the model failed to predict any trans-
lations, as the penalty for incorrect predictions was
too small. Given that only a few out of 95,685 pos-
sible Mandarin words corresponded to the correct
translations, the model defaulted to predicting zero
for every Chinese word, effectively avoiding any
meaningful output. Conversely, when following the
recommended positive class weight from the doc-
umentation (PyTorch, 2025)—where the weight
is set based on the ratio of negative to positive
examples—the model produced excessively high
recall, generating a wide range of Mandarin words
with little precision. After empirical tuning, it was
found that using just 2% of the recommended posi-
tive weight provided the best balance, significantly
improving precision while controlling recall.

3 Results

3.1 Model Performance

Given the challenge of selecting the correct Man-
darin translations from nearly 100,000 possible
words, our primary focus is not on achieving high
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Table 1: Model performance in training, validation and
testing dataset

Macro Metric

Precision Recall F1
Training 0.006 0.035 0.01
Validation 0.003 0.006 0.004
Testing 0.003 0.006 0.004

absolute performance but rather on analyzing the
model’s relative performance across different word
categories. Despite this inherent difficulty, after
training, the model achieved an F1 score of 0.004
on the test set, which is 40% of its training F1
score (0.01), as shown in Table 1. This suggests
that the model generalizes its learned patterns to
new data, even if overall performance remains low.
Notably, the model favors recall over precision,
capturing many possible Mandarin translations for
each English word but often failing to match the
exact dictionary translations.

3.2 Word Class Performance

Our model performs better on concrete words and
emotional words as shown by Table 2, with a sig-
nificant difference in the translation accuracy of
concrete vs. abstract (p < 0.001), concrete vs.
unknown (p < 0.001), and emotional vs. non-
emotional (p < 0.005), indicating that translation
accuracy is driven by both the concreteness and
emotionality of a word. Out of all classes, the best
performance is achieved on the concrete emotional
words with a translation accuracy of 14.36% on the
testing set.

We hypothesized that the model would translate
concrete words with the highest accuracy as they
represent tangible, physical objects. For example,
a table is the same in America and China, but the
feeling of shame in English may have different cul-
tural or linguistic subtleties in Chinese. As shown
by Table 2, out of all word classes, the model trans-
lates the concrete words with higher accuracy than
the other 2 classes. Similarly, we hypothesized that
emotional words would be more accurately trans-
lated than non-emotional words as they represent
concepts that are highlighted and more richly de-
fined by their emotional properties, and thus more
narrow in the contexts in which they can be used.



Table 2: Model Performance on Word Classes in the Testing Set

Word Class Emotion Class Size Translation Accuracy Example
Emotional 195 14.36% grave, sweet
Concrete . . .
Non-Emotional 684 8.48% scallion, raincoat
Emotional 299  5.69% improve, depressed
Abstract . 7 P P
Non-Emotional 536 4.66% control, overall
Emotional 42 4.76% committed, bothering
Unknown Abstraction ) . ’
Non-Emotional 914 3.39% biking, roadbed
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Figure 2: English Embedding Space from the Testing
Data

3.3 Error Analysis

In order to better investigate how emotionality and
contextual similarity are preserved between lan-
guages, we undertook a qualitative error analysis
comparing the distribution of English input words
to the distribution of model outputs in the Man-
darin embedding and valence/arousal spaces. We
broke down the different types of words that the
model errs on into three dimensions of analysis.
For the purpose of this analysis, we only looked
at words with multiple outputs and valence and
arousal ratings in both languages.

First, we observe whether the model outputs for
each word are spread out or if they cluster in a par-
ticular area. We also check the distance of each
cluster of outputs for a given input word relative
to other input words and their clusters. As part
of this, we examine how similar the distances be-
tween input words in English embedding/valence
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Figure 3: English Valence and Arousal Ratings from the
Testing Data

spaces are to distances between output clusters in
the Mandarin embedding/valence spaces. Lastly,
we see whether the valence and arousal of input
words in the English spaces are similar/in the same
areas as their output clusters and target Mandarin
equivalents. By looking at which words our model
exhibits with what combinations of behavior, we
can infer the different types of error and why they
may have occurred.

The first type of error occurs with input words
that have the following two features. One, their
outputs group together in the Chinese embedding
space in similar ways to words near them in the
English embedding space. Two, they have simi-
lar valence/arousal to the various Chinese outputs.
One example is the word "cantaloupe", seen in Fig-
ures 2, 3, 4. When the model errs on a word in
this way, it fails to return one of our expected tar-
get translations, but it often still has outputs that



group together near where our target term is in
the embedding space. Errors on words like these
show our model is good at finding regions of the se-
mantic space that contain words similar to a target
rather than narrowing in on the specific word itself.
These errors are expected, as in these cases our
model learns an appropriate approximate mapping
between the lexical semantic spaces, but this map-
ping does not contain the best translation(s) given
in dictionaries. As we obtained a set of correct
translations for the model to reference via dictio-
nary validation rather than human rating or parallel
corpora, our “correct” translation set is somewhat
inflexible and potentially not entirely representative
of possible translations defined by real language
use.

The second type of error appears with words that
have model outputs that are spread out in both the
Mandarin embedding and valence/arousal spaces,
such as "hungry". Our model erring on such words
implies an issue with either our data or our model
architecture/parameters, such that our model can-
not make confident guesses on what such words
look like when translated.

The third type of error involves clustering and a
similar structure between spaces as in the first type
of error, but it also shows specific discrepancies
in emotionality such as flipped valence or arousal
in the Mandarin valence/arousal space. Such ex-
amples appear to have model outputs with strong
clustering, and investigation into output meanings
shows the potential for such errors to be due to
cross-cultural differences in the given words. In
"bashful", for example, outputs hone in around
a higher arousal value as opposed to its negative
arousal value in English, and the outputs are words
like "sexy". These discrepancies hint at these spe-
cific words being conceptualized differently in Chi-
nese but still having solid enough associations for
our model to have confident guesses about them,
albeit being incorrect, possibly as a result of these
words being more difficult to translate between
these languages for specific cultural differences.

4 Discussion

4.1 Implications/applications of Results

In this paper we have proposed a computational
method of exploring how transferable the di-
mensions of emotion and abstraction are cross-
linguistically. We hypothesized that a word level
machine translation model could learn how to align
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the semantic spaces of two given languages, which
would then provide a direct method of investigat-
ing how words are retrieved across languages along
these dimensions of emotion and abstraction.

As hypothesized, our model had better transla-
tion performance for concrete and emotional words
than for other words, mirroring the patterns of hu-
man participant results. We specifically compared
our results to "simultaneous bilinguals", as finding
participant groups with nearly equal native-level
fluency in two languages theoretically controls for
language proficiency. (Ferré et al., 2017).

Congruent to previous psycho-linguistic liter-
ature, our model has higher accuracy on con-
crete/weak concrete words as opposed to abstract
words (Guasch and Ferré, 2021; Ferré et al., 2017).
Intuitively, this makes sense, as concrete words
have more imageable referents in the world com-
pared to more abstract concepts. While our model
has no built-in cognition of referents in the world,
it can learn patterns of contextual usage that may
differentiate concrete words from abstract ones.
Furthermore, when data was sufficient, our model
showed higher accuracy on translations of emotion-
laden/label words than on unknown/non-emotional
words. This also agrees with prior literature
(Kousta et al., 2011; Ferré et al., 2017).

This human-model congruence provides further
evidence for the presence of certain distinct fea-
tures that make "emotional" and "concrete" words
more recognizable than their neutral and abstract
counterparts, respectively. Previous literature has
investigated the effect of emotionality and abstrac-
tion within languages of simultaneous bilinguals
(Ferré et al., 2017).

Our model uses pre-trained word embeddings,
which are developed from the contexts in which
given words are used. Given this, our model better
recognizing concrete and emotional words could
mean that these word types have greater consis-
tency in their contexts compared to their abstract
and non-emotional counterparts. Similarly, in-
creased concreteness and abstraction of words have
been shown also to facilitate word processing in
human participants. This suggests that context can
be utilized to detect words that represent concepts
that are more recognizable/processable due to such
values. More direct confirmation of the encoding
of concreteness and abstraction in context and em-
beddings could be checked for via performance
analysis of a concreteness/emotionality classifier’s
agreeability with human ratings.
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Figure 4: Mandarin Embedding Space Examples

One avenue of further research would be to vali-
date our findings with English and Mandarin simul-
taneous bilinguals. As previous investigations into
emotion and abstraction have often used within-
language tasks (Ferré et al., 2017), an interlingual
lexical decision task that presents both Mandarin
and English stimuli within one experiment could
provide more insight into how emotion and abstrac-
tion are processed in cross-linguistic contexts.

The agreement of the model with human trends
of emotion/abstraction processing suggests poten-
tial for further research into the utilization of word-
level models as a point of comparison to human
processing of similar affect categories as explored
here. These models could be used as tools to as-
sist with experiments that would typically require
hard-to-recruit participant groups, specifically si-
multaneous bilinguals. As our model requires
pre-trained monolingual embeddings from two lan-
guages, rather than parallel translation data, it could
be more accessible than recruiting simultaneous
bilinguals for preliminary investigation depending
on the language groups one wishes to study.

To extend more directly on this study, one could
investigate other languages in addition to Mandarin
and English in a similar model architecture as ours
to see if results vary as a function of language re-
latedness. One potential option could be Japanese,
to distinguish the effects of historical influence and
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linguistic relatedness. This could be a new way to
investigate how universal the concepts of emotion-
ality/concreteness are in human cognition.

4.2 Error Analysis Implications and
Applications

Looking back at the error analysis in Section 3.3, a
question arises as to what implications/applications
we can discern from the three kinds of errors de-
scribed earlier. Recall that one of the dimensions
of error is whether the model outputs are located
in the same approximate region of the lexical and
emotional space as their input. Depending on how
similar/dissimilar inputs and outputs are on this
metric, different errors can be considered “more
correct” or “less correct” than others.

This has interesting implications in the context
of the third type of error, which involves words
like "bashful", i.e., those that retain strong out-
put clustering and similarity between embedding
spaces, but vary in valence and/or arousal across
the spaces. Many words of the third error type also
have Mandarin outputs that intuitively seem more
semantically dissimilar to the English input than
expected. One such example is our model relat-
ing “bashful” to Chinese outputs that comment on
attractiveness, like “sexy”. This suggests that the
acceptable contexts in which to use a word vary
as a function of society/culture. This also aligns



with recent semantic association research which
found that cross-linguistic semantic alignment of
sets of concepts is heavily impacted by the levels
of cultural similarity between the speakers of given
language pairs. (Thompson et al., 2020). Further
investigation is warranted to quantify how cross-
cultural variation may interfere with or facilitate
the mapping of concepts across languages, and how
to better contextualize cross-linguistic research re-
sults by it.

The arousal/valence of both target words and
their associated output clusters differing across lan-
guages in such cases implies that some concepts,
and the contexts their representations are used in,
can vary exceptionally depending on cross-cultural
differences. This suggests promising applications
for using further statistical/machine learning mod-
els to quantify how emotional sentiment can vary
cross-culturally within and across languages as a
factor of various cultural categories, such as reli-
gion or types of personality traits. Furthermore,
a question arises as to whether or not congruence
of cross-linguistic emotional sentiment is a con-
founding variable in machine translation model
performance.

5 Conclusion

This research developed a neural network model
using relative word embeddings to investigate the
impacts of emotionality and abstraction on a bilin-
gual semantic space mapping. Our model’s max-
imum accuracies were 14.36% for concrete emo-
tional words and 8.48% for concrete non-emotional
words. An in-depth error analysis revealed that
although the model didn’t learn word-to-word map-
ping, it generally achieved a mapping of sub-
regions onto each other, with a handful of errors
being due to a lack of data and cultural differences
impacting word representations. The model’s per-
formance agrees with previous results of emotional
and concrete words providing a processing advan-
tage, and furthermore suggests that this processing
advantage is cross-lingual.

Limitations & Future Work

Our most glaring limitation is the issue of polysemy
- a word having multiple meanings. Polysemy can
lead to lower translation accuracy due to differing
levels of emotionality and abstraction in the differ-
ent meanings of polysemous words such as "grave".
Some secondary limitations are that our embedding
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visualization compresses a 200 dimensional seman-
tic space into 2 dimensions, leading to information
loss, and that we use full correctness as a criterion
for the model. Utilizing an information theoretic
measure such as cross entropy would allow for
more flexibility and sensitivity, and could reduce
the impact of polysemy as well. Finally, our model
with one hidden layer restricts the amount of com-
plex information it can learn. For further research
we suggest taking polysemy into greater consider-
ation and increasing the complexity of the neural
network model. Another interesting extension of
our work would be validating our results with an
English-Mandarin simultaneous bilingual popula-
tion, which would provide a direct comparison of
human vs. machine performance and serve as a
benchmark for future emotionality or simultaneous
bilingual research.
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Abstract

Some vowel harmony systems have neutral
vowels, which need not agree along the harmo-
nizing dimensions of vowel quality. Neutral
vowels differ in whether other vowels in turn
harmonize with them: those that are harmo-
nized with are opaque while those that are not
are transparent. Prior artificial language learn-
ing studies have found opaque vowels to be
more readily learned in laboratory settings than
transparent vowels. This was initially thought
to be because transparent vowels intervene be-
tween harmonizing vowels on a vowel tier,
making harmony non-local. However, subse-
quent computational work has demonstrated
that vowel harmony is typically tier-strictly-
local, even with transparent and opaque vow-
els, indicating that there may be less differ-
ence between them than once believed. I pro-
pose an explanation for the different learning
results between transparent and opaque vow-
els by making use of a recent learning model
that proposes learners create tier-like represen-
tations in response to being unable to suffi-
ciently generalize without them, as measured
by the Tolerance Principle. I demonstrate how
the representations that this model constructs
make sense of different learning results be-
tween transparent and opaque vowels, despite
their shared formal properties.

1 Introduction and Background

Vowel harmony involves non-local dependencies,
as vowels agree along the harmonizing dimensions
across intervening consonants. In the following ex-
ample (1) from Turkish, the underlined suffix vow-
els harmonize in backness with the vowel to their
left (Nevins 2010, p. 28; Kabak 2011, p. 3).

(1) [dal-lar-wn] branch-PL-GeN
[jer-ler-in] place-PL-GEN
[ip-ler-in] rope-PL-GEN

In some vowel harmony systems, a subset of
vowels are not required to harmonize—they are

neutral. These neutral vowels are coarsely grouped
into two categories: opaque and transparent.
Opaque vowels participate in harmony in that other
vowels harmonize with them. For example, in addi-
tion to backness harmony, Turkish high vowels [i,
y, w, u] also harmonize in roundness (2a). Low
vowels [e, @, a, o] are neutral to the rounding
harmony (2b), but high vowels nevertheless harmo-
nize with them opagquely (2c).

(2) a. [ip-in] rope-GEN
[jyz-yn] face-GeEn
[ktuz-wn] girl-GeEx
[buz-un] ice-GEN

b. [kuz-lar] gril-PL
[buz-lar] ice-PL

c. [el-in] hand-GenN
[;(zjz_—yn] word-GEN
[sép—?xm] stalk-GEN
[ ol—uz] road-GEN

Transparent vowels, on the other hand, are inert,
neither harmonizing nor being harmonized with.
For instance, while Hungarian has backness har-
mony (3a), the vowels [i, e:] are transparent, with
the DaT vowel skipping them to harmonize with the
next vowel to the left of (3b; examples from Benus
and Gafos 2007).

(3) a. [¢rom-nek]
[morkuf-nok]

joy-DAT
squirrel-DAT

b. [emiir-nek] emir-Dat
[popir-nok]  paper-Dar
[my:vers-nek] artist-Dar
[kaivernok]  coffee-Dat

The development of autosegmental theory
(Goldsmith, 1976) allowed for treating vowel har-
mony as local on a vowel tier (Clements, 1976,
1980). Opaque vowels do not harmonize with
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the preceding vowel on a vowel tier, but their fea-
tures take over the harmony, so all remains lo-
cal. However, vowel harmony must cross transpar-
ent vowels, which introduces non-locality even on
a vowel tier (Goldsmith, 1985; Bakovic and Wil-
son, 2000; Hayes and Londe, 2006; Finley, 2009).
Finley (2015) hypothesized that this makes trans-
parent vowels harder to learn than opaque vowels
and tested this hypothesis with a series of artifi-
cial grammar learning (AGL) experiments. Finley
found that adults indeed succeeded at learning the
behavior of an opaque vowel but failed to learn the
behavior of a transparent vowel under equivalent
conditions. Only by increasing the amount of ev-
idence of the neutral vowel’s transparency, by in-
creasing the amount of exposure to items that un-
ambiguously indicated transparency, did learners
eventually succeed at learning transparent vowel
behavior. Chen (2024) found compatible results:
when adults were trained on an artificial harmony
system with a neutral and a transparent vowel, they
either failed to learn the harmony system altogether
or appeared to treat both the opaque and transpar-
ent vowels as opaque (depending on the presenta-
tion of the training stimuli).

However, work in computational phonology has
found that from a formal-language-theoretic per-
spective, neither opaque nor transparent vowels
meaningfully change the computational character
of vowel harmony: vowel harmony is typically tier-
strictly-local (k = 2) (Heinz et al., 2011), with
or without opaque and/or transparent vowels (Bur-
ness et al., 2021). Learners could project a tier
that excludes transparent vowels along with the
consonants, and this renders all relevant depen-
dencies local on the tier. Moreover, as Finley
(2015) observed, transparent vowels must be learn-
able, since they appear in numerous natural lan-
guage harmony systems. Indeed tier-strictly-local
constraints and processes are provably efficiently
learnable (Jardine and Heinz, 2016; Jardine and
McMullin, 2017; Burness and McMullin, 2019)
and Finley (2015) did find that under the right con-
ditions, transparent vowel harmony can be learned
in the lab. Similarly, Ozburn et al. (2016) found
that adult Canadian French speakers succeeded at
learning the behavior of a transparent vowel in an
artificial vowel harmony system built around the
French vowel inventory.

Given that vowel harmony with opaque and
transparent vowels shares a fundamental underly-
ing computational structure and both must be learn-
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able in natural languages, it is worth revisiting
what might underlie the picture from experimental
results that vowel harmony is harder to learn with
transparent vowels than opaque vowels.

To do so, I build on my prior work (Belth, 2024),
where I proposed that humans learn phonological
alternations by tracking dependencies between al-
ternating segments and the segments adjacent to
them—using the well-attested ability to track adja-
cent dependencies over many kinds of representa-
tions (Saffran et al., 1996, 1997; Aslin et al., 1998;
Saffran et al., 1999; Fiser and Aslin, 2002). In
that proposal, if adjacent dependencies are not suf-
ficiently predictive of the alternation, where suf-
ficiency is measured by the Tolerance/Sufficiency
Principle (Yang, 2016), learners use the same sen-
sitivity to adjacent dependencies to form a new
representation that excludes any adjacent segments
that led to incorrect predictions. The resulting
representations can be interpreted as tiers, which
are constructed in dynamic response to the input.
In Belth (2024), I implemented this proposal as
a learning model. The model succeeded at learn-
ing natural language harmony processes, including
Turkish vowel harmony, in which low vowels are
opaque to rounding harmony, and Finnish vowel
harmony, in which, similarly to Hungarian, [i, €]
are transparent to backness harmony (Ringen and
Heinamaéki, 1999). In Turkish, the learner con-
structed a vowel tier and in Finnish it constructed
a tier that excluded the transparent vowels. Thus,
the proposal already accounts for the learnability
of vowel harmony with opaque and transparent
vowels in natural languages. In this paper, I will
demonstrate that it simultaneously accounts for the
difference in experimental settings between artifi-
cial vowel harmony systems with opaque vs. trans-
parent vowels.

Consider a transparent vowel harmony system,
such as the artificial one from Finley (2015), where
a suffix vowel harmonizes in backness with the fi-
nal vowel of the stem (4a), but where the vowel [€]
is neutral (4b)-(4c). Since the neutral vowel is it-
self front, only when the penultimate stem vowel
is back (4b) do we get unambiguous evidence that
[e] is transparent.

(4) a. [budok-o]
[degib-e]

b. [doteb-0]

c. [tedet-e]

It is thus possible that the learner treats the neu-



tral vowel as opaque and handles the cases like
(4b), which contradict this, as lexicalized excep-
tions. If, during learning, enough of these excep-
tions accumulate that the learner’s harmony gener-
alization is no longer tenable with them as excep-
tions (which, as in Belth 2024, will be measured
with the Tolerance principle), then the learner will
again change representations, excluding the neutral
vowel because it is no longer sufficiently predictive,
thereby rendering it transparent. Thus, transparent
vowels can for a time be tolerated as opaque vow-
els with lexicalized exceptions. This is the main
idea underlying my proposed explanation for the
observed experimental differences in learning.

In the next section § 2, I introduce the model
from Belth (2024) (D2L) in more detail. In § 3, I
survey prior experimental work on learning trans-
parent and opaque vowels. I then demonstrate
how D2L accounts for these experimental results,
as conceptually described above, and also demon-
strate that a number of other models fail to account
for them § 4. I conclude with a discussion § 5.

2 Model

The model from Belth (2024), named D2L, was
based on the developmental trajectory of children’s
ability to track adjacent and non-adjacent depen-
dencies. Children show evidence of tracking ad-
jacent dependencies at a younger age—as young
as 8 months (Saffran et al., 1996, 1997; Aslin
et al., 1998)—than tracking non-adjacent depen-
dencies, which appears to develop around 15-18
months (Santelmann and Jusczyk, 1998; Gémez,
2002; Gémez and Maye, 2005). Tracking of adja-
cent dependencies has been observed over a range
of different kinds of structures, linguistic and non-
linguistic, including shapes (Fiser and Aslin, 2002)
and non-linguistic tones (Saffran et al., 1999).
These results serve as evidence of a language-
independent psychological mechanism—the abil-
ity to track adjacent dependencies—that could un-
derlie the learning of phonological alternations.

D2L implements the proposal that when learn-
ing a phonological alternation, a learner’s attention
is drawn to the alternating segment, and they begin
tracking segments adjacent to it. I will use Finley
(2015)’s artificial vowel harmony system as an ex-
ample (see § 3) to describe the model as it pertains
to the present paper. In (5), the underlying /-V/ suf-
fix alternates between [-¢] ~ [-0].!

ISee Belth (2023a,b) for a proposal on how learners might
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(5) /budok-V/ — [budoko]
/degib-V/ — [degibe]
/gemit-V/ — [gemite]
/kukop-V/ — [kukopo]
/tedet-V/ — [tedete]
/doteb-V/ — [dotebe]

D2L’s attention is centered around /-V/ and the
segments adjacent to it—here, the stem-final seg-
ments. D2L attempts to enforce harmony using the
final segments, but since they are all consonants,
the harmony fails. The learner then creates a new
representation, excluding any adjacent segments
that harmonizing with fails to yield the observed
surface form for /V/—here /k, b, t, p/. D2L at-
tempts to form a natural class for these segments, in
this case [—syl]. The new representation is the com-
plement of this deletion set, namely [+syl]. Clearly,
this has the interpretation of a vowel tier (6).

(6) /uo-V/ — [uoo]
lei-V/ — [eie]
lei-V/ — [eie]
/uo-V/ — [uoo]
lee-V/ — [ege]
loe-V/ — [oge]

D2L then tracks segments adjacent to /-V/ on
this new representation. The vowel [€] here is
opaque, so harmonizing with the adjacent vowel on
this representation yields the expected surface re-
alizations of /-V/ and D2L has succeeded in form-
ing a representation and generalization that suffi-
ciently accounts for the alternation. Following the
notation from Belth (2024), (7) shows the gener-
alization, where the vowel /V/ agrees in the value
for feature [back] with an adjacent [+syl] segment
after projecting vowels.

(7)  Acree(V, [back]) / [+syl] __ o proj([+syl])

If, on the other hand, the vowel [¢] were trans-
parent, the surface form of /doteb-V/ would be
[dotebo], in which case enforcing harmony on the
new representation would yield the wrong surface
form for /-V/: *[e] instead of [o] (8).

(8) /oe-V/ — *[oee]

In this way, stems where a back vowel precedes
a transparent front vowel will be exceptions to the
generalization D2L forms on the new representa-
tion. D2L changes representations whenever the

come to attend to learning an alternation in the first place, and
where the underlying forms might come from.
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FN
FF BN
Opaque Transparent

Figure 1: B = Back, F = Front, N = Neutral (opaque or
transparent, depending on condition). The black circle
represents the stems that are predictable from an adja-
cent vowel once D2L has constructed a vowel tier. The
blue circle represents stems where the adjacent vowel
is neutral. The orange sub-circle represents the only
stems for which the suffix is not predictable from the
tier-adjacent vowel.

generalization it forms over its current representa-
tion fails to sufficiently account for the alternation.
D2L uses the Tolerance Principle (TP; Yang 2016),
which has been evaluated in experimental settings
(Schuler et al., 2016; Shi and Emond, 2023), to de-
cide whether the generalization can sustain a par-
ticular number of exceptions (9).

(9) Tolerance Principle: a rule applying to
n items with e exceptions is productive iff

n
eslnn

Thus, D2L will only change representations
again if the number of exceptions due to harmo-
nizing with the transparent vowel, relative to the
total number of alternating items, rises above the
TP threshold (9). If the number of exceptions fall
below the threshold, then D2L lexicalizes the ex-
ceptions and may overextend harmony with the fi-
nal vowel (7) to new words with a final transpar-
ent vowel. On the other hand, if the number of
exceptions grows too large, D2L will recursively
construct a new representation, this time excluding
the vowel [e]—the culprit behind the exceptions—
in addition to the consonants, as (10) shows.

(10)  Acreg(V, [back]) / [+syl] __
o proj([+syl] \ {e})

This core idea is visualized in Figure 1. Once
D2L has constructed a new representation that
excludes consonants (i.e., a vowel tier), the suf-
fix vowel is entirely predictable from the newly-
adjacent vowel if the neutral vowel (N) is opaque.
This set of stems, for which the suffix is adjacently
predictable, is represented by the large black circle.

46

Table 1: The four basic kinds of training items in Fin-
ley (2015)’s study. B = Back, F = Front, N = Neutral
(opaque or transparent, depending on condition). The
right two columns give the suffix corresponding to the
condition (only the BN items differ between conditions)

Kind Types Example Opaque Transparent
BB 8 [budok] [-0] [-o]
FF 8 [degib] [-e] [-e]
FN 4 [tedet] [-e] [-e]
BN 4 [doteb] [-e] [-o]

On the other hand, if the neutral vowel is transpar-
ent, only BN words are not adjacently predictable
(the orange sub-circle). But if the orange part of
the diagram is small enough, then it may be rele-
gated to lexicalization, at least for a time.

3 Prior Experimental Studies

Finley (2015) carried out a series of artificial gram-
mar learning studies with adults, involving opaque
and transparent vowels. Finley first compared each
of two experimental groups—one OPAQUE and one
TrRANSPARENT—tO relevant control groups. The ex-
perimental groups were trained on CVCVC nonce
words, each of which could be suffixed with ei-
ther front [-e] or back [-0]. The artificial language
also had the vowels [i, u] and the neutral vowel [g],
which only occurred as the final vowel. The choice
of suffix was based on harmony with the final stem
vowel, except for the words in the TRANSPARENT
condition that had the transparent [¢] as the final
vowel; for these the choice was based instead on
harmony with the penultimate vowel. This is sum-
marized in Table 1. There were 8 stems each with
two harmonizing vowels (8 BB and 8 FF), 4 stems
with a front vowel before the neutral [¢] (FN), and
4 with a back vowel before it (BN).

In the OpaQUE condition, if learners choose the
suffix based on the final stem vowel, they would ac-
curately generalize to test words of all four kinds.
In the TraNsPARENT condition, however, accu-
rate generalization to test BN words would require
learning the transparency of [¢]. In other words,
because [¢] is front, only BN words show unam-
biguous evidence that [€] is transparent rather than
opaque. Finley’s first experiment, which presented
each stem-suffixed pair 5 times, suggested that the
participants in the OPAQUE condition learned vowel
harmony, including the behavior of the opaque
vowel. However, participants in the TRANSPARENT



condition learned the basic vowel harmony pattern,
but showed no evidence of learning the behavior of
the transparent vowel.

Finley then attempted to find conditions in
which participants would succeed at learning the
transparent vowel’s behavior. In a second experi-
ment, the 4 FN words, for which it is ambiguous
whether the [-e] vowel is harmonizing with the fi-
nal or penultimate vowel (which are both front),
were replaced with 4 additional BN words (all tak-
ing [-0]). This decreased the learners’ test perfor-
mance across the board. One interpretation is that
because the suffix [-0] became more dominant—
now occurring with 2/3 of training items—Iearners
failed to attend to learning the alternation at all.

Finley then returned to the original setup (bal-
anced items between FN and BN), and tried replac-
ing the neutral vowel [€] with [1]. The participants
again learned the overall harmony pattern, but not
the transparent vowel. In another experiment, each
word was presented 10 times instead of 5. This
led to an increase in performance on the transpar-
ent vowel, but the increase over the control group
was not statistically significant. The next experi-
ment added 6 additional unambiguously transpar-
ent (BN) stems, with all words being presented 10
times. This also led to an increase, though not sta-
tistically significant, in performance on the trans-
parent vowel. Finally, increasing the number of
presentations of the BN stems to 20, while keep-
ing the others at 10, led to an increase in perfor-
mance on the transparent vowel that was signifi-
cantly higher than the control group’s.

The overall picture is that under some condi-
tions where adults will learn a vowel harmony sys-
tem with an opaque vowel, they will fail to learn
a transparent vowel. But, if sufficient exposure
to words that demonstrate the transparency of a
vowel is available, adults will succeed at learn-
ing its transparency. While this overall picture is
clear, the precise conditions in which learning a
transparent vowel will or will not succeed are less
so. In multiple of Finley (2015)’s experiments,
the results showed a numerical increase in perfor-
mance that was not statistically significant. The
number of participants in some experiments was
small (often < 20 per condition), thus warranting
a level of caution in drawing strong conclusions
from any particular significance test. The study
involved adults, but we also know that children
acquire vowel harmony systems with transparent
vowels (MacWhinney, 1978; Gésy, 1989; Leiwo
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et al., 2006; Gonzalez-Gomez et al., 2019). More-
over, the stimuli were presented in auditory form
only, with no accompanying image. It is difficult
to know in such a scenario whether participants
treated multiple tokens of the same type as in fact
being part of a single word type or of multiple.
Consequently, the relative role of type and token
frequencies is not entirely clear.

Furthermore, Ozburn et al. (2016) note that Fin-
ley’s artificial language used the English vowel
inventory, which leads to both roundness and
backness alternating ([-e] is front, unround; [-0]
back, round), which is not typical in natural lan-
guage backness harmony with transparent vowels.
Ozburn et al. trained adult Canadian French speak-
ers in a similar setting as Finley’s, but using har-
mony centered around the French vowel inventory,
which includes front rounded vowels, allowing for
the rounding dimension to stay fixed. Ozburn
et al.’s participants did show evidence of learning
vowel harmony transparency in this setting. How-
ever, whether this difference in results from Fin-
ley’s was due to the difference in stimuli and partic-
ipant populations or to difference in type frequency
is not clear: Ozburn et al. do not report how many
items of each kind they used in their experiment,
but they do say that 1/4 of the items were unam-
biguously transparent (BN), which is a higher pro-
portion than in Finley’s experiments (1/6 to 1/5).

In a related study, Chen (2024) trained adult
speakers of Taiwan Mandarin on an artificial vowel
harmony pattern with both an opaque and a trans-
parent vowel. The study was primarily interested
in a possible “starting small” effect—whether pre-
senting bisyllabic stems before trisyllabic stems,
and a disproportionate number of bisyllabic stems,
would yield better learning than presenting a bal-
anced number all at once. In the results, only
in the “starting small” condition did participants
show evidence of learning the vowel harmony
pattern. However—more relevant to the current
discussion—even in this condition, participants
only showed learning of the non-transparent vow-
els. They appeared to treat the transparent vowel as
also opaque. Thus, while this study deviates sub-
stantially from the prior two in goals and design,
the results largely corroborate the big picture of
Finley (2015)’s study: opaque vowels are learned
more readily by adults than transparent vowels.



4 Evaluation

To evaluate whether D21 makes sense of the ex-
perimental results on opaque and transparent vow-
els, I tested whether D2L learns an opaque vowel
in conditions where it does not learn a transparent
vowel (§ 4.2), and whether increasing the amount
of training on items showing transparency eventu-
ally leads it to learn a transparent vowel (§ 4.3).
First, I will introduce the setup (§ 4.1).

4.1 Data and Setup

I used data from Finley (2015)’s study for training
and evaluation. As the base training set, I used the
same 24 stem-suffixed pairs that Finley, p. 22 re-
ports; these are summarized in Table 1.

In experimental settings (as in natural language
learning), participants likely do not learn every
word they are trained on. Yet it is over the
words that are learned that generalizations can be
formed.> To simulate this variability in attained
vocabulary, I carried out 30 simulations with dif-
ferent samples of training words. For each, I sam-
pled an integer n from a Gaussian distribution with
mean 20 and standard deviation of 4 to represent
the vocabulary size. I then sampled » unique words
from the 24 training words, weighted by frequency.
In the first experiment (§ 4.2) all words were given
equal frequency, so the sampling was uniform. In
the second experiment (§ 4.3), where the amount
of exposure to unambiguously transparent (BN)
words is increased, this sampling procedure allows
for manipulating the saliency of BN words, as Fin-
ley (2015) did, by increasing their relative token
frequency.

For testing, I used the novel stems from Finley,
p- 23. These include 8 stems with two harmonizing
vowels (BB or FF) and 11 ending in the neutral [£].
Of the latter, 9 are BN.

4.1.1 Comparison Models

In a study of vowel harmony in Hungarian, Hayes
and Londe (2006) proposed two harmony con-
straints, applying over a vowel tier. The first, local,
constraint incurred a violation whenever a front
vowel immediately followed a back vowel on the
vowel tier, and the second, distal, constraint in-
curred a violation whenever a front vowel followed
a back vowel anywhere on the tier. The distal con-
straint was necessary because of Hungarian’s trans-

2Sec—:, for instance, Schuler (2017, ch. 4) for discussion of
this point for artificial language learning with children.
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parent vowels. Finley (2015) reasoned that the dis-
tal constraint is more complex than the local con-
straint, and thus could make harmony more diffi-
cult to learn when transparent vowels are present.
This forms the first comparison model: I trained
a Maximum Entropy Harmonic Grammar model
using distal and local constraints like Hayes and
Londe’s. The model learns to map underlying
forms (e.g., /doteb-V/) to surface forms, using a
Maximum Entropy model, as described by Gold-
water and Johnson (2003). For each underlying
form, two candidates are generated—one with [-0]
and one with [-e]—and the number of violations
of local and distal harmony constraints are used as
the features of each candidate. I will call this model
He&L, as an homage to Hayes and Londe (2006).
While H&L learns a Maximum Entropy gram-
mar with provided constraints, it is also possible
for constraints to be learned. Indeed, building on
Hayes and Wilson (2008)’s model, Gouskova and
Gallagher (2020) proposed a Maximum Entropy
model that automatically learns to project tiers and
form phonotactic constraints over the resulting tier
projections. I used the model publicly available
from the authors.? T will call this model G&G.
Lastly, vowel harmony can typically be charac-
terized as 2-Tier-Strictly-Local (2TSL), whether
described as phonotactic constraints (Heinz et al.,
2011) or processes (Burness et al., 2021).* This
is usually true even when opaque or transparent
vowels are present. Formal learning algorithms
have been proposed that allow for proving the effi-
cient learnability of 2TSL languages and functions
(Jardine and Heinz, 2016; Burness and McMullin,
2019). However, while these learnability results
apply to vowel harmony with opaque or transpar-
ent vowels, it does not necessarily imply that lan-
guages with either of these kinds of neutral vow-
els will be learned at equal rates. Like D2L, the
Jardine and Heinz (2016) and Burness and Mc-
Mullin (2019) models start with a representation
where all segments are present, and iteratively re-
move segments to create new tiers. Unlike D2L,
they use the formal properties of TSL to deduce
conditions where removing segments is provably
correct. Thus, I use TSLIA (Jardine and Heinz,
2016; Jardine and McMullin, 2017), which is pub-
licly available (Aks€nova, 2020), as an additional
comparison model. Formal models of this family

3 github.com/gouskova/inductive_projection_learner
4See Mayer and Major (2018) for an example of a harmony
pattern than cannot be characterized as TSL.



often benefit from collapsing pattern-irrelevant dif-
ferences among segments (Aksé€nova, 2020; John-
son and De Santo, 2023), which simplifies the
learning problem and makes it more likely that the
characteristic sample (the information needed in
the training data for convergence onto an appropri-
ate grammar) will be present. Following this line
of work, I collapsed all consonants into the symbol
C, back vowels to B, non-neutral front vowels to F,
and neutral vowels to N. This collapsing was only
applied to TSLIA’s input, not the other models’.

For D2L, I used the implementation publicly
available in the Python package algophon.’

In the experiments, each test stem has two pos-
sible suffixed forms: [-e] or [-0]. I compute a
model’s accuracy based on the fraction of stems for
which it produces/chooses the form consistent with
the relevant vowel harmony pattern. Specifically,
the correct choice for BB and FF is the vowel that
agrees in backness with the final stem vowel. In
OpraQuE conditions, the correct choice for neutral-
vowel-final stems is [-e], while in TRANSPARENT
conditions, it is the vowel agreeing with the penul-
timate stem vowel. I report overall accuracy and
neutral-vowel accuracy, which is computed over
only the neutral-vowel-final test stems.

This scheme can be interpreted as either learn-
ing an alternation (mapping a stem with underly-
ing /-V/ to the surface form) or a phonotactic pat-
tern (learning where [-e] and [-0] can/cannot oc-
cur). D2L and H&L learn alternations, while G&G
and TSLIA learn phonotactics. At test time, the for-
mer are probed to produce a surface form for a stem
with the underlying suffix /-V/ and the produced
form is taken as the choice. Meanwhile, the phono-
tactic models are asked to score the two choices
and the one with the better well-formedness score
is chosen. This setup is identical to Belth (2024)’s.

4.2 Opaque vs. Transparent

The first experiment evaluates whether D21 and
the comparison models show a difference in gener-
alization between an OpaQuE vowel harmony con-
dition and a TRANSPARENT condition (learning the
former better). The experiment uses the training
data described above (§ 4.1), training 30 models in
each of the two conditions, where the number of
words for each simulation is n ~ Normal(20, 4).
Figure 2 shows the accuracy on all test words
(All) and accuracy on test words where the final

3 github.com/cbelth/algophon/tree/main/algophon/models
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vowel is neutral (Neutral). D2L’s accuracy, in both
cases, is higher for the OpaQUE condition than the
TrRANSPARENT condition, consistent with the over-
all picture that humans are better at learning har-
mony with an opaque vowel (§ 3). D2L shows this
asymmetry because, in most TRANSPARENT sam-
ples, the number of exceptions introduced by BN
stems does not rise above the TP threshold (9), so
D2L does not create a new representation.

No other model shows this pattern. H&L and
G&G learn both kinds of harmony equally well.
Thus, while Finley (2015) conjectured that the
added complexity of Hayes and Londe (2006)’s
distal harmony constraint might translate into dif-
ficulty learning transparent harmony, when tested
on even this quite small amount of data, there
is enough input to assign a weight to the distal
constraint large enough for the transparent vowel
to be learned. Perhaps surprisingly, even G&G,
which learns to project tiers and learns its con-
straints, also fails to show any difference between
conditions. In the OpaQUE condition, G&G consis-
tently finds a trigram constraint that marks vow-
els differing in backness across another segment.
This is sufficient to learn the harmony pattern. In
the TRANSPARENT condition, G&G learns a simi-
lar constraint, but only specific to the harmoniz-
ing (non-neutral) vowels. G&G then projects a tier
that includes only the vowels in that constraint—
the non-neutral vowels. Then, on this projection,
G&G learns a new constraint that marks dishar-
mony between vowels on the tier—which excludes
the transparent vowel. Thus, G&G learns trans-
parency in conditions where humans do not.

TSLIA does not learn either harmony pattern.
This indicates that there is no characteristic sample
present in the data. This is true even though I col-
lapsed irrelevant differences among segments (e.g.
all consonants were mapped to the symbol C, as de-
scribed in § 4.1.1), which simplifies the learning
problem and in some cases leads learners of this
sort to succeed at learning (Aksé€nova, 2020; John-
son and De Santo, 2023). Running the model with-
out collapsing segments yields the same results.

4.3 Eventual Learning of Transparent

In the second experiment, I evaluated whether D2
and the comparison models get better at learning a
transparent vowel as the amount of training expo-
sure to words that unambiguously show the trans-
parency of the vowel increases. This follows the
same setup as the TRANSPARENT condition above,
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Figure 2: The distribution of accuracies (over All test words and over Neutral test words) of each model in Opaque
and Transparent conditions. Only D2L shows a difference in accuracy between conditions, as humans do.

but varies two parameters: the number of BN (un-
ambiguously transparent) types (4, 6 or 8), and
the relative token frequency of those types (1x,
2x, or 5x the token frequency of non-BN types).
Since the number of words for each simulation
is n ~ Normal(20,4) and the choice of those n
words is based on a sample weighted by token fre-
quency, varying the relative token frequency of the
BN words increases the probability that they enter
into a particular learner’s vocabulary. Thus, the to-
ken frequency also influences the type frequency
of BN words, but in a different way. Increasing the
type frequency was accomplished by replacing FN
words with BN words (so the total number of words
available was always 24). Combining these varia-
tions means there are 9 conditions per model. I ran
30 simulations (different seeds) for each model in
each condition.

Figure 3 gives the results, where the top row
of heatmaps is accuracy over all words and the
bottom row is accuracy over words with neutral
vowels. If a model mirrors the basic pattern of
humans, who get better with transparency as ex-
posure to BN increases, then accuracy should in-
crease (darker colors) as the type frequency in-
creases (rightward movement) and/or relative to-
ken frequency increases (downward movement)—
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in other words if more rightward and lower cells
are darker. This is the case for D2L, but no other
model. Increasing the prevalence of BN excep-
tions eventually leads D2L to form a new rep-
resentation that excludes [¢]. H&L and G&G are
dark in all cells, mirroring the above results where
they learn transparent vowels when humans do not.
TSLIA is again at chance across the board. D2L’s
performance is tied to increases in type frequency,
which is consistent with arguments and evidence
that type frequency, rather than token frequency,
plays the primary role in the formation of lin-
guistic generalizations (Aronoff, 1976; MacWhin-
ney, 1978; Baayen, 1993; Elman, 1998; Pierrehum-
bert, 2001; Albright and Hayes, 2003; Endress and
Hauser, 2011; Yang, 2016).

5 Conclusion and Discussion

Do opaque and transparent vowels do different
things to a vowel harmony system? From one per-
spective, transparent vowels introduce non-locality
that opaque vowels do not (Goldsmith, 1985;
Bakovic and Wilson, 2000; Hayes and Londe,
2006; Finley, 2009). From another perspective,
neither opaque nor transparent vowels change the
kind of information needed to capture the harmony
generalization: in both cases there is a set of seg-
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Figure 3: Heatmaps showing the accuracy of each model when trained on a vowel harmony pattern with a transparent
vowel. The top row shows accuracy across all test words; the bottom shows accuracy across words where the
final vowel is transparent. Matching the trend from human learners in laboratory settings would yield an accuracy
gradient that increases as the type and/or token frequency of words exhibiting unambiguous transparent vowel
harmony increases. D2L matches this general trend. The same cannot be said of any other evaluated models.

ments that can be projected (a tier) that renders all ~ dren’s learning and acquisition—would be of great
the dependencies local (Heinz etal.,2011; Burness  value. For instance, D2L predicts that, if the con-
and McMullin, 2019). One way to approach this  ditions are right, there could be a stage of acquisi-
question is to take the perspective of the learner.  tion where learners incorrectly harmonize alternat-
In Belth (2024), I proposed that learners construct  ing vowels with preceding transparent vowels. In
new representations only when the ones they are  the limited number of developmental studies on the
currently generalizing over let them down. The  acquisition of vowel harmony systems with trans-
results in that article demonstrated that in natu-  parent vowels (MacWhinney, 1978; Gdsy, 1989;
ral language harmony systems, this approach leads ~ Leiwo et al., 2006), I am not aware of reports of
to accurate generalization to test words. Trained  such errors (see Goad and Ozburn 2024 for a re-
on a few hundred words from Turkish, where cent survey). However, if such a stage exists, D21
low vowels are opaque to rounding harmony, or  predicts it to be transient, since accumulating ex-
Finnish, where [i, e] are transparent to backness  ceptions would lead to recursive creation of a new
harmony, D2L constructed representations that al-  representation. Moreover, it is only a subset of
lowed for forming a successful harmony general- words (BN stems in the languages discussed here)
ization. In this paper, I have demonstrated that in  that have the potential of showing such overgener-
Finley (2015)’s setting, the same model constructs  alization. And over-application of generalizations
a vowel tier and only when a transparent vowel in-  to a particular word is influenced by the strength of
troduces enough exceptions does the model again ~ the word’s lexical representation, which in turn is
construct a new representation, then generalizing  influenced by its token frequency (Hooper, 1976;
to transparent vowels. Thus, in this proposal, there ~ Bybee, 1985; Marcus et al., 1992; Bybee, 1995).
is a difference between opaque and transparent  Errors are thus more likely on low-token-frequency
vowels—but only for a time. words, which are less represented in child speech.
Consequently, identifying whether this is indeed a
developmental stage would likely require studies
aimed precisely at this question.

Further research into the factors influencing hu-
man leaning of vowel harmony in the presence of
opaque and transparent vowels—in particular chil-

51



References

Aléna Aksénova. 2020. Tool-assisted induction of sub-
regular languages and mappings. Ph.D. thesis, State
University of New York at Stony Brook.

Adam Albright and Bruce Hayes. 2003. Rules
vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition, 90(2):119-
161.

Mark Aronoff. 1976. Word formation in generative
grammar. Linguistic Inquiry Monograph, 1.

Richard N Aslin, Jenny R Saffran, and Elissa L New-
port. 1998. Computation of conditional probability

statistics by 8-month-old infants. Psychological sci-
ence, 9(4):321-324.

Harald Baayen. 1993. On frequency, transparency
and productivity. In Yearbook of morphology 1992,
pages 181-208. Springer.

Eric Bakovic and Colin Wilson. 2000. Transparency,
strict locality, and targeted constraints. In West Coast
Conference on Formal Linguistics., pages 43-56.

Caleb Belth. 2023a. Towards a learning-based account
of underlying forms: A case study in Turkish. In
Proceedings of the Society for Computation in Lin-
guistics 2023, pages 332-342, Amherst, MA. Asso-
ciation for Computational Linguistics.

Caleb Belth. 2023b. Towards an Algorithmic Account
of Phonological Rules and Representations. Ph.D.
thesis, University of Michigan.

Caleb Belth. 2024. A learning-based account of phono-
logical tiers. Linguistic Inquiry, pages 1-37.

Stefan Benus and Adamantios I Gafos. 2007. Ar-
ticulatory characteristics of Hungarian ‘transpar-
ent’'vowels. Journal of Phonetics, 35(3):271-300.

Phillip Burness and Kevin McMullin. 2019. Efficient
learning of Output Tier-based Strictly 2-Local func-
tions. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 78-90, Toronto,
Canada. Association for Computational Linguistics.

Phillip Burness, Kevin McMullin, and Jane Chandlee.
2021. Long-distance phonological processes as tier-
based strictly local functions. Glossa: a journal of
general linguistics, 6(1).

Joan Bybee. 1985. Morphology: A study of the rela-
tion between meaning and form. John Benjamins,
Philadelphia.

Joan Bybee. 1995. Regular morphology and the lexi-
con. Language and cognitive processes, 10(5):425—
455.

Tsung-Ying Chen. 2024. The “starting-small” effect
in phonology: Evidence from biased learning of
opaque and transparent vowel harmony. Language
and Speech, page 00238309241230625.

52

George N Clements. 1976. The autosegmental treat-
ment of vowel harmony. Indiana University Linguis-
tics Club.

George N Clements. 1980. Vowel harmony in nonlin-
ear generative phonology. Indiana University Lin-
guistics Club Bloomington.

Jeffrey Elman. 1998. Generalization, simple recur-
rent networks, and the emergence of structure. In
Proceedings of the twentieth annual conference of
the Cognitive Science Society, page 6. Mahwah, NJ:
Lawrence Erlbaum Associates.

Ansgar D Endress and Marc D Hauser. 2011. The in-
fluence of type and token frequency on the acquisi-
tion of affixation patterns: Implications for language
processing. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 37(1):77.

Sara Finley. 2009. Formal and cognitive restrictions on
vowel harmony. The Johns Hopkins University.

Sara Finley. 2015. Learning nonadjacent dependencies
in phonology: Transparent vowels in vowel harmony.
Language, 91(1):48.

Jézsef Fiser and Richard N Aslin. 2002.  Statisti-
cal learning of higher-order temporal structure from
visual shape sequences. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
28(3):458.

Heather Goad and Avery Ozburn. 2024. Vowel har-
mony in language acquisition. In The Oxford Hand-
book of Vowel Harmony. Oxford University Press.

John Goldsmith. 1976.  Autosegmental phonology.
Ph.D. thesis, Massachusetts Institute of Technology.

John Goldsmith. 1985. Vowel harmony in Khalkha
Mongolian, Yaka, Finnish and Hungarian. Phonol-
ogy Yearbook, 2(1):253-275.

Sharon Goldwater and Mark Johnson. 2003. Learning
OT constraint rankings using a maximum entropy
model. In Proceedings of the workshop on variation
within Optimality Theory, pages 111-120.

Rebecca Gémez and Jessica Maye. 2005. The develop-
mental trajectory of nonadjacent dependency learn-
ing. Infancy, 7(2):183-206.

Rebecca L Gémez. 2002.
tion of invariant structure.
13(5):431-436.

Variability and detec-
Psychological Science,

Nayeli Gonzalez-Gomez, Silvana Schmandt, Judit
Fazekas, Thierry Nazzi, and Judit Gervain. 2019. In-
fants’ sensitivity to nonadjacent vowel dependencies:
The case of vowel harmony in hungarian. Journal of
Experimental Child Psychology, 178:170-183.

Maria Gésy. 1989. Vowel harmony: interrelations
of speech production, speech perception, and the
phonological rules. Acta Linguistica Hungarica,
39(1/4):93-118.



Maria Gouskova and Gillian Gallagher. 2020. Induc-
ing nonlocal constraints from baseline phonotactics.
Natural Language & Linguistic Theory, 38(1):77-
116.

Bruce Hayes and Zsuzsa Czirdky Londe. 2006. Stochas-
tic phonological knowledge: The case of Hungarian
vowel harmony. Phonology, 23(1):59-104.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonotactic learn-
ing. Linguistic inquiry, 39(3):379-440.

Jeffrey Heinz, Chetan Rawal, and Herbert G Tanner.
2011. Tier-based strictly local constraints for phonol-
ogy. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man language technologies, pages 58—64.

Joan B. Hooper. 1976. Word frequency in lexical diffu-
sion and the source of morphophonological change.
In William M. Christie, editor, Current progress in
historical linguistics, pages 96—105. North Holland,
Amsterdam.

Adam Jardine and Jeffrey Heinz. 2016. Learning tier-
based strictly 2-local languages. Transactions of the
Association for Computational Linguistics, 4:87-98.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Language and Automata Theory and Applications,
pages 64-76. Springer.

Jacob K Johnson and Aniello De Santo. 2023. Eval-
uating a phonotactic learner for MITSL-(2, 2) lan-
guages. Society for Computation in Linguistics,
6(1):379-382.

Baris Kabak. 2011. Turkish vowel harmony. The Black-
well companion to phonology, pages 1-24.

Matti Leiwo, Pirjo Kulju, and Katsura Aoyama. 2006.
The acquisition of Finnish vowel harmony. Finnish
Journal of Linguistics, (19):149-161.

Brian MacWhinney. 1978. The acquisition of mor-
phophonology. Monographs of the society for re-
search in child development, pages 1-123.

Gary F Marcus, Steven Pinker, Michael Ullman,
Michelle Hollander, T John Rosen, Fei Xu, and Har-
ald Clahsen. 1992. Overregularization in language
acquisition. Monographs of the society for research
in child development, pages i—178.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from uyghur backness
harmony. In Formal Grammar 2018: 23rd Interna-
tional Conference, pages 62—83. Springer-Verlag.

Andrew Nevins. 2010. Locality in vowel harmony. Lin-
guistic Inquiry Monographs. Mit Press.

Avery Ozburn, G Hansson, and Kevin McMullin. 2016.
Learning vowel harmony with transparency in an ar-
tificial language. In Talk Presented at the 2016 NOW-
CAM Meeting: Eugene Oregon.

53

Janet Pierrehumbert. 2001. Stochastic phonology. Glot
international, 5(6):195-207.

Catherine O Ringen and Orvokki Heindméki. 1999.
Variation in Finnish vowel harmony: An OT account.
Natural Language & Linguistic Theory, 17(2):303—
337.

Jenny R Saffran, Richard N Aslin, and Elissa L New-
port. 1996. Statistical learning by 8-month-old in-
fants. Science, 274(5294):1926-1928.

Jenny R Saffran, Elizabeth K Johnson, Richard N Aslin,
and Elissa L Newport. 1999. Statistical learning of
tone sequences by human infants and adults. Cogni-
tion, 70(1):27-52.

Jenny R Saffran, Elissa L Newport, Richard N Aslin,
Rachel A Tunick, and Sandra Barrueco. 1997. In-
cidental language learning: Listening (and learning)
out of the corner of your ear. Psychological science,
8(2):101-105.

Lynn M Santelmann and Peter W Jusczyk. 1998. Sen-
sitivity to discontinuous dependencies in language
learners: Evidence for limitations in processing
space. Cognition, 69(2):105-134.

Kathryn D Schuler, Charles Yang, and Elissa L New-
port. 2016. Testing the tolerance principle: Children
form productive rules when it is more computation-
ally efficient to do so. In CogSci, volume 38, pages
2321-2326.

Kathryn Dolores Schuler. 2017. The acquisition of pro-
ductive rules in child and adult language learners.
Ph.D. thesis, Georgetown University.

Rushen Shi and Emeryse Emond. 2023. The threshold
of rule productivity in infants. Frontiers in Psychol-
ogy, 14:1251124.

Charles Yang. 2016. The price of linguistic productiv-
ity: How children learn to break the rules of lan-
guage. MIT press.



Language Learning as Codebreaking: The Key Roles of Redundancy and
Locality

Richard Futrell
University of California, Irvine
rfutrell@uci.edu

Abstract

Understanding the inherent properties that ren-
der a language learnable remains a fundamen-
tal question in cognitive science and linguistics.
I propose to analyze language learning as a
codebreaking task, wherein the learner recov-
ers the underlying grammar (the cryptographic
key) from observed linguistic input (intercepted
ciphertext). I develop a standard information-
theoretic analysis of this codebreaking problem,
but with a twist: in cryptography, one wants to
make a code unbreakable, but in language, one
wants the language to be learnable. The anal-
ysis yields three main findings: (1) Semantic
redundancy—predictability of meanings given
context—is necessary for language learning;
(2) When learners have limited memory for
sequential information, this redundancy must
be local within linguistic strings; and (3) cer-
tain simple kinds of compositional languages
naturally embody this kind of local semantic
redundancy, enhancing their learnability. The
framework shows how distributional statistics
enable the learning of form—meaning mappings
even when learners only observe forms.

1 Introduction

Theoretical models of language learning often fo-
cus on the knowledge that a human brings to the
task, in the form of formal restrictions on possible
grammars (Chomsky, 1965), simplicity biases (Hsu
and Chater, 2010; Hsu et al., 2013), or Bayesian pri-
ors (Griffiths and Kalish, 2007; Pearl, 2023). Here
I instead ask what properties of language make
it learnable regardless of prior knowledge, based
on a cryptanalytic approach: I consider the lan-
guage learner to be a codebreaker attempting to
infer a cryptographic key (the grammar of a lan-
guage, which I take to include the lexicon) based on
intercepted encrypted ciphertexts (linguistic input).
I adapt the classic information-theoretic treatment
of this codebreaking problem (Shannon, 1949) with
a twist: whereas in cryptography one is interested
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Figure 1: Parallel between language and cryptography.
In cryptography (top row), a plaintext (a string) is en-
crypted using a secret key to form a ciphertext (another
string). An attacker may determine the secret key by
observing many ciphertexts; the system is designed to
make this codebreaking task difficult. In language (bot-
tom row), a meaning (in an arbitrary representational
format) is expressed as a form (a string) using an un-
known grammar. A learner may determine the grammar
by observing forms; if the language is to be learnable,
it should be structured so that this codebreaking task is
easy.

in designing codes where the key is hard to break,
here I treat language as a code that wants to be
broken. The parallel language learning and code-
breaking is illustrated in Figure 1.

I present three main results:

» Language learning crucially depends on se-
mantic redundancy of the input.

* Given that learners have limited memory for
sequences, this redundancy must be local
within strings.

 Certain simple kinds of compositional lan-
guages exhibit exactly this kind of local re-
dundancy and are more learnable as a result.

Furthermore, the cryptanalytic approach clarifies
when and how semantics can be learned from dis-
tributional statistics (Harris, 1954; Mikolov et al.,
2013; Merrill et al., 2021).
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context key/grammar

plaintext/meaning  ciphertext/form

Figure 2: Probabilistic graphical model representation
of the learning problem. Forms are a function of a
key/grammar K and a meaning M. The learner ob-
serves context C' and form S and tries to infer the
key/grammar K. The learner never observes under-
lying meanings M. For extralinguistic context, there is
no dependency of C' on K. For intralinguistic context,
there is such a dependency.

2 Language learning as codebreaking

Idealizing, let a language L; be an injective
mapping from plaintexts/meanings M to cipher-
texts/forms which are strings drawn from a finite
alphabet, parameterized by a key/grammar k, with
each key corresponding to a unique possible map-
ping.' Let M be a random variable over meanings,
K be arandom variable over keys, and S = Ly (M)
be a random variable over forms derived by apply-
ing some language to meanings M. The context
C may be extralinguistic (for example, the sen-
sory context of a caretaker pointing to a ball before
saying “ball”) or intralinguistic (for example, the
words “that red” appearing before “ball”’). The
structure of the problem is schematized in a proba-
bilistic graphical model in Figure 2.

The main quantity of interest for the codebreak-
ing problem is the leakage rate, the amount of
information that each ciphertext sample .S provides
about the key K. In cryptography one wants to
minimize the leakage rate, but when thinking about
language learnability we will be thinking about
how to maximize it. Leakage rate is formally the
mutual information between ciphertexts and keys
given context:’

L=IS:K|C) (1)

Each intercepted ciphertext S leaks some informa-

'In cryptography the plaintext is usually also a string, but
this is not necessary for the information-theoretic analysis
of codebreaking. In fact, the theory does not depend on any
assumptions about the nature of the set of meanings M.

?I assume familiarity with the information theory concepts
of entropy and mutual information. See Cover and Thomas
(2006, Ch. 2) for an introduction and reference.
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tion about the key. The number of bits of leaked
information needed to break the code is (on aver-
age) the entropy over keys H[K]. Leakage rate
tells us how quickly the code can be broken, that
is, how much ciphertext the learner must intercept
before they can learn the language / determine the
key, a quantity called unicity distance (Shannon,
1949, p. 693).

Given this analysis, there are two ways to make
a language learnable.? The first is to set up learners
to have a restricted distribution over possible gram-
mars, thus lowering H[K], the amount of leaked
bits that must be gathered to break the key. The
second is to increase the leakage rate, that is, to
speak a language where the average form is highly
informative about the key, regardless of what the
prior distribution on keys looks like. I will focus
on this latter aspect of language learnability.

3 Semantic redundancy

The first result is that languages are learnable to
the extent that meanings are more predictable than
forms. I formalize this using the notion of semantic
redundancy, the predictability of meanings given
context. I operationalize semantic redundancy us-
ing the conditional entropy of meaning given con-
text H[M | C], which represents the uncertainty
about meaning given context: lower conditional
entropy means more semantic redundancy. We
will see that a language is more learnable when
this quantity is small, corresponding to high se-
mantic redundancy. Semantic redundancy may be
contrasted with formal redundancy, the extent to
which a form is predictable given context, that is
the extent to which the entropy on forms H[S | C]
is not maximal.

3.1 Derivation: The importance of semantic
redundancy

The first result is that there is leakage when there is
more uncertainty about form than about meaning:

Proposition 1. For extralinguistic context C, the
leakage rate L is equal to formal minus semantic
entropy:

L=H[S|C|—H[M|C]. )

3 A reviewer suggests that iconicity also makes a language
more learnable, for example if every word is represented by
an onomatopoeic form. I believe this kind of iconicity is best
thought of as a (soft) restriction on the prior over keys, such
that languages containing certain iconic mappings have high
prior probability.



Proof. Starting with the definition of leakage and
applying standard information-theoretic identities
(Cover and Thomas, 2006, Ch. 2), we get

L=1IS:K|C] 3)

=H[S|C]-H[S|C, K] 4)

= H[S|C]-I[S: M| C, K] - H[S | C, K, M].
%)

The last term is zero because S = Ly (M) is a deter-
ministic function given knowledge of the key &, and
also we have I[S : M | C,K] = HM | C,K]
because languages are injective. Finally, since
keys K are independent of meanings M, we have

H[M | C,K] = H[M | C] and we arrive
at (2). O
Remark 1. The argument depends on the fact

that although the learner never has access to the
true underlying meanings, they do have access to a
distribution on meanings that they think are likely
to be expressed.

Remark 2. This argument corresponds to the
classic result that leakage rate is a function of redun-
dancy per character of plaintext (Shannon, 1949,
p- 689), but generalized. In the current setting, the
analog to plaintexts is meanings M, but these are
not necessarily expressible as strings. Shannon’s
result still holds, except instead of being phrased
in terms of characters of plaintext, the analogous
quantity is characters of ciphertext given the key
(appearing in Eq. 4).

Remark 3. For intralinguistic context C', we can
derive a similar form for leakage,

which differs only in that the semantic entropy is
conditional on the key. This is because one can only
‘unlock’ the semantic redundancy in the intralin-
guistic context to the extent that one already knows
the language. The interpretation of this quantity is
largely the same as for extralinguistic context.

3.2 Why does redundancy enable learning?

There are two intuitions that elucidate why it is
possible to learn a form—meaning mapping when
there is a low entropy on meanings given contexts.

Intuition 1: Revealed meaning. Imagine a sce-
nario where you know exactly the single meaning
m € M that will be conveyed, and receive a form

56

s € ¥*. Then you can filter your distribution over
languages to include the mapping m — s, in addi-
tion to any other updates. This scenario is the ex-
treme case where semantic entropy H[M | C| = 0.
As H[M | C] gets smaller, learning is more and
more like this scenario: low entropy over meanings
means that each utterance provides partial informa-
tion about the full mapping. On the other hand, if
the entropy over meanings is high, then no update
or only a small update is possible.

Intuition 2: Dancing men. In The Adventure of
the Dancing Men (Doyle, 1903), Sherlock Holmes
encounters messages represented as strings of danc-
ing men of different shapes. He deduces that this
is a substitution cipher, where each English letter
corresponds to a certain dancing man, and breaks
the code by matching the dancing men to letters
based on their statistical frequency of occurrence,
the letter E being the most frequent letter. In gen-
eral, a substitution cipher for English plaintexts
can be broken by plotting a histogram of ciphertext
letter frequencies against a histogram of English
letter frequencies, and finding the mapping that
makes the histograms match, an approach known
as frequency analysis. This is possible because
English letters are redundant, that is, the frequency
distribution over English letters is relatively low
entropy.

Similarly, given some string observations and
some low-entropy distribution on meanings H[M |
(Y, corresponding to a highly skewed histogram,
one can recover the key by matching the frequen-
cies of strings in context with the probability dis-
tribution on meanings in those contexts. On the
other hand, if the entropy of meanings H[M | C]
is high, then both the form frequencies and the
meaning distribution will be close to flat, and so
the histogram-matching approach will either not
yield a unique solution, or will only work after
intercepting a very large number of forms.

Distributional learning In distributional learn-
ing, one learns language entirely on the basis of
frequency of occurrence and co-occurrence with
context in the input. Distributional learning is a
successful approach to modeling aspects of child
language acquisition (Saffran et al., 1996) as well
as developing computational representations of
word meanings (Mikolov et al., 2013; Penning-
ton et al., 2014). The result above clarifies why
distributional learning works even when a learner
never observes meanings directly (compare Ben-



der and Koller, 2020): because intra- and extra-
linguistic contexts are informative about meaning,
and thus can stand in as a proxy for meaning in an
information-theoretic sense.

If language lacked semantic redundancy of this
kind—that is, if H[M | C| were maximal—then
distributional learning would be impossible, as we
would have H[S | C] = H[M | C] and leak-
age L = 0. In fact, this corresponds to the no-
tion of perfect secrecy in the cryptography set-
ting (Shannon, 1949, §10), and optimal codes such
as Huffman codes (Huffman, 1952), which min-
imize redundancy by design, also have minimal
leakage. On the other hand, as long as the entropy
of meanings H[M | C] is not maximal (either due
to context, or simply because the distribution on
meanings is non-uniform), then we have nonzero
leakage L > 0 and the learner will be able to get
some information about the key.

3.3 Cognitive and linguistic significance

There are two linguistically significant interpre-
tations of this result, depending on whether one
thinks of the context C' as extralinguistic or in-
tralinguistic.

If C is extralinguistic, then the result shows the
importance of the speaker’s choice of which mean-
ings to express in which contexts. Examples would
include a child’s caretaker pointing to a ball before
saying “ball”—thus creating a context C' which is
highly predictive about the intended meaning M —
or the caretaker choosing to name objects already
present in the immediate environment, thus peda-
gogically choosing meanings M to fit the context
C. Cognitively, the result requires that the child is
able to infer communicative intent from context, at
least to some extent, and more generally has some
sense of what meanings are more or less likely.
Learning is possible when meaning is low-entropy
for the learner.

If C is intralinguistic, then the result shows the
importance of the language itself being semanti-
cally redundant, as a function of both its gram-
matical structure and usage choices of the speaker.
An utterance such as “My favorite vegetable is ...”
provides semantic redundancy by predicting certain
semantic features of the following word (provided
one has already worked out the meaning of “ve-
gatable”). Languages with grammatical cues to
semantic features, such as Bantu languages with
rich noun class systems, provide similar informa-
tion through grammatical means. Intralinguistic
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semantic redundancy corresponds to the familiar
experience of being able to guess the meaning of
an unknown word in context, for example when
reading.

3.4 The role of formal redundancy

An interesting wrinkle is that formal redundancy
is not helpful for learning in this highly idealized
setting: leakage is upper bounded by the formal en-
tropy H[S | C]. This means that, when the form S
of some linguistic input is highly predictable from
context, this reduces the amount of information
that the input provides to a learner.

The role of formal redundancy and its relation-
ship with semantic redundancy must be interpreted
carefully. Formal redundancy does not simply
mean that a form is predictable, it means that a
form is predictable on average across the learner’s
key distribution. Effectively, when the learner has
narrowed down the keys to some subset, and a form
is totally predictable under all those keys, then there
is formal redundancy without semantic redundancy,
because observing the form is totally unsurprising.

Formal redundancy without semantic redun-
dancy can arise from, for example, phonotactic
constraints. For example, suppose that a language
has phonotactics where every front vowel is fol-
lowed by only front vowels, that is, it has vowel
harmony; and suppose that a learner is aware of the
concept of vowel harmony and has narrowed their
space of possible languages/keys only to those that
respect vowel harmony. Then when a front vowel
occurs in the context of a front vowel, it is formally
redundant: it is uninformative about anything, in-
cluding the meaning.

4 Locality: Learning with noise

The argument above establishes that a learnable
language must have semantic redundancy, but tells
us nothing about the structure of that redundancy.
Next I consider learners whose memory or atten-
tion for sequences is noisy, such that their observa-
tions effectively consist of contiguous substrings
rather than full strings. Such noisy memory is char-
acteristic of human children (Cowan et al., 1999;
Gathercole et al., 2004; Luna et al., 2004). In this
setting, I find that languages are more learnable
when their intralinguistic redundancy is local, that
is, when the meaning of a character or word is
predictable given nearby characters or words.



4.1 Derivation: Effect of noise on learning

I now assume that with probability e, the context
C is unavailable to the learner, with L(e) being the
leakage rate as a function of the context erasure rate
e. The idea is that a learner with limited memory
or attention might find themselves processing part
of a string without knowledge of its context.

In order to understand how the leakage changes
as a function of noise rate e, one can calculate the
derivative of L(e) with respect to e:

Proposition 2. For extralinguistic context C, the
derivative of leakage with respect to context era-
sure rate e is equal to the formal minus semantic
mutual information:

9

Ep (e)=1I[S:C|—I[M:C].

(7

Proof. Let C represent the random variable over
noisy context, equal either to a true context or to
a special erasure symbol E not in the support of
C'. The leakage as a function of erasure rate L(e)
comes out to

L(e)=H[S | C] - HIS | C, K] (8)
=HI[S|C]|-HI[S|C,K] “
+ellS:C]—ellS:C| K]
=H[S|C]-H[M | C] (10)
+el[S:Cl—ellM:C].
The derivative of (10) with respect to e is (7). [J

Remark 4. The analogous result for intralinguis-
tic context is

0

5L =1[5:C1—1IM:C| K],

(11
paralleling the intralinguistic version of Prop. 1.

The result means that as a context becomes more
likely to be unavailable to the learner, the learn-
ability of the language goes up in proportion to
the formal redundancy contributed by that con-
text, and down in proportion to the semantic re-
dundancy contributed by that context. Intuitively,
if the learner has no access to context, then the se-
mantic redundancy contributed by context cannot
help. In terms of language learnability, the up-
shot is that languages should be configured so that
helpful semantically redundant context is likely to
be available in practice: that is, somewhere in the
string where it is not likely to be erased.
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4.2 Locality from noise

Consider now a scenario where a learner takes in a
string incrementally and, at each position, has some
probability of randomly forgetting (or otherwise
ignoring) the string prefix up to that point. This
represents a learner who either has noisy memory
for the sequence context, or who has had a lapse of
attention and is starting to process a string some-
where in the middle. Then the learner effectively
has perceptual intake (in the sense of Pearl, 2023)
consisting of contiguous substrings, rather than full
strings.

In that case, if there is some helpful semantic
redundancy between two nonlocal parts of a string,
then this redundancy is unlikely to help the learner,
since the learner is unlikely to get a large enough
substring to encompass all parts. On the other hand,
semantic redundancy between local parts of the
string is more likely to be available. The upshot
is that for a language to be learnable under these
circumstances, it must have information locality
(Futrell and Hahn, 2022): any helpful semantic re-
dundancy should be expressed in local parts of a
form, so that a learner with noisy memory or atten-
tion who is only receiving contiguous substrings
as input is able to detect that redundancy and learn
from it.

The idea of local semantic redundancy is re-
lated to the concept of diffusion from cryptanalysis
(Shannon, 1949, pp. 708-709). Diffusion is a de-
sirable property for cryptographic ciphers, where
the redundancy in the plaintext is dissipated into
long-range correlations involving many parts of the
ciphertext, so that a codebreaker must intercept and
analyze a very large quantity of contiguous cipher-
text in order to detect the redundancy and exploit
it. For learnability, human languages should do
the opposite of diffusion: they should be set up
so that semantic redundancy is detectable without
considering large amounts of context.

5 Simulations

The considerations above suggest that for lan-
guages to be learnable, (1) languages must have
semantic redundancy, and (2) if there is noisy mem-
ory for sequence context, languages should config-
ure strings so that semantically redundant parts are
local. Here I demonstrate this result by simulat-
ing learning of some very simple languages which
differ in their levels of redundancy, in the locality
of that redundancy, and in the level of noise under
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Meaning —

Compositional 1 aaa aab aba
Compositional 2 bbb abb bab
Holistic 1 aab bbb bba
Holistic 2 abb bbb bab

abb baa bab bba bbb
aab bba aba baa aaa
aba baa bab aaa abb
baa aab aba aaa bba

Table 1: Example languages for the coinflip world, used in simulations. Possible meanings (coinflip outcomes) are
on the columns. In the ‘compositional’ languages, each character corresponds to an individual coin, as indicated by
color. In the holistic languages, there is no such correspondence.

which learning takes place. In line with the formal
results, I find that semantic redundancy facilitates
learning, and that in the presence of noise this re-
dundancy must be local. Furthermore, I show how
local redundancy obtains when languages are com-
positional in the sense that individual characters or
local groups of characters (that is, words or mor-
phemes) correspond to independent components of
meaning.

5.1 Setup

I simulate ideal learners who start with an initial
uniform distribution over keys/languages, observe
(noisy) sample forms one at a time, and update
their distribution on keys using Bayes’ rule (Bayes,
1763).

Source As the probability distribution over mean-
ings, I consider a very simple world consisting
of two or three weighted coinflips, for a total of
22 = 4 or 23 = 8 possible outcomes/meanings.
The first coin has weight b for heads, where I
vary the weight b in order to vary the entropy of
meanings H|[M]—more biased coins yield lower-
entropy distributions which should facilitate learn-
ing. The second and third coins have weights
b+ 0.1 and b+ 0.2 respectively. If the coins did not
have different weights, then the language would be
unidentifiable for the learner, because the learner
would never be able to identify which characters in
a form correspond to which coins.

Languages 1 first consider languages where
forms consist of binary strings of length 3, which
are either compositional or not, in the sense that
individual characters in the forms may or may not
correspond to the underlying coinflips. These lan-
guages are categorized with examples in Table 1.
I also consider redundant languages where forms
consist of binary strings of length 4 and meanings
consist of two coinflips. These languages are based
on the Compositional 1 language in Table 1, and are
either locally redundant (for example, a meaning
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@@ is encoded as aabb) or nonlocally redun-
dant (for example, the same meaning is encoded
as abab). In all conditions, the learner’s set of
possible languages/keys is the set of all possible
injective mappings from meanings to binary strings
of the appropriate length.

Learning and noise In each step of learning, a
learner observes a single (noisy) sample of a form,
and updates their probability distribution on mean-
ings exactly following Bayes’ rule. Noisy observa-
tions are generated by sampling a form, splitting it
into contiguous substrings, and uniformly choosing
one of those substrings. The splitting is done by
flipping a coin with probability e at each character
of the string; if the outcome is heads, the string is
split at that point. I vary the parameter e in exper-
iments. The condition e = 0 corresponds to no
noise. The condition e = 1 yields to a learner who
only ever sees a single character of input based on a
sampled string, corresponding to maximally noisy
memory for intralinguistic context.

Evaluation I evaluate learning in terms of key
entropy, the posterior entropy over keys given
data observed so far at each timestep. Lower key
entropy indicates the learner has less uncertainty
about the language. The main feature of interest is
the rate at which this entropy decreases.

I would like to emphasize that for all conditions
in these simulations, the key entropy will eventually
approach zero with enough observations: that is,
learning is ultimately possible for all the languages
considered here. They will differ, however, in their
rates of learning.

5.2 Analysis of languages

The compositional languages in Table 1 have se-
mantic redundancy local to each individual charac-
ter. This is because the meaning of each character
corresponds to one coinflip, and thus the semantic
entropy for a single character is bounded: it can-
not exceed the entropy of its corresponding single



151
b = .51, H[M] = 2.8 bits
— b =.65, H[M] = 2.4 bits

104 b = .79, H[M] = 1.3 bits

Key entropy H[K] (bits)

10 100

Form Observations

1000 10000

Figure 3: Learning curves (average over 10,000 runs)
for different levels of semantic entropy, with no noise.
Curves show key entropy H[K] as a function of the
number of forms observed (similar to Shannon, 1949,
Fig. 6). Key entropy decreases more rapidly when se-
mantic entropy is low. Curves are the same for all lan-
guages in Table 1.

coinflip. This redundancy is local in the sense that
it does not depend on context and cannot be de-
stroyed by erasure noise. On the other hand, in
the holistic languages, each character corresponds
to a mixture of different coins, which will gen-
erally have a higher entropy (thus less semantic
redundancy) than the distribution of a single coin.
Furthermore, there will be nonlocal correlations
among the characters within the string, represent-
ing nonlocal semantic redundancy which is in dan-
ger of being missed due to noise. This observation
is in line with the idea that noncompositional lan-
guages very generally create undesirable long-term
correlations within forms (Futrell and Hahn, 2024).

The locally redundant variant of the composi-
tional language extends this idea so that redun-
dancy is local to a pair of adjacent characters. The
helpful semantic redundancy in this adjacent pair
is unlikely to be disrupted by noise, and thus learn-
ing curves are favorable. On the other hand, in the
nonlocally redundant language, the redundancy is
nonlocal, highly likely to be disrupted by noise,
and so the learning curves are less favorable.

5.3 Results

Learning curves without noise (e = 0) by semantic
entropy are shown in Figure 3, which demonstrates
that learning is indeed faster when semantic entropy
is lower. The language used for this simulation is
Compositional 1 from Table 1, but this does not
matter: in this setting, all injective languages will
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produce equivalent curves when there is no noise.

Learning curves under varying levels of noise are
shown in Figure 4. Here we find that the composi-
tional languages yield faster learning, as expected,
because their semantic redundancy is local and not
likely to be disrupted by noise. The difference be-
tween compositional and holistic languages gets
bigger as the noise rate increases. Learning curves
for the explicitly redundant languages are shown
in Figure 5. Languages with local redundancy are
faster to learn, while languages with nonlocal re-
dundancy are slower.

6 Discussion and Related Work

I emphasize that I have considered learners who
never directly observe meaning, and who have no
prior bias towards any language over another; nor
is any language ‘simpler’ than any other for the
learners. The fact that certain languages are learned
more rapidly is rather a function of their seman-
tic redundancy and information locality, which en-
ables learning in the presence of noisy memory
or attention for sequences, in a way that is inde-
pendent of the learner’s prior distribution over lan-
guages.

Distributional learning This work provides a
theoretical understanding of when it is possible to
learn a form—meaning mapping from observations
of form alone, and thus justifies distributional ap-
proaches to semantics and language learning (Har-
ris, 1954; Erk, 2010), both in the context of lan-
guage technologies (Mikolov et al., 2013), and as
a strategy for child learners (Saffran et al., 1996;
Erickson and Thiessen, 2015). The results are con-
sistent with Merrill et al.’s (2024) finding that cor-
pus statistics encode entailment relations under the
assumption that speakers are redundant, and I be-
lieve the notion of local semantic redundancy is
likely related to Merrill et al.’s (2021) notion of
semantic transparency, which is a precondition for
distributional learning of semantics.

Language acquisition The model shows how
language can be acquired when context provides
partial information about meanings, and thus it pro-
vides a generalized idealized version of the cross-
situational learning model of lexicon acquisition
(Siskind, 1996; Hendrickson and Perfors, 2019), in
which a child encounters a word across multiple
contexts until they can identify the word with a
single meaning by a process of elimination. The re-
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at rate e = .9, for coinflip heads probability b = .79
(average over 1000 runs). Key entropy decreases more
rapidly for the locally redundant languages.

sults about the importance of low semantic entropy
are in line with the finding that children learn word
meanings better given low-entropy input (Lavi-
Rotbain and Arnon, 2019). The results on noise
and locality show how cognitive constraints, such
as maturational constraints on working memory,
can imbue learners with a bias toward the kinds of
structures found in language (Newport, 1990; Mita
et al., 2025).

Unsupervised machine translation This work
bears a notable similarity to models of how one can
learn to translate between languages without seeing
parallel texts (Cao et al., 2016), or how one might
decode unknown communication systems such as
those used by whales, where the nature of the mean-
ings being expressed is unknown and possibly un-
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knowable (Goldwasser et al., 2023). The current
approach to language learning can be seen as in-
ducing an unsupervised translation system from
meanings (represented in some unknown mental
form) to forms (represented as observable strings).

Language evolution Approaches to modeling
language evolution by iterated learning have
yielded the result that languages will generally re-
flect learners’ prior distribution on languages (Grif-
fiths and Kalish, 2007; Kirby et al., 2014). In con-
trast, I find a learning bias (toward locally redun-
dant languages) as a function of the noisy nature of
learners’ intake, independent of the prior. This bias
can be seen as arising from the learners’ likelihood
function rather than the prior, and it manifests in
the rate of learning, not in its initial or asymptotic
states. Under noise, locally redundant languages
can be learned to a higher degree of confidence
from fewer samples.

While humans may have innate prior knowledge
of what grammars/keys are possible, the question
remains of why that prior knowledge is what it is.
For example, if humans’ prior knowledge can be
characterized by a constraint that languages must
be compositional in a certain way, the question is
why that constraint rather than another. The con-
siderations above provide a potential explanation,
by showing how learning biases can emerge inde-
pendently of learners’ priors. One could imagine
a population of learners with flat priors, who end
up with local compositional languages due to gen-
eral memory limitations, as discussed in Section 4.
Then over generations of evolutionary time, the
population can evolve to incorporate these biases



as innate prior knowledge.

7 Conclusion

I have presented a model of language learning
based on ideas from cryptanalysis, in which a
learner observes only forms and infers the under-
lying language, the mapping from hidden mean-
ings to forms. Whereas in cryptanalysis one is
concerned with making codes unbreakable, here
I considered what properties of languages make
them breakable. 1 found that languages with lo-
cal semantic redundancy—the opposite of crypto-
graphic diffusion, and corresponding to a kind of
compositionality—are more learnable in this set-
ting, even for learners without prior biases toward
such languages. The model shows how learning
is possible as long as the learner has some prior
knowledge of their interlocutor’s likely commu-
nicative intent.

The analytical and modeling approach taken here
provides a useful new angle on language learn-
ing which can be applied to test hypotheses about
how learning works, how properties of language
affect learnability, and how the learner’s hypothesis
space on languages could be structured to enable
rapid learning. More broadly, I believe that this
cryptography-inspired analysis of language learn-
ing offers a fresh perspective and set of analyt-
ical tools that can be used to approach the lan-
guage learning problem. Cryptanalysis is a well-
developed and rich field of science and engineering.
The analysis here shows that it may contain useful
ideas for linguistics and language acquisition.
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Abstract

Much evaluation work in the literature shows
that neural language models seem capable of
capturing syntactic dependencies in natural
languages, but they usually look at relatively
simple syntactic phenomena. We show that
a two-layer LSTM language model trained on
250M morphemes of Hindi data can capture
the relatively complex interaction between case
and agreement in Hindi-Urdu, at an accuracy
of 81.17%. Furthermore, we show that this
model encodes case-marking linearly, imple-
menting a geometrically intuitive and inter-
pretable syntactic processing mechanism. We
also show that this model doesn’t calculate
agreement extremely eagerly, as case infor-
mation seems to be persistent over time as
a sentence unfolds. This is surprising given
LSTMs autoregressive and recurrent nature,
which should exert an incremental processing
pressure onto our model.

1 Introduction

Neural language models trained for engineering
purposes tend to show human-like behavior when
evaluated on certain benchmarks constructed to
test their understanding of syntactic properties of
certain natural languages. These results are quite
significant, because they show that neural net-
works capture syntactic dependencies that target
latent hierarchical structures even when they are
trained on an objective as simple as next-word
prediction, which doesn’t provide any explicit sig-
nal about hierarchical structure. However, these
benchmarks often only target relatively simple
grammatical phenomena, such as English subject-
verb number agreement. Thus, we don’t know if
language models really learn the full range of com-
plex phenomena featured in various natural lan-
guages. Another problem concerns interpretabil-
ity: when these language models display human-
like behavior, what kind of computation underlies
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their such performances? Understanding the ex-
pressibility and the computation implemented by
language models is empirically important for as-
sessing whether they are viable models of grammar
and sentence processing. In this paper, we show
a LSTM language model (Gulordava et al., 2018)
trained on Hindi data predicts the correct agree-
ment form of a participial verb correctly 81.17%
of the time, and encodes ergative and accusative
case in a subspace of its hidden layer vectors in a
way that makes representations for sentences con-
taining each of these case-markers linearly separa-
ble from those that don’t contain each case-marker.
Our results suggest that a LSTM language model is
not only capable of learning the relatively complex
interaction between case and agreement in Hindu-
Urdu, but also encodes case-marking information
in a geometrically intuitive and interpretable fash-
ion. We think this work points to a direction for fu-
ture work in which we can compare language mod-
els with different architectures in how they repre-
sent and compute with case.

This paper is organized as follows. In Section 2,
we describe relevant work. We discuss two groups
of methods: those for evaluating language models’
ability to learn syntactic properties of natural lan-
guages, and those for understanding the represen-
tations and computations tacitly implemented by
language models.

In Hindu-Urdu, verb agreement targets different
arguments depending on their case-marking pat-
terns, making it a relatively complex agreement
pattern and a good testing ground for evaluating
language models’ ability to capture syntactic de-
pendencies. We describe the Hindi-Urdu facts in
more detail in Section 3, and the training and eval-
uation procedures as well as evaluation results in
Section 5. Despite the modest model size and train-
ing setup, the language model performs reason-
ably well, predicting the correct gender agreement
81.17% of the time.

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 64-73.
Eugene, Oregon, July 18-20, 2025



In the rest of the paper, we investigate the na-
ture of the computation that underlies our language
model’s decent performance. This investigation is
carried out from two perspectives, which we de-
scribe in Section 6. The first one concerns how
the language model represents case. We set forth
a very specific hypothesis, which is that the model
provides a linear encoding of case. If this were true,
the model implements a highly interpretable syn-
tactic processing mechanism. The second perspec-
tive concerns the memory usage. The computation
underlying our language model could be eager and
Markovian, making use of the subject’s case infor-
mation as soon as it is processed, after which this
piece of information no longer has any bearing on
the predicted gender agreement. Alternatively, it
could be lazy and memory-intensive, storing the
subject’s case information in its intermediate rep-
resentations, using it just-in-time as the model pre-
dicts a gender agreement marker. In the latter case,
subject case information is used long after it has
processed the subject.

We carry out the investigation using linear clas-
sifier probes and causal intervention techniques.
These methods, as well as our results, are described
in Section 7. We find positive evidence that the
language model provides such a linear encoding
for the presence/absence of ergative and accusative
case. Our results also align with a lazy characteri-
zation of the language model’s underlying compu-
tation. We conclude in Section 8.

2 Background and related work

There has been much interest in evaluating lan-
guage models’ understanding of grammatical phe-
nomena, a practice sometimes known as targeted
syntactic evaluation (Marvin and Linzen, 2018).
LSTM language models have been evaluated on
various syntactic phenomena, including subject-
verb agreement (Linzen et al., 2016; Bernardy
and Lappin, 2017; Kuncoro et al., 2018; Gulor-
dava et al., 2018), negative polarity item licensing
(Jumelet and Hupkes, 2018; Marvin and Linzen,
2018) and filler-gap dependencies (Chowdhury
and Zamparelli, 2018; Chaves, 2020; Da Costa and
Chaves, 2020; Wilcox et al., 2024). They show var-
ious levels of success on each phenomenon.

Much research also seeks to interpret language
models, i.e., understand their internal mechanisms
that grant them their performances. One popular
approach in this area is to probe language models
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for representations of certain kinds of grammati-
cal information. Typically, this involves extracting
the intermediate representations from a language
model produced for certain linguistic expressions,
and using them to train and evaluate a shallow clas-
sifier that predicts some relevant grammatical in-
formation associated with these expressions. For
example, Tenney et al. (2019) show that BERT rep-
resentations can be used to predict syntactic cate-
gories of and dependency relations between con-
stituents in English.

A common criticism of probing is that it in-
volves training; thus a positive result can’t neces-
sarily be attributed to the language model. There
are ways to overcome this problem. For exam-
ple, probing with weak linear classifiers allows one
to conclude that the relevant grammatical informa-
tion is encoded by the language model as a sub-
space, allowing a geometrically intuitive interpre-
tation of the language model’s inner workings. Fur-
ther, by counterfactually intervening the language
model’s representations using the classifier probe’s
weights and checking if the intervention affects the
language model’s inference process, one can check
if the language model is actually using the gram-
matical information the way it is encoded as sug-
gested by the classifier probe. A recent line of
work incorporates both of these aspects; for exam-
ple, Hao and Linzen (2023) find a linear encoding
of number in a subspace of BERT’s contextualized
representations for English, and show that causal
intervention in this subspace affects BERT’s per-
formance on subject-verb number agreement tasks.

Agreement is a classic example of a syntactic
dependency that targets hierarchical structure; a
lot of interpretability work has focused on LSTM
language models’ learning of agreement. Linzen
etal.’s (2016) pioneering work shows that LSTMs
are capable of predicting English number agree-
ment as a classification task, on which they are
trained with explicit supervision. Gulordava et al.
(2018) show that LSTM language models naturally
learn to predict number agreement correctly in Ital-
ian, English, Hebrew and Russian. Lakretz et al.
(2019) argue that two units in Gulordava et al.’s
(2018) language model track number, which means
LSTM language models implement genuine syn-
tactic processing mechanisms.



3 Case and agreement in Hindi-Urdu

In Hindi-Urdu, the participial main verb and any
auxiliary agree with the structurally most promi-
nent argument of the verb that is not case-marked
overtly (Bhatt, 2005). The subject is more struc-
turally prominent than the object. The overt case
marker for subjects is -ne, which we will call erga-
tive case. The overt case marker for objects is -
ko, which we will call accusative case. For exam-
ple, when the subject is not marked ergative, the
verb and auxiliary agree with the subject no mat-
ter whether the object is marked accusative or not
(1). This agreement is coded on an aspectual mor-
pheme that immediately follows the verb stem.

(1) Rahul  kitaab(-ko)  parh-taa
Rahul[mM] book[F](-acc) read-HAB;MSG
thaa
be[PST;MSG]

‘Rahul used to read a/the book.’

When the subject is marked ergative, agreement
targets the object if the object is not marked ac-
cusative (2).

(2) Rahul-ne kitaab parh-ii  thii
Rahul[m]-ErG book|[F] read-pFv;F be[PST;FsG]
‘Rahul had read a book.’

When both arguments are overtly case-marked,

agreement targets neither argument. The result is

default masculine agreement, shown in (3), where
there are no masculine arguments.

(3) Sita-ne kitaab-ko  parh-aa
Sita[F]-ErG book[F]-Acc read-PFV;MsSG
thaa
be[PST;MSG]

‘Sita had read the book.’

While case controls agreement in Hindi-Urdu, case

itself is controlled by independent factors. The sub-

ject receives ergative case iff its verb is transitive
and in the perfective aspect. The object receives
accusative case iff it is specific or definite.

4 Current study

As described in the previous section, Hindi-Urdu
features a more complex verbal agreement system
than subject-verb agreement systems found in lan-
guages like English, making it an interesting chal-
lenge for language models to learn. In the rest of
this paper, we train a LSTM language model on
Hindi data, and address the following two research
questions concerning this model. First, how well
does the model learn the case-agreement interac-
tion in Hindi-Urdu (Section 5)? Second, if learn-

66

ing is successful, how does the model compute
agreement using case information (Sections 6-7)?
In particular, we employ causal intervention tech-
niques to answer the second question.

5 Training and evaluation

5.1 Training

The training data for our language model comes
from the Hindi Wikipedia (Foundation) and the
Hindi data from the CC-100 corpus (Conneau et al.,
2020; Wenzek et al., 2020), both taken from the
Hugging Face website. The data mostly consists
of unromanized Devanagari. We perform unsuper-
vised morphological segmentation with Morfessor
2.0 (Smit et al., 2014), which reduced our vocab-
ulary size from 2.4M to 146K. We then discarded
all sentences longer than 80 morphemes and con-
verted all morphemes except the most frequent
30000 to a designated UNK(nown) token, giving
us about 246M non-UNK tokens. We follow a
train:dev:test split of 7:1:2.

We train Gulordava et al.’s (2018) LSTM lan-
guage model. Due to the limited size of our train-
ing data, we decided to train a LSTM language
model rather than a Transformer. Gulordava et al.
show that their LSTM language models predict Ital-
ian number agreement across long-distance depen-
dencies at near-human performance. The architec-
ture of the model is a two-layer LSTM with an em-
bedding size and hidden layer size of 650. We fol-
low the set of hyperparameters that gave Gulordava
et al. their best validation set perplexity, which
we detail in Appendix A. Our test set perplexity
is 47.17, comparable to Gulordava et al.’s results.

5.2 Evaluation

We artificially generate an evaluation dataset in-
tended to test our language model’s ability to pre-
dict gender agreement correctly. Each data point
is a pair (s,v) where s is a sentence prefix and
v is a gender label. The sentence prefix s con-
sists of a subject, an object and a verb stem, and
should be continued with an aspectual morpheme
that shows gender agreement. The correct gender
is encoded by the label . The data points are ma-
nipulated by three conditions: whether or not the
subject is marked ergative, whether or not the ob-
ject is marked accusative, and the genders of the
subject and object, which are always different. Ta-
ble 1 illustrates the kinds of data points generated
for each combination of conditions. We combina-



torially generate 320K data points. Most sentence
prefixes in the data set are semantically nonsensi-
cal, an intended effect; we want the model to rely
only on structural properties of the data, not seman-
tic ones.

Evaluation proceeds as follows. For each data
point with sentence prefix s and correct gender -,
we compare the conditional probability of the mas-
culine and feminine singular forms of the following
four aspectual morphemes given the context s:

(4) a. vAB: habitual (m: dT, F: T‘ﬁ')
b. iNF: infinitival (m: AT, F:
c¢. prvc: perfective morpheme that begins with
the consonant I (m: T, F:
pFvV: perfective morpheme that doesn’t be-
gin with a consonant (m: CT, F:

d.

N
[

Within each aspect, the form corresponding to gen-
der v should be higher than the form for the in-
correct gender. Accuracy is aggregated over the
dataset for each aspect. Incorporating results from
multiple aspectual forms gives us a more com-
prehensive evaluation with more generalizable re-
sults, unlike previous evaluation work on English
subject-verb number agreement that only focuses
on one auxiliary pair, e.g. is/are.

However, it can be misleading to compare accu-
racy across items or conditions within each aspect,
because certain aspectual morphemes are incom-
patible with certain items and conditions. For ex-
ample, whether a verb takes the prvc or the PFvv
morpheme in the perfective is lexically specified; a
verb takes prvc iff its stem ends in a vowel (e.g.
HSIT saja, but not ST bhej). Ergative marking
results only in the perfective. A language model
with adequate knowledge of Hindi-Urdu may rea-
sonably assign equally low probabilities to the mas-
culine and feminine prvc forms of the verb WST
bhej, and to the masculine and feminine prvc forms
of the verb ST saja when the subject is not erga-
tive, because all of these forms are ungrammatical.
This would result in a low accuracy for prvc forms.

To address this, we also calculate a form of ac-
curacy that incorporates all aspects. Specifically,
for each data point, we compare the probability
summed over the masculine forms of all four as-
pects with the probability summed over the femi-
nine forms of all four aspects. Intuitively, the sum-
mation represents marginalization over aspect, al-
lowing us to compare the probability of the two
genders directly. We call the accuracy aggregated
over the dataset this way general accuracy. Table 2
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reports the by-aspect and general accuracy for our
language model, broken down by subject and ob-
ject case-marking as well as the correct gender to
show agreement for, i.e., the gender label ~.

Additionally, in Table 2, we report the sensitiv-
ity index d’ for all three case patterns that doesn’t
result in default masculine agreement. We calcu-
late d” as z(hits) — z(FA), where z is R’s qnorm
function, hits is the proportion of true masculine
examples correctly predicted masculine, and FA
(false alarm) is the proportion of true feminine ex-
amples incorrectly predicted masculine. Thus, d’
quantifies the language model’s sensitivity to the
agreement contrast after factoring out any general
biases towards masculine or feminine morphemes
the model may have.

Among the four aspects, the habitual aspect
(nAaB) gives the best results, with a high accuracy of
82.69 and a sensitivity index d’ of 1.84. In compar-
ison, the other aspects have a slightly above-chance
performance. Recall that general accuracy and d’
are calculated by comparing the marginal probabil-
ities of the masculine vs. feminine forms, where
marginalization is summation over aspects. Gen-
eral accuracy is 81.18 and d’ is 1.73, a decent per-
formance. For comparison, Gulordava et al. (2018)
train models with the same architecture on Ital-
ian, English, Hebrew and Russian data, and evalu-
ate their models using two subject-verb agreement
tasks. They report accuracies in the range 67.5—
95.2. The results suggest that our language model
has reasonably understood the case-agreement in-
teraction in Hindi-Urdu.

6 Characterizing the language model’s
underlying computation

We see that our language model has learned the
case-agreement interaction in Hindi-Urdu to some
extent. What kind of computation could our lan-
guage model be performing in order to determine
agreement?

To frame this question more specifically, let’s
consider what forms this computation can take. A
correct Hindi-Urdu agreement computation can be
thought of generally as a process that takes case
information as input and returns the agreement tar-
get as output. For example, it can be modelled as
the simulation of a finite-state machine illustrated
in Figure 1, where case determines the transitions
and the accepting states determine which argument
the agreement should target. The simulation keeps



Genders Cases

Data point (s, )

Glossed example for s

0.0 (NP, NP, "V, m)
FIR  TH ACET B
Kumar[m] one mother[F] leave
B.acc (NP, NP2 acc V., m)
Masc. FAR  UH A B Bl
subject, Kumar[m] one mother[F] acc leave
Fem. erG,) (NP, erg NP, V)
object DHIR T T HA@r Blg
Kumar[m] ERG one mother[F] leave
ErG,aCC (NP, erg NP2 acc V,m)
FIR A UTHACM W Bl
Kumar[m] ERG one mother[F] acc leave
0.0 (NP, NPV, F)
T U AT we
Sita[F] one father[m] leave
f.acc (NP, NP4 acc V,F)
Fem. Jar TH AT H B
subject, Sita[r] one father[M] acc leave
Mmasc. ErG,) (NP, erg NP,V m)
object dar ¥ U fUar s
Sita[F] ErRG one father[m] leave
ERG,ACC (NP, erg NPi acc V,m)

Jar 3 TH Uar H Bl

Sita[F] ErRG one father[m] acc leave

Table 1: Data point templates for each combination of conditions, with examples. In the Cases column, () means
no overt case-marking; e.g., (J,acc means non-overtly marked subject, accusative-marked object. In the Data
point column, each sentence prefix s is described as the right-hand side of a rewrite rule. Uppercase variables are
non-terminals: NP, stands for a singular noun phrase with gender ~, NPi? specifically stands for one that may be

Acc-marked, i.e., specific or definite, NP;A specifically stands for one that may not be acc-marked, i.e., not specific
or definite. V stands for a verb stem.

ere?  acc? Correct HAB INF PFVC PFVV General
’ ) Acc d’ Acc d Acc d’ Acc d’ Acc d
— — M 74.18 57.86 32.11 93.76 78.00
— — F 70.35 118 55.38 0.33 78.36 0.32 10.52 0.28 60.56 1.04
— + M 98.96 88.84 72.08 99.97 99.53
— + F 80.57 3.17 46.09 112 64.97 0.57 8.24 2.03 71.22 3.16
+ — M 95.25 59.52 56.10 97.05 84.42
+ — F 81.02 2.55 81.44 114 89.63 141 39.49 1.62 82.82 1.96
+ + M 83.30 68.38 79.68 99.88 91.60
Average 82.69 1.84 | 65.27 0.77 | 68.00 1.08 | 66.80 1.17 | 81.18 1.73

Table 2: Accuracy and d’ for our language model evaluated on the case-agreement dataset.
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[+ERG] fq\ [+acc]

2

Figure 1: Agreement computation as a finite-state ma-
chine.

track of the current state, and follows transitions
depending on subject and object case.

In order for the language model to implement
such a simulation, it needs to represent case in-
formation somehow. But exactly how does it rep-
resent case? We take a very specific hypothesis
to this question: our language model linearly en-
codes case in a subspace of its hidden layer vec-
tors. That is, there is a subspace for ergative case,
such that the hidden layer vectors for sentences
with an ergative-marked subject are linearly separa-
ble from those for sentences with an non-ergative-
marked subject when both sets of vectors are pro-
jected onto this subspace. In other words, we can
use an ensemble of linear binary classifiers to pre-
dict the presence of ergative marking in a sentence
from its hidden layer vector representation. The
same applies to accusative case. Under this hypoth-
esis, our language model implements a highly inter-
pretable syntactic processing mechanism.

Aside from representations of the input, we can
also consider other aspects of this computation.
One dimension along which we can characterize
alternative forms of computation is memory us-
age. This places an eager and Markovian compu-
tation on one end of a spectrum, and a lazy and
memory-intensive computation on the other end.
These two computations differ in how soon they
advance the simulation as they process linguistic
input. As soon as an eager and Markovian compu-
tation processes case information, it advances the
simulation by following the corresponding transi-
tion. A lazy and memory-intensive computation
would store the subject and case information, and
performs the entire simulation in one fell swoop
when it reaches the verb stem, just in time be-
fore it needs to compute agreement. Where is our
language model’s underlying computation located
along this eager/lazy spectrum?

In the next section, we use linear classifier

Default
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probes and causal intervention techniques to inves-
tigate whether our language model encodes case
linearly, and how eager/lazy it is at advancing the
simulation.

7 Investigating the language model’s
underlying computation

For our first investigation, we first explore the hy-
pothesis that the language model linearly encodes
the presence/absence of each case-marking as a
subspace in its hidden layers. To do this, we first
use a method known as iterative nullspace projec-
tion (INLP) to find three sets of orthonomal basis
vectors that identify a potential case subspace; two
for ergative, and one for accusative. We then re-
run the evaluation described in Section 5.2, but in-
tervening on the subject and object representations,
reflecting them onto the “opposite side” of the case
subspaces, effectively making the representation of
a case-marked argument not case-marked, and that
of a non-case-marked argument case-marked. We
check how effective the intervention is by measur-
ing how intervention affects the language model’s
performance. An effective intervention suggests
the subspace identified by INLP really is how the
language model encoding case.!

7.1

Intervention is a process that takes three things as
input: a vector z € R?, which is a representation
produced by our language model, a set of orthonor-
mal basis vectors B = by, -, b, € R, which iden-
tifies a subspace that encodes case, and an intensity
parameter o« > 1. First, for each j = 1,--- | k, cal-
culate A;, the scalar projection of x onto b; with
A bej. Then, return the intervened vector

J
x’ € R%, calculatedas ' = z—« 25:1 A;b;. The
interpretation of z’ depends on . When @ = 1,
x’ is the projection of x onto the nullspace of the
case subspace; x’ then represents z but with all
case information removed. When o = 2, 2’ is the
reflection of x onto the opposite side of the case
subspace; x” then inverts the case information of
x. For example, if B represents the ergative sub-
space, and x represents an ergative-marked argu-
ment, then =’ represents the same argument as x ex-
cept it’s non-ergative-marked. Any o > 2 pushes
a’ further in the opposite case direction, intensify-
ing the effect of the intervention.

Method: intervention

'Our description of intervention and INLP largely follows
Hao and Linzen’s (2023) presentation.



7.2 Method: iterative nullspace projection

To perform intervention with respect to a case sub-
space, we first need a set of orthonormal basis
for that subspace. Iterative nullspace projection
(INLP) (Dufter and Schiitze, 2019; Ravfogel et al.,
2020) is a supervised method to help us find the
bases for a subspace of interest. We describe INLP
for identifying the ergative subspace; the same pro-
cess works for the accusative subspace. First, we
designate a training split of the evaluation dataset,
and run the language model on each sentence pre-
fix s'%) of the training split to obtain a hidden layer
vector h(¥) at some position of interest. Each h(%)
is paired with a binary label ¢(*) representing the
presence/absence of ergative case in that sentence
prefix. Then, we train a linear classifier to predict
¢ from h(Y). The normalized weights of the clas-
sifier, a vector in R, is taken to be the first basis b;.
For each additional jth basis we’d like to find, we
train another linear classifier the same way, except
we preprocess the input 2(*) by intervening it with
the first j — 1 bases and intensity o = 1, removing
the ergative case information captured by the first
J— 1 bases. We train each classifier using gradient
descent, which guarantees that the new classifier
weight b; is a weighted sum of the preprocessed
inputs A(?). Since the preprocessing projects each
h'") onto the nullspaces of the first j — 1 bases, b;

is guaranteed to be orthogonal to all of by, --b;_.
7.3 Evaluation with causal intervention: is

case encoded linearly?

We perform a 50-fold cross validation on the eval-
uation dataset, with a training split of 6.4K data
points in each fold. For the ergative subspace, we
run INLP on hidden layer vectors obtained from
two positions: one set after processing the subject,
and another after processing the object. For the ac-
cusative subspace, we run INLP on hidden layer
vectors obtained after processing the object. This
gives us three sets of bases: one for the post-subject
ergative subspace, one for the post-object ergative
subspace, and one for the post-object accusative
subspace.

The remaining 313.6K data points in each fold
is used for evaluation. We re-run the evaluation de-
scribed in Section 5.2, while performing causal in-
tervention with respect to each one of the three case
subspaces at the appropriate location. For example,
for the post-object ergative subspace, we feed each
sentence prefix into our language model, and pause
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once the model processes the object. We intervene
the hidden layer vectors with respect to the post-
object ergative subspace using some intensity c«,
and resume model inference using the intervened
hidden layer vectors, effectively flipping the pres-
ence/absence of ergative marking. We compare the
agreement performance of the language model be-
fore and after the intervention to see how success-
ful the intervention was. We use sensitivity index
(d") to quantify model performance. The results
are shown in Figure 2 for ergative intervention and
Figure 3 for accusative intervention. We present
the results for o = 5 just as Hao and Linzen (2023)
did, noting that lower values for o doesn’t change
our results qualitatively.

Let’s first consider ergative intervention. We be-
lieve ergative case information should be the most
recoverable at the post-subject position; hence in
this section, we only look at the results of the post-
subject ergative intervention. In the [-ERG,-Acc]
condition, agreement should target the subject. A
successful ergative intervention should assimilate
this to the [+ERG,-acc] condition, where agreement
should target the object. Indeed, we see that the
agreement performance flips to the opposite pre-
diction, as d” drops below zero. In the [-ERG,+AcC]
condition, agreement should target the subject. A
successful ergative intervention assimilates this to
the [+ERG,+Acc] condition, which requires default
agreement. This should be reflected as chance per-
formance, which is exactly what we see in our re-
sults. Finally, in the [+ERG,-Acc] condition, agree-
ment should target the object. A successful inter-
vention assimilates this to the [-ErRG,+Acc] condi-
tion, where agreement should target the subject.
However, our ergative intervention only drives the
agreement performance to near-chance level, not
exactly reversing the agreement predictions.

Let’s turn to accusative intervention. In the two
[-ErRG] conditions, a successful accusative interven-
tion shouldn’t affect agreement computations, be-
cause agreement should always target the subject if
it isn’t ergative-marked. Indeed, our intervention
doesn’t change the agreement predictions qualita-
tively, as it remains above chance in both condi-
tions. In the [+ERG,-Acc] condition, agreement tar-
gets the object. A successful accusative interven-
tion should cause agreement to fall back to default
masculine. However, our intervention keeps the
agreement above chance, which means agreement
is still targetting the object.

Thus, we have found positive evidence that our
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Figure 2: Ergative intervention results. The two inter-
vention locations are post-Subject and post-Object. The
light dashed line is drawn at d’ = 0, indicating chance
performance. The dark solid line indicates the original
performance of the language model before intervention.
Error bars indicate one standard error average across
cross validation.

language model uses a linear encoding of ergative
and accusative case marking, and uses this encod-
ing to calculate agreement.

7.4 Is agreement computation eager or lazy?

For our second investigation, we check whether our
language model aligns more with an eager or a lazy
characterization of agreement computation. We
suggest that looking at the effectiveness of the post-
object ergative intervention may give us a clue,
because it should only be effective in a lazy, but
not an eager, computation. An eager computation
would use the ergative case information to advance
the simulation as soon as it processes the subject,
discarding that information, while a lazy computa-
tion would store the ergative case information until
it sees the verb. Looking at Figure 2 again, we ob-
serve that post-object ergative intervention is still
effective, although the magnitude of the interven-
tion effect is smaller than post-subject intervention.
This suggests our language model isn’t computing
agreement in a purely eager way.

Although this by itself is a very weak conclu-
sion, we think that the general method of causal
interventions with respect to linear encodings we
pursue here can be extended in interesting ways to
help us better understand the underlying computa-
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Figure 3: Accusative intervention results. The interven-
tion location is post-Object.

tion of language models. For example, we plan to
perform the same analysis we describe in this pa-
per to Transformers. We think the autoregressive
and recurrent nature of the LSTM architecture cre-
ate an incremental processing pressure that encour-
ages performing computations on the fly, while
Transformers aren’t subject to this pressure. Thus,
we expect Transformers to show signs of a lazier
computation than our LSTM language model.

8 Conclusion

In this paper, we train a LSTM language model
on Hindi data and show that it has learned case-
agreement interactions in Hindi-Urdu, predicting
correct gender agreement 81.17% of the time. We
further show that our language model has learned
to encode case information in a low-dimensional
subspace of its hidden layer vectors, where case-
marked arguments are linearly separable from non-
case-marked arguments. In addition, our model
uses case information encoded this way as part of
its agreement computation. Preliminary evidence
also suggests that our language model doesn’t cal-
culate agreement extremely eagerly, as our causal
intervention methods reveal that case information
seems to be persistent over time as the language
model processes a sentence. The general method
described in this paper can be adopted to study in-
teresting phenomena concerning case and agree-
ment in other languages.



Limitations

We see two limitations in our work, which both
concern interpreting our causal intervention results.
The first limitation is that we don’t know how much
of the effectiveness of our case interventions is
meaningful. For example, Figure 2 shows that post-
subject ergative intervention in the [—ERG,—AccC]
condition decreases general d” by about 2.5. Can
all of this 2.5 point decrease be attributed to suc-
cessful ergative intervention? For example, if we
had performed multiple post-subject interventions,
each time with respect to a set of randomly gen-
erated orthonormal basis vectors, and observed a
d’ decrease in the range 1.5 to 3, then our ergative
intervention result wouldn’t be meaningful, since
just any intervention would affect d’ in a similar
way. We plan to add a comparison between our
current results and intervention with respect to ran-
dom bases in a future version of this paper.

The second limitation is that we presently offer
no way of quantifying how lazy or eager our lan-
guage model’s underlying computation is. This
would be possible if we know how effective we
would expect post-object ergative intervention to
be under a fully lazy and a fully eager computation.
While a fully lazy computation should result in
equal effectiveness between post-object and post-
subject ergative intervention, we don’t know how
effective a fully eager computation should be. In
the future, we hope to consider alternative ways of
quantifying the eagerness/laziness of our language
model’s underlying computation.
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Abstract

Negation is an important aspect of human language and
reasoning. Prior work has proposed that positive- and
negative-polarity sentences exhibit a number of
asymmetries. This paper focuses on two of them: (i)
Regarding cost, marked forms like negation are known
to elicit more production cost than the unmarked
positive polarity, and (ii) regarding pragmatic inference,
the negative polarity is said to presuppose the
prominence of its positive-polarity counterpart, but not
the other way around. We present novel empirical
evidence regarding these two asymmetries and offer one
of the first formalizations of these asymmetries within
the Rational Speech Act (RSA) framework. We show
that existing extensions of the standard RSA model, e.g.,
soft semantics and common ground update, while not
originally proposed to address sentence polarity
asymmetries, can nonetheless be applicable to these
phenomena.

1 Introduction

As one of the most influential cognitive models of
pragmatics, the Rational Speech Act model (RSA;
Frank and Goodman, 2012) formalizes the
recursive reasoning involved in language use and
communication. See formulas (1) - (4) for a formal
definition of the standard RSA model:

Pro(slu)« Tul(s) - P(s) )

[ul(s) € {0, 1} 2

Psi(uls)« exp(a@ (In Pro(s|u) — Cost(u)) (3)
Pri(s|u)e Psi(uls) - P(s) O]

This model centers on a pragmatic listener,
Pri(slu), who infers the intended state s from an
utterance u by reasoning about a pragmatic speaker,
Psi(uls), who selects utterances based on their
utility U. This speaker derives informativeness
(how much an utterance reduces uncertainty about
the intended meaning or referent) from a literal
listener, Pro(s|u), who interprets u deterministically
as true or false ([u] (s) € {0, 1}) and factors in the
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cost of u, Cost(u). The speaker is modeled as a
SoftMax-optimal agent choosing utterances to best
convey s. Both listeners apply Bayesian inference
to update beliefs over states from the prior, P(s),
which serves as the shared common ground
(Stalnaker, 1978, 2002).

The RSA model and its close extensions
successfully cover a wide range of pragmatic
phenomena (see Degen, 2023; Scontras et al., 2021
for a review), including those involving negation,
such as indirect politeness and negative
strengthening (e.g., not bad vs. not amazing in
Yoon et al., 2020), projective content that survives
negation (Qing et al., 2016), and presupposition
triggering (Warstadt, 2022). However, the use of
RSA to specifically address the pragmatic
consequences of sentence polarity asymmetries has
received less attention. Theoretical work on
negation (e.g., Jakobson, 1963; Givon, 1978; Horn,
1989) suggests that positive and negative polarities
show (at least) two asymmetries, which we refer to
as Asymmetry Hypotheses 1 and 2:

e Asymmetry Hypothesis 1: Marked  forms
like negation are typically realized using
more complex structures and longer
linguistic forms, which are known to elicit
higher production cost than their unmarked
counterparts; and
Asymmetry  Hypothesis 2: Negation
presupposes  that its  positive-polarity
counterpart is relevant or prominent in the
common ground, not the other way around.

In this paper, we aim to (i) empirically test the
pragmatic consequences of the two asymmetry
hypotheses and to (ii) characterize the empirical
patterns associated with two types of asymmetry
within the RSA framework.

The first asymmetry is closely linked to the
trade-off between informativeness and cost that the
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pragmatic speaker in RSA must consider. Given
that a pragmatic speaker aims to maximize
informativeness and minimize cost, the standard
RSA model predicts that a negative utterance is less
likely to be produced than a similarly informative
positive-polarity utterance, i.e., when the states
they refer to have similar prior probabilities.
Consider part-whole relations as a concrete
example. Assuming that situations like The house
doesn't have a bathroom and The house has a
ballroom have similar prior probabilities (see
below for details on a norming study of state
priors), utterances describing these situations
should be similarly informative. However, when
the standard RSA model (in particular, the
pragmatic  speaker) penalizes  higher-cost
utterances, the negative utterance yields a lower
utility and is therefore less likely to be produced.

The second asymmetry regarding
presupposition accommodation is closely related to
common ground update. Assuming that negation
presupposes the probability of its positive-polarity
counterpart, a negative utterance requires that this
positive counterpart be either part of the common
ground or can be accommodated. If it is not already
common ground knowledge, listeners must
accommodate the presupposition before the
negative utterance can successfully update the
common ground with the negated information.
Thus, if a speaker says The house doesn't have a
ballroom, then in principle the negative utterance
presupposes the possibility of The house has a
ballroom. However, since ballroom is not a typical
part of house, the listener must accommodate this
atypical part-whole relation before the negative
utterance can be deemed pragmatically motivated
and smoothly integrated into common ground.

Utterance choices can be easily probed by
asking naive participants how likely they are to
mention certain things. In contrast, directly asking
whether a negative utterance presupposes the
possibility of its positive-polarity counterpart is
less likely to yield interpretable results. To probe
this second asymmetry, we instead asked
participants to rate the typicality of the whole entity
under discussion (e.g., house, see more details in
Experiment 2 in Section 3.2).

As we show in Section 3, (i) the empirical data
patterns are more complex than those predicted by
either hypothesis, (i) while the standard RSA
model aligns with the predictions of Hypothesis 1,
it fails to account for our findings, and (iii) the
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standard RSA model lacks a mechanism for
common ground updating such that it can’t capture
Hypothesis 2, let alone explain the observed data.
In light of this, we extend the standard model to
better capture our empirical findings.

2 Related Work

The standard RSA model (formalized in (1)-(4))
tends to idealize the key components—such as
common ground and the literal listener—that are, in
practice, subject to uncertainty in real-world
communication. Before delving into the empirical
findings and our extended RSA models, we review
relevant work on common ground update and soft
semantics (as opposed to deterministic semantics).

2.1 Common ground update in RSA

Degen et al. (2015) observed that the single prior
mechanism in the standard RSA model predicts no
scalar implicature in a some-utterance that
introduces a high-prior event, e.g., Some marbles
sank into water, while both theoretical
observations (Geurts, 2010) and empirical data
(Degen et al., 2015) suggest that the scalar
implicature is, in fact, strong. To solve this issue,
Degen et al. proposed a complex prior, P(s|w) in
(5), which determines the world (wonky vs.
normal) based on the variable wonkiness, w. In
their wRSA model (see (5) — (8)), the pragmatic
listener, Pr; (s, wju), jointly infers the actual state
and the world wonkiness.

P(slw) « {Pl ) Z: Zﬁfmkﬁfif;lfd 5)
PLo(slu,w)« [u](s) - P(s|w) (6)

Psi(uls, W)« exp(@ (In Pro(s|u, w) — Cost(w)) (7
Pri(s,wlw)« Psi(uls,w) - P(s|lw) - P(w) ®)

This model predicts that, when observing a some-
utterance that introduces a high-prior event, the
pragmatic listener backs off to the wonky world
where the event has a lower prior probability. This
adjustment makes the some-utterance a more
reasonable utterance choice for the speaker. Degen
et al.’s study shows that this extended model fits the
empirical data much better than the basic model, in
terms of updating both state and world priors.
Kravtchenko and Demberg (2022b), using the
core ideas from the wRSA model to predict
atypicality inferences in redundant descriptions of
habitual events, found that low-utility utterances
led listeners to infer that the habituality of an
agent’s actions was lower than typically expected.



However, as Cremers et al. (2023) point out,
Degen et al. (2015)’s implementation of the wRSA
model deviates from strict Bayesian reasoning.
Instead of directly using the empirically obtained
prior distribution over world states in the pragmatic
listener’s belief of common ground, the model
assigns a weighted combination of two worlds: one
uniform (‘wonky world’) and one empirical
(representing ‘normal world”), which contaminates
the so-called ‘observation’. Therefore, Cremers et
al. (2023) replaced P(s|w) with P(s|normal world)
for the literal listener. See (9) for the modification
that we adapted from Cremers et al. (2023):

Pri(s,w|uw)« Psi(ul|s,w) - P(s|lnormal) - P(w) (9)

Degen et al.’s proposal of a complex prior
inspired more work on the joint inference of
common ground and state (Qing et al., 2016;
Warstadt, 2022) that involve another approach,
namely, Question under Discussion (QUD;
Roberts, 1996/2012). By inferring a pragmatic
speaker’s question under discussion, the pragmatic
listener finds a way to rationalize utterances.

For the present study, we want to start with the
approach of complex prior, for which our empirical
data provide a meaningful test ground. However,
this does not exclude QUD as a future direction.

2.2 Soft semantics in RSA

The literal listener’s model in the vanilla RSA
model and most of its variants interprets an
utterance with a deterministic Boolean semantics.
Using the examples from Degen et al. (2020), the
utterance “small” assigns a probability of O to the
referent ‘big red ball’ (false) and the referent ‘big
blue ball’ (false) and assigns a probability of 1 to
the referent ‘small blue ball’ (true), in a finite set
consisting only of these three objects.

“Small ball” is the optimal utterance for a
listener to most efficiently identify the ‘small blue
ball’, but in natural production, speakers are often
redundant, producing “small blue ball” instead. To
address this and other empirical-modeling
discrepancies with referential expressions, Degen
et al. (2020) introduced soft semantics—a
continuous semantics—into the RSA model.

Continuing with the examples from Degen et al.
(2020), the soft semantics of the utterance “small”
can assign a probability of .48 to the ‘small blue
ball’ and a probability of .26 to both the ‘big blue
ball’ and the ‘big red ball’, reflecting flexibility in
literal meaning. Such fuzzy (i.e., vague in the sense
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of fuzzy logic, Zadeh, 1978) interpretations can be
simply represented as follows:

[ul(s)e[0,1]c R (10)

The literal interpretation is no longer restricted to a
binary ‘true’ vs. ‘false’ but instead ranges from 0 to
1 in a continuous manner. Regarding the
implementation of this continuous semantics,
probabilities of literal meanings are decided during
model fitting, e.g., using optimization techniques
such as Maximum Likelihood Estimation (Degen
et al., 2020), or by plugging in pre-normed data
when applicable (Yoon et al., 2020). In addition to
Degen et al. (2020), the model of the literal listener
can also be modified by introducing lexical
uncertainty to the lexicon (Bergen et al., 2012).
Degen et al. (2020)’s approach can be
interpreted as introducing noise to literal meaning.
Relatedly, Bergen and Goodman (2015)’s noisy-
channel RSA introduces noise to the transmission
of utterance itself that affects literal meaning as
well: The received utterance may differ from the
intended utterance at the string level. Kravtchenko
and Demberg (2022b) adapted the noisy-channel
RSA to model the effects of framing on atypicality
inferences, showing that emphasis (e.g., via

exclamation punctuation) strengthens these
inferences. They argue that with emphasis
redundant utterances are less prone to

misremembering or being ignored, and thus more
likely to trigger pragmatic inferences.

In the case of negation, soft semantics might be
able to capture both types of noises, namely fuzzy
interpretations of negative utterances and their
potentially noisy transmission. This is suggested by
various prior observations regarding negation: (i)
Theoretically, negation is said to presuppose the
existence of the negated (Horn, 1989), (ii)
empirically, negative sentences trigger the
activation of both the negated representation (e.g.,
door-not open) and the negative representation
(e.g., door-open) (Kaup et al., 2006), and (iii)
negation impacts memory in that negative
situations can be misremembered as their positive
counterparts (Maciuszek & Polczyk, 2017; Cornish
& Wason, 1970).

3 Sentence Polarity Asymmetries

We collected utterance choice preferences in
Experiment 1 to test Hypothesis 1 and the standard
RSA model. We collected typicality ratings in
Experiment 2 to test Hypothesis 2. As previewed
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Figure 1: Norming study. Histogram of expected
values of each smoothed prior distribution

earlier, the results of the experiments reveal more
nuanced sentence polarity asymmetries than can be
fully captured by either of the two asymmetry
hypotheses or the standard RSA model.

3.1 Norming of the state prior

In both experiments, our stimuli were sentences
describing real-world part-whole relations such as
house-garage and their negative forms house-no
garage. To test how prior probabilities of these
part-whole relations influence utterance likelihood
and sentence interpretation in the standard RSA
model and human data, we first conducted a
norming study. This norming study (n=57)
measured prior probabilities of 81 part-whole pairs.

The pairs consisted of 27 whole entities and
three part entities for each whole entity. On each
trial, participants saw two words: the whole entity
in capitals (e.g., CLASSROOM) and the part entity
in lower case (e.g., stove). Participants gave their
ratings on a slider scale (0-100%) to answer
questions about state prior probability, e.g., how
likely they think a stove is part of or seen in a
classroom. The percentage rating distributions for
each pair were smoothed using a nonparametric
density estimation method suited for ordinal
categorical variables with the np package in R
(Hayfield & Racine, 2008), following Degen et al.
(2015). This non-parametric smoothing method is
used in all experiments reported here to handle
outliers in our relatively small samples, while
preserving the ordinal nature of the rating data.

As Figure 1 shows, the data have a wide range
of coverage while somewhat oversampling the
high and low ends of probability. This is ideal for
generalizing findings across levels of state priors.

3.2 Informativeness-cost trade-off

Experiment 1 (n=52) measured utterance
likelihoods of individual part-whole relations being
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explicitly mentioned. On each trial, participants
read a two-sentence sequence followed by a
question. The first sentence is a lead-in that
introduces the ‘whole’ entity, e.g., Emma visited a
friend’s house yesterday. The second sentence
states a fact about what the place has (i.e., the “part’
entity), in either positive or negative polarity (The
house has a bathroom or The house doesn t have a
bathroom). Each participant saw an equal amount
of positive and negative-polarity items. For each
item, participants rated utterance likelihood, e.g.

Empirical data (utterance likelihood)
polarity
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< ~*= negative
©
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Figure 2: a. Empirically collected utterance
likelihood (top) b. Model (standard RSA)
predictions of utterance likelihood (bottom)

How likely do you think it is that Emma would
mention that? Participants gave their ratings on a
slider scale (0- 100%).

Figure 2a shows the utterance likelihoods from
the human participants for both positive-polarity
and negative statements. Visual inspection indicate
that (i) for both sentence polarities, utterance
likelihoods decrease as the state priors increase, (ii)
for negative polarity, the decrease of utterance
likelihoods as state priors increase is steeper than
positive polarity. These patterns suggest a main
effect of state prior and an interaction between state
prior and sentence polarity.

Beta regression analysis confirms that there is a
main effect of state prior (p =-4.36, SE=0.28, z=
-15.74, p < .001), and an interaction effect between
state prior and sentence polarity (f = 2.43, SE =



0.35,z2=6.96, p < .001). From the positive sign of
the interaction effect, we can confirm that the
negative polarity yields a steeper decrease in
utterance likelihood as the state prior increases. In
addition, we found no main effect of sentence
polarity (B =-0.20, SE =0.20, z=-1.05, p = .296).

These results reveal patterns that Asymmetry
Hypothesis 1 does not predict. On one hand,
overall, positive utterances are not always
perceived as having higher utterance likelihood.
On the other hand, speakers are more likely to
communicate low-informativeness information
using positive polarity and more likely to
communicate high-informativeness information
using negative polarity.

Model predictions (standard RSA): Now let
us see whether the standard RSA model can capture
these observations. The model (as in (1)-(4)) is run
in R using the rwebppl package'.

The model considers two states: Usae = {Spos,
Sneg} and three possible utterances: Uwserance = {Upos,
Uneg, Umat}. These utterances are mapped to truth
values of different states. When the null utterance,
una (say nothing), is made, people simply rely on
their prior expectations (state prior) to interpret the
situation. The positive utterance, u,,s “A has B”,
maps to the truth of only the positive state, s,0,. The
negative utterance, une, “A doesn’t have B”, maps
to the truth of only the negative state, Speg.

The utterance utility term consists of an
informativeness component, a cost component, and
a speaker rationality parameter. ais set to 1 and
utterance cost is specific to each of the three
utterances (Cost(uuu)=0; Cost(tpos)=1; Cost(Uneg)=
2). P(s) is the normed state priors data that we
plugged in the model as input.

Figure 2b shows the model-predicted utterance
likelihoods for both sentence polarities. Visual
inspection indicates that (i) similar to the empirical
data, for both sentence polarities, utterance
likelihoods decreased as the state priors increase,
and (ii) for positive polarity, the predicted utterance
likelihood is always higher than the negative.
These patterns suggest a main effect of sentence
polarity and a main effect of state prior.

Beta regression analysis reveals a main effect of
state prior (f = -4.43, SE =0.36,z=-1247,p <
.001). However, unlike human data, we found in
the model predictions a main effect of sentence
polarity (B = 0.78, SE = 0.28, z = 2.83, p < .01),

'https://github.com/mhtess/rwebppl
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indicating that the positive polarity always yields
higher utterance likelihood than the negative
polarity. Moreover, we did not find a significant
interaction between state prior and sentence
polarity (B =0.13, SE=0.44, z=0.28, p = .78).

The results suggest that the standard RSA model
follows predictions of the Hypothesis 1 and fails to
fully capture the empirically observed patterns.

Comparing empirical data and model
predictions: The discrepancy centers on the lower
bound of the state prior that approaches a
probability of 0: Based on human data, negative-
polarity situations that have low priors (e.g., The
classroom doesn t have a board.) are more likely to
be communicated than positive-polarity situations
that have similarly low priors (e.g., The classroom
has a stove.). However, given that our human data
were not collected in a spontaneous production
study, it is possible that the Experiment 1
participants did not consider the role of utterance
cost. We want to be cautious about committing to
this pattern of sentence polarity asymmetry, so we
ran another model simulation with the utterance
cost constant as 1 for both sentence polarities.

Beta regression analysis now shows a main
effect of state prior (B = -4.45, SE = 0.32, z = -
13.75, p <.001), no effect of sentence polarity (B
= 0.14, SE = 0.27, z = 0.53, p = .59), and no
interaction between state prior and sentence
polarity (B = 0.01, SE = 0.41, z = 0.02, p = .98).
This shows that the model-predicted utterance
likelihood of negative and positive sentences
patterns alike, which is not surprising given how
the model parameters do not differentiate them.

The results above suggest that even when cost is
controlled, the standard RSA model fails to capture
the sentence-polarity asymmetry observed in our
empirical utterance likelihood data.

In the other model implementations in this
paper, we thus assume higher cost for negative
utterances than positive ones (also in line with
cognitive psychology and linguistics research).

3.3 Common ground update

Experiment 2 (n=52) collected typicality ratings
of the whole entity (e.g., house) using the same
stimuli as in Experiment 1, except that the fact
statement of a positive/negative part-whole relation
was embedded in direct speech in Experiment 2,
e.g., “The house has a bathroom,” Emma told her
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partner. Participants were instructed to rate the
typicality of house based on what the protagonist
said about it (e.g., How likely do you think it is that
the house is a typical house?).

Following standard RSA practice (Frank and
Goodman, 2012; Degen et al., 2015), we compare
ratings before and after utterances are presented to
participants. Pre-utterance ratings (the norming
data in Section 3.1) reflect (the listener’s belief of)
common ground prior to communication, while
post-utterance typicality ratings (this section,
Experiment 2) reflect updated common ground
triggered by the utterance, in line with the
discussions about Asymmetry Hypothesis 2.

Figure 3a shows these two types of ratings for
positive polarity (solid line: state prior; dashed line:
updated common ground). Figure 3b shows the
same results for negative polarity.

The ratings were analyzed with Pearson
correlation and beta regression. First, we assessed
the correlation between state prior (norming) and
typicality ratings (Experiment 2). To test this, we
conducted a Pearson correlation: the typicality
ratings are more strongly correlated with the state
prior in positive polarity (r..(76)= 0.84, p<0.01)
than in negative polarity (7..(76)= 0.75, p<0.01).

Second, to compare sentence polarities directly,
we analyzed the interaction between polarity and
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state prior on typicality ratings using beta
regression. We found a main effect of polarity (5=
-0.41, SE = 0.08, z = -5.16, p<0.01) where the
negative polarity yielded lower typicality ratings
than the positive polarity, a main effect of state
prior (f=1.66, SE=0.11, z=15.01, p<0.01) where
typicality ratings increased with state priors, but no
interaction (5= 0.05, SE=0.22, z=0.21, p=0.83).

These results suggest that negation triggers
stronger common ground update/inferences.
However, importantly, our results suggest that (i)
the positive-polarity is not free of inferences, and
(i1) both sentence polarities can trigger atypicality
inferences (Kravtchenko and Demberg, 2022ab)
and what we call typicality inferences (i.e., low
prior states are inferred to be more typical post- vs.
pre-utterances).

Model predictions (standard RSA): The
standard RSA model uses Boolean semantics, so
the model updates the state posterior to 1 based on
the only state that a non-null utterance makes true,
but makes no inferences about common ground.

Comparing empirical data and model
predictions: The comparison is fairly
straightforward: The standard RSA model cannot
handle common ground update.

Motivated by the discrepancies between
empirical observations and model predictions (of
the standard RSA), in the following Sections 4 to
6, we extend the standard model to better capture
our empirical findings.

4 fuzzyRSA

The goal of Section 4 is to pinpoint the sentence
polarity asymmetry related to the informativeness-
cost tradeoff (i.e., a pragmatic speaker aims to
maximize informativeness and minimize cost).
Building on prior work, we introduce soft
semantics into the standard RSA model to capture
the asymmetry observed in utterance likelihood.
We call this extended model the fuzzyRSA model.

4.1 Model

The fuzzyRSA model is extended from the
standard RSA model by configuring different
interpretation functions across sentence polarities.
For a negative utterance, the fuzzy interpretation
is defined as a constant probability distribution of
anegative state and a positive one (see (11), where
n € [0,1]), with its optimal value determined
during model fitting. For instance, when n is
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assigned a value of .7, “A doesn’t have B” assigns
a probability of .7 to “4-no B” and .3 to “4-B”.

[uneg]](sneg) =n [[uneg]](spos) =1-n (11)

This constant formulation reflects the ‘inherent’
pragmatic feature of negation as a presupposition
trigger, which applies to all negative utterances.

For a positive utterance, the fuzzy
interpretation is defined as a parametrized
sigmoid function of the priors of positive states
(see (12-13)), also fit during model optimization.

{[[upos]](spos) = Sigmoid(P(spos); 0)
(12)
[tpos] (sneg) = 1 = [tpos ] (spos)
So={Lkx0.c} (P(Spos)) = m +c (13)

The sigmoid function in (13) increases rapidly for
state priors that are relatively low and gradually
approaches the maximum value (i.e., approaching
1) towards relatively high state priors. The sigmoid
function captures a systematic relationship
between the state prior and the probability of
interpreting a positive utterance as intended.
Compared to the negative polarity, the
interpretation function associated with positive
polarity disincentivizes the communication of low-
prior positive states.

4.2 Model fitting

We optimized model parameters by minimizing
the joint loss across negative and positive
polarities. This joint loss was computed as the sum
of squared differences between model predictions
and empirical data. A grid search over pre-specified
parameter ranges—informed by exploratory model
simulations—was used to identify the best fitting-
values: n=.8, a=1, 0={L=0.7, k=6, xo=.35, c=0.3}.
The best-fit model has a mean square error (MSE)
of 0.04 (compared to a MSE of 0.06 for standard
RSA model).
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4.3 Model predictions

Figure 4 shows that the fizzyRSA model predicts
patterns that resemble the empirical data. The
results suggest that the fuzzyRSA model provides a
better approximation of the empirical data and
potentially of the cognitive processes involved in
inferring utterance likelihood.

S  wonkyRSA

In another extended model, we introduce a
complex prior to capture the asymmetry in
typicality ratings and provide a mechanism for
common ground update. We call it the wonkyRSA
model.

5.1 Model

As discussed earlier, we integrate Cremers et al.
(2023)’s modification into Degen et al’s (2015)
‘wonky world’ model, resulting in the following:

Pro(s|lu,w)« [ul(s) - P(s|w) (14)
Psi(uls, W)« exp(@ (In Pro(s|u, w) — Cost(u)) (15)

Pri(s,wlw)« Psi(uls,w) - P(s|normal) - P(w)
16)
In the wonkyRSA model, presupposition
accommodation is reflected in an updated
wonkiness, i.e., the wonky world has a higher or
lower probability based on how much
accommodation is needed.

Before the accommodation, the common ground
is P(s|w = normal). After the accommodation, the
common ground is a complex probability
distribution: P(s|w = normal) with a probability of
(1-P(w)) and P(s|w= wonky) with a probability of
P(w). In other words, the updated common ground
can be represented by the marginalized probability
of a state across both worlds. We assume that the
post-utterance ratings collected (typicality ratings;
Experiment 2) reflect this updated common
ground, which we refer to as expected typicality,
formalized as following:

E(typicality) = ¥ oria P(world) = P(s|world) (17)

5.2 Model fitting

We optimized model parameters by minimizing the
joint loss across negative and positive polarities.
This joint loss was computed as the sum of squared
differences between expected typicality and
typicality ratings. A grid search over pre-specified
parameter ranges—informed by exploratory model
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simulations—was used to identify the best fitting-
values: w=.5, a=2. The best-fit model has a MSE
0f 0.02 (while the standard RSA model is unable to

make predictions regarding presupposition
accommodation).
5.3 Model predictions

The best-fit model is able to capture two aspects of
our empirical patterns. (i) Figure S5a shows that the
wonkyRSA model predicts both typicality and
atypicality inferences in both sentence polarities.
(i) Figure 6 shows that the model-predicted
wonkiness values more or less align with the
inference patterns: lower-than-prior wonkiness is
predicted where typicality inferences are observed,
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and higher-than-prior wonkiness is predicted
where atypicality inferences are observed.

However, the wonkyRSA model is not yet able
to reflect the stronger inferences associated with
the negative polarity: Instead of predicting lower
typicality ratings for negative polarity (Figure 5b),
the model predicts similar typicality values for both
sentence polarities (Figure 5a).

This is not surprising given that the wonkyRSA
model does not differentiate two sentence
polarities. Therefore, it is necessary to further
extend the wonkyRSA model, which we will
discuss in Section 6.

6 funkyRSA

In a third extended model, we bring together two
approaches, soft semantics and the complex prior,
from the preceding two models in Sections 4 and 5.
This is an attempt to introduce polarity asymmetry
into the wonkyRSA model. We call this
combinatory model the funkyRSA model.

6.1 Model

The funkyRSA model integrates components from
SfuzzyRSA and wonkyRSA, formalized as shown:

Pro(slu, w)e [ul(s) - P(s|w) (18)
{[[upos]](spos) = Sigmoid(P(spos); 0) (19)
[pos](sneg) = 1 = [ttpos](sp0s)
So=ttkxocs (P(Spos)) = —tmmy +€ (20)
Psi(uls, W)« exp(@ (In Pro(s|u, w) — Cost(u)) (21)
Pri(s,wlw)« Psi(uls,w) - P(s|normal) - P(w)

(22)

6.2 Model predictions

Instead of fitting the model from scratch, we
plugged in the values of parameters that
contributed to the best-fit fuzzyRSA and
wonkyRSA models. Note that these two models
differ in their values of the speaker rationality
parameter «. We thus ran the funkyRSA model
with both values which yielded similar results for
typicality. Figure 7 shows the model predictions
of typicality in both polarities.

The model does predict a difference between
sentence polarities; however, the predicted
difference does not align well with the empirical
findings: The negative polarity does not yield
lower typicality values than the positive polarity.

This suggests that while optimal parameter
values from fuzzyRSA and wonkyRSA models



Best-fit model predictions (funkyRSA)

A a4 Ak

typicality

polarity

predicted

positive
- Negative
0.00

0.50
State prior

075

Figure 7: funkyRSA model’s predictions of
typicality(a = 1).

provided a starting point, they do not yield
satisfactory predictions when applied directly to
the funkyRSA model. Due to the increased
complexity and computational cost of jointly
optimizing all parameters in the funkyRSA model,
we leave full optimization for future work.

For utterance likelihood, we assume that the
empirical ratings reflected participants’ choices in
a normal world. the funkyRSA model makes the
same predictions as the fuzzyRSA model
regarding utterance likelihood.

7 Discussion

In this paper, we (i) empirically tested two
hypotheses about sentence polarity asymmetries
and (i1) introduced three extended RSA models that
demonstrated the potential to better capture our
empirical data than the standard RSA model.

The empirical data from Experiments 1 and 2
reveal patterns that are not predicted by the
standard RSA model. Results of utterance
likelihood ratings (Experiment 1) show that,
although negation is theoretically deemed as a less
optimal utterance choice than the positive polarity
regarding the informativeness-cost tradeoff,
negative utterances are not always less likely than
positive utterances. Results of typicality ratings
(Experiment 2) show that both state priors and
sentence polarity play a role in triggering pragmatic
inferences. Although negative utterances were
associated with stronger inferences, positive
utterances also yielded pragmatic accommodation.

To capture these novel empirical findings within
the RSA framework, we targeted two components
of an RSA model, namely the interpretation
function that gives rise to literal meaning, and the
configuration of common ground that allows
presupposition accommodation. Inspired from
prior work on soft semantics in RSA, our fizzyRSA
model uses different soft-semantics interpretation
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functions for different sentence polarities. Adapted
from prior work on wonky world RSA models, our
wonkyRSA model provides a complex prior for
common ground update. Combining fizzyRSA and
wonkyRSA models, we then propose the funkyRSA
model which aims to introduce interpretation-level
sentence polarity asymmetry into the wonkyRSA
model. The three extended RSA models yield
somewhat better predictions than the standard RSA
model and somewhat satisfying results that align
better with the results of Experiments 1-2.
However, some questions remain open. First,
regarding the different configurations in how
different sentence polarities are literally
interpreted, we formalized a sentence polarity
asymmetry at a semantic level (i.e., through fuzzy
interpretations). This worked for the predictions of
utterance likelihood (fizzyRSA model) but not for
the predictions of typicality (funkyRSA model),
which might suggest that sentence polarity
asymmetry is not limited to the difference in literal
interpretations. Thus, future work should explore
approaches to formalizing the sentence polarity
asymmetry more closely related to common
ground update. Second, regarding the complex
prior used in the wonkyRSA model, we explored
one version of the wonky world—a uniform prior.
This, however, is a potential source of sentence
polarity asymmetry. For example, the wonky world
assumed for negative utterances may differ from
that for positive ones We plan to explore other
configurations of the wonky world in future work.

8 Conclusion

This paper presents novel empirical findings on
sentence polarity asymmetries and offers one of
the first formalizations of these asymmetries
within the RSA framework. The contributions are
two-fold. Theoretically, this study highlights the
important role of prior knowledge in pragmatic
reasoning and offers new insights into both
production and comprehension of negation.
Empirically, we show that existing extensions of
the RSA model, e.g., soft semantics and common
ground update, while not originally proposed to
address sentence polarity asymmetries, can
nonetheless be applicable to these phenomena.
This supports the generalizability of these
approaches, as well as strengthens the broader
applicability of the RSA framework.
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Is analogy enough to draw novel adjective-noun inferences?
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Abstract

Recent work (Ross et al., 2025, 2024) has ar-
gued that the ability of humans and LLMs re-
spectively to generalize to novel adjective-noun
combinations shows that they each have access
to a compositional mechanism to determine the
phrase’s meaning and derive inferences. We
study whether these inferences can instead be
derived by analogy to known inferences, with-
out need for composition. We investigate this
by (1) building a model of analogical reason-
ing using similarity over lexical items, and (2)
asking human participants to reason by anal-
ogy. While we find that this strategy works
well for a large proportion of the dataset of
Ross et al. (2025), there are novel combina-
tions for which both humans and LLMs derive
convergent inferences but which are not well
handled by analogy. We thus conclude that the
mechanism humans and LLMs use to general-
ize in these cases cannot be fully reduced to
analogy, and likely involves composition.

1 Introduction

How are humans able to generalize to complex
linguistic expressions they have not encountered
before? One view on how this can be achieved is
through a mechanism of composition, determining
the meaning of the phrase and any resulting infer-
ences from the meanings of its parts (Partee, 2009;
Szabo, 2012, i.a.). Others, however, believe that
composition is not required: mechanisms such as
analogy are sufficient to explain humans’ ability
to generalize to novel phrases (Bybee, 2010; Am-
bridge, 2020 i.a.). The same question arises when
we study LLMs’ ability to generalize. If they can
generalize to novel phrases, is this evidence that
they must be composing these phrases from their
subparts, or is there another way to achieve the
same results?

Ross et al. (2025) argue that humans must be
using composition, since they converge on the in-
ferences of at least some combinations that they

kathryndavidson@fas.harvard.edu
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D+ &-&

counterfeit purse

D+F =W

counterfeit scarf

/

novel bigram

higher-frequency
bigrams (known)

D=

counterfeit scarf

Figure 1: Possible analogical reasoning to infer that
counterfeit scarf is a scarf, since a counterfeit purse is
a purse and a fake (or counterfeit) watch is a watch.

are assumed never to have seen before (e.g., for
fake reef or counterfeit scarf, which never appear
in a large corpus). Ross et al. (2024) suggest a
similar conclusion for LLMs based on the same
dataset, since LLMs show reasonably human-like
behavior on at least some bigrams that are assumed
not to be in the LLMs’ training datasets. These
combinations are interesting because the member-
ship inferences targeted (e.g., “Is a counterfeit scarf
still a scarf?”’) depend not just on the adjective but
also on the noun, involving significant detail about
how exactly the adjective affects the noun and what
properties are important for membership in that
noun category in typical situations.

This paper questions these conclusions, and in-
vestigates whether this task can in fact be solved
by analogical reasoning, without composition. For
example, for counterfeit scarf, one might reason (as
in Figure 1): “Is a counterfeit scarf still a scarf? A
scarf is an accessory like a watch or a purse, and a
counterfeit watch is still a watch, and a counterfeit
purse is still a purse, so a counterfeit scarf is most
likely still a scarf”. This skips the compositional
step of combining the meanings of the words to
derive the meaning of the bigram and further vi-
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olates the principle of compositionality as stated
by Szab6 (2012) by referring to information be-
yond the meaning of the bigram’s parts, namely
the inferences associated with other adjective-noun
bigrams.

We investigate analogical reasoning through two
complementary approaches. First, we build a com-
putational model of analogical reasoning which
attempts to derive ratings for the low-frequency
and zero-frequency (assumed novel) bigrams in the
dataset of Ross et al. (2025), by analogy to the high-
frequency ones. A computational model allows us
to precisely define what we mean by analogy, and
explore the consequences of different implementa-
tion decisions. Second, we ask human participants
to reason analogically, guided by examples and
their own intuition of what analogy means. We
then evaluate how often they can produce an anal-
ogy, and whether the resulting rating distributions
derived analogically are the same as the distribu-
tions from Ross et al. (2025), where no instructions
on how to reason were given. We find that the
ratings derived by analogy significantly differ for
several bigrams, suggesting that the original partic-
ipants did not derive (all) their ratings by analogy.

Between the two methods, we find convincing
evidence that while analogical reasoning produces
similar results in many cases, it is not sufficient
to derive the full set of inference data. Thus, we
find support for the view that humans must have
access to a compositional mechanism. Further, our
analogy model performs worse on novel bigrams
than the best LLM in Ross et al. (2024), and our
analogy model’s successes and failures correlate
poorly with those of the best LLM. This suggests
that the LLM is not (just) using analogy in the cases
where it can generalize, and supports the claim in
Ross et al. (2024) that such LLMs are performing
some kind of composition (productively combining
the meaning of adjective and noun) in these cases.
We share our code and data on GitHub.'

2 Related Work

So-called “privative” adjectives such as fake pose a
challenge for compositional accounts of semantics,
since they cannot be simply intersected with the
noun (Kamp and Partee, 1995). Multiple accounts
have been proposed for how composition with pri-
vative adjectives should work (Partee, 2010; del

"https://github.com/rossh2/
artificial-intelligence/
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Pinal, 2015; Martin, 2022; Guerrini, 2024 i.a.).

Most previous computational work on adjective-
noun composition using distributional semantics
does not discuss privative adjectives (Baroni and
Zamparelli, 2010; Vecchi et al., 2017; Hartung
et al., 2017). Boleda et al. (2013) cover 16 “non-
intensional” adjectives, including two which are
commonly taken to be privative (former, mock; see
Nayak et al. (2014) for a classification). Boleda
et al. build distributional semantic models of
adjective-noun composition that use vector addi-
tion and matrix multiplication to model adjective-
noun composition, but they do not cover analogy.
Cappelle et al. (2018) study the distributional se-
mantics of fake and bigrams in which it occurs, but
do not implement any method of composition or
generalization.

Ross et al. (2025) gather a large quantity of of-
fline human judgments on (privative) adjectives
and their membership inferences, discussed further
in Section 3, and Ross et al. (2024) extend this
dataset to assess LLMs. While Ross et al. (2024)
do propose a simple analogy baseline to compare
to their LLMs, we propose an improved, more pow-
erful and configurable analogy model and present
a detailed analysis of its performance.

Analogy has been much studied as a core compo-
nent of human reasoning (see Hofstadter, 2001 for
an overview), and approaches such as construction
grammar propose that analogy to known exemplars
can be used to understand any novel phrase (Bybee,
2010; Ambridge, 2020). Rambelli et al. (2024) pro-
pose a computational model of this process based
on distributional semantics. While we also build
our computational model around analogy between
phrases, we only attempt to derive membership in-
ferences from the analogy, and avoid commitment
to whether the full meaning of the phrase can be
accessed by analogy.

3 Human Judgment Dataset

Ross et al. (2025) present a dataset of human judg-
ments on adjective-noun inferences of the form “Is
an {adjective} {noun} still a {noun}?” on a 5-point
Likert scale. The dataset covers 798 bigrams (102
nouns crossed with 6 typically privative and 6 typi-
cally subsective adjectives, filtered to only include
combinations that make sense).2 In this dataset, the

’In this paper, we follow Ross et al. (2025) in using
“(typically-) privative / subsective adjective” to refer to ad-
jectives historically classified as such, which often but not
always result in the respective inference.



question is presented out of the blue as a generic,
rather than in a discourse context. The additional
information in a discourse can sometimes deter-
mine the inference on its own (without needing
to interpret the bigram at all), whereas the out of
the blue setting requires some kind of reasoning
strategy (composition, analogy or otherwise) to de-
termine the inference. 180 of the 798 bigrams are
zero frequency in the C4 pretraining corpus (Raffel
et al., 2020), which Ross et al. (2024) take as a
proxy for the undisclosed pretraining corpora of
the models they study. These bigrams are assumed
to be novel to both humans and LLMs. A bigram
is referred to as high frequency if it is in the top
quartile of bigrams they study.

Ross et al. (2025) show that the membership in-
ference in question depends on both the adjective
and the noun, with bigrams with “subsective” ad-
jectives usually yielding subsective inferences (e.g.,
“a homemade N is an N”, but not always: consider
homemade cat), while bigrams with “privative” ad-
jectives such as fake crowd elicit a wide distribution
of ratings from subsective (“is”) to privative (“is
not”), with high variance for many (but not all)
bigrams. Varying ratings between participants are
expected in this setting, since we are dealing not
only with the lexicon but also with a broad question
(a linguistic generic) which may depend on partici-
pants’ world knowledge. Participants nonetheless
show convergent ratings for many zero-frequency
bigrams, demonstrating their ability to generalize
and implying a shared underlying mechanism.

4 Analogy Model

4.1 Algorithm

We implement a computational model of analogy
which is “trained” on the human ratings from Ross
et al. (2025) for a set of common (high-frequency)
bigrams, which are stored in the model’s mem-
ory. This is intended to imitate human prior expe-
rience with certain bigrams, where they may have
learned that, for instance, a counterfeit watch is
still a watch. Humans are known to store frequent
multi-word expressions even when those expres-
sions are compositional, not just when they are
idiomatic (Arnon and Snider, 2010; Tremblay and
Baayen, 2010; Caldwell-Harris et al., 2012, i.a.),
so it is plausible to assume that they can also store
the associated inferences. Specifically, we consider
the top quartile of bigrams in Ross et al. (2025) as
“known”, i.e., in the training set. (Appendix C also
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explores an alternative approach where the training
set is balanced evenly across adjectives.)

Given these known bigrams, the model predicts
the ratings for the remainder of the bigrams by
analogy to similar bigrams in its training set, via the
algorithm in Figure 2. The setting mem configures
whether this algorithm is also applied to bigrams
in the training set, as if they were not known; we
discuss in Section 4.4 what is more human-like.

The model stores and predicts the entire rating
distribution for each bigram, rather than a single rat-
ing. As Ross et al. (2024) discuss in the context of
LLMs, it is not clear how to evaluate the alignment
of a single rating against high variance distributions
like the human data we are taking as the evaluation
target. As discussed in Section 3, such high varia-
tion is a natural consequence of working with the
lexicon, but does necessitate a more complex met-
ric than just accuracy to assess model fit. We use
same metric that Ross et al. (2024) use for LLMs:
the Jensen-Shannon divergence between the model-
predicted rating distribution and the human rating
distribution for each bigram. We compute an ag-
gregate score by averaging across all bigrams. We
report this aggregate score as well as the average
score over zero-frequency bigrams (presumed to
be novel to both humans and LLMs) to measure
its ability to generalize. These zero-frequency bi-
grams are always held out from the model.

Implementing analogical reasoning in a compu-
tational model allows us to define precisely what
we mean by analogy and test the effects of these
implementation choices. We explore two types of
analogy: either just over nouns (counterfeit scarf
— counterfeit watch),® or allowing analogy over
both noun and up to one additional adjective (coun-
terfeit scarf — fake watch; N+A setting). We allow
the model to retain & < 5 nearby bigrams (after fil-
tering to bigrams in the training set) to impose con-
straints akin to human working memory (Cowan,
2001; Adam et al., 2017). The exact value of k
is a hyperparameter optimized on the training set
(with memorization disabled). Appendix C also dis-
cusses the case where &k = 1, i.e. where the model
only considers the most similar bigram, which is a
plausible route for humans.

We calculate word similarity in three ways: (1)
cosine similarity over GloVe embeddings (Pen-
nington et al., 2014); (2) cosine similarity over

*We see in Section 5 that this is a popular human strategy:
humans choose an analogy over just nouns 58% of the time.
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!
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Figure 2: Algorithm for the analogy model. Yellow
paths are dependent on the configuration options mem
and N+A (Noun + Adjective). k is a hyperparameter.

embeddings from Llama 3 70B Instruct (Dubey
et al., 2024) and (3) Wu-Palmer similarity over the
WordNet taxonomy (Wu and Palmer, 1994; Miller,
1995). Llama 3 70B Instruct was selected as the
source for LLM embeddings because this was the
model with the highest performance in Ross et al.
(2024). To derive word embeddings from Llama,
we pass each word individually to the LLM and
average the hidden states of the subword tokens
in the final layer.* Wu-Palmer similarity groups
nouns® that share common hypernyms in WordNet,
penalized by how broad that hypernym is. Using
WordNet allows us to measure similarity based
solely on a human-created dataset, as opposed to
distributionally derived embeddings. Since Word-
Net does not provide a taxonomy of adjectives, this
approach is limited to noun-only analogies.

“We could alternatively pool the embeddings from the
initial embedding layer, but the absence of contextualization
in this approach may degrade results for multi-token words
(~40% of our dataset). Nevertheless, we show in Appendix C
that results are similar in this setting.

3Strictly, the metric groups noun synsets (“senses”); we
use the 2 most common synsets per noun.
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4.2 Results

Figure 3 shows the performance of the different
analogy model configurations on the whole dataset
(allowing memorization of the training set) and
on held-out, zero-frequency bigrams (assumed to
be novel to humans and LLMs). More details, in-
cluding results for privative adjectives only and
for single-bigram analogies (k = 1), are given in
Appendix C (Table 1).

GloVe embeddings. Both the noun-only and
N+A setting perform well overall, with the N+A
setting appearing to be on par with LLM perfor-
mance. However, we find that this is reliant on
memorizing the training set; neither setting gener-
alizes well to zero-frequency bigrams. In particular,
noun-only analogies perform below a uniform dis-
tribution baseline on zero-frequency bigrams.

WordNet. Perhaps surprisingly, we find that this
qualitatively different similarity metric yields very
similar results to using GloVe embeddings, at least
in the noun-only case where this metric is defined.
We discuss the implication further in Section 4.3.

Llama Embeddings. Using the embeddings de-
rived from Llama 3 70B Instruct also does not im-
prove performance significantly compared to using
GloVe, though we see a small increase for the noun-
only setting—see also the discussion in Section 4.3.

Error Analysis. To investigate where the anal-
ogy model fails, we fit a linear regression in R (R
Core Team, 2023) that predicts the JS divergence
of the best-performing model from the adjective
class (subsective vs. privative), human rating mean
and human rating SD, with an interaction between
adjective class and mean. Including the human SD
allows us to target bigrams with divergent ratings;
including an interaction of adjective class and mean
allows us to pick out e.g. bigrams with subsective
adjectives but privative ratings.

All main effects and the interaction are signifi-
cant: JS divergence is lower for privative-class ad-
jectives, higher for bigrams with subsective-class
adjectives with privative ratings (i.e., low mean rat-
ings, such as homemade money or tiny abundance),
higher for privative-class bigrams with subsective
ratings (i.e., high mean ratings, such as false ru-
mor or counterfeit watch), and lower for bigrams
with a high human standard deviation. The fact
that it struggles on bigrams like homemade money
(JS = 0.81) and tiny abundance (JS = 0.58) in
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Figure 3: Average JS divergence between distributions produced by the analogy model and human distributions
from Ross et al. (2025) on zero-frequency bigrams and on the whole dataset (with memorization of the training set).

Additional results are given in Table 1 in the Appendix.

particular is not surprising, given that these adjec-
tives are subsective for all except two bigrams in
the model’s pool of analogy candidates.

4.3 Discussion: Effect of Similarity Metric

The similarity metric used is not a main modulator
of model performance. One possible explanation
is that the analogies found by our model may often
be suboptimal or inadequate, regardless of the sim-
ilarity metric used. There are two potential sources
of this inadequacy: first, analogical reasoning may
inherently be a flawed approach for some bigrams.
Second, the training set may be so sparse that the
model cannot retrieve sufficiently similar nouns or
bigrams to adequately support analogical reason-
ing. After all, our training set contains ratings for
only 279 bigrams using 89 nouns (of 102 nouns in
the original dataset).® While we cannot fully tease
these two possibilities apart with our current exper-
iments, Appendix E explores adding data from the
human rating experiment in Section 5.

4.4 Discussion: Humans

Working with lexical semantics requires us to deal
with per-bigram distributions and a distribution
comparison metric, rather than proportions of cor-
rect answers or significant effects in a regression.
This makes interpretation of the results more com-
plicated. It is not clear at what threshold to con-
clude that the model captures human performance,
versus what amount of JS divergence represents
noise/artifacts generated by the relatively small
distribution sample size in the human experiment

®The 102 nouns were selected by Ross et al. such that each
noun has at least one closely related other noun.
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(n 12 per bigram). Short of replicating the
human experiment in Ross et al. (2025) and cal-
culating the JS divergence between the two, we
have three points of reference: (1) We can approxi-
mate a human JS divergence by resampling from
the human distribution. This yields an average JS
divergence of just 0.05; (2) The best LLM perfor-
mance that achieves JS divergence of 0.17 both
overall and on zero-frequency bigrams (Ross et al.,
2024); (3) The ratings collected from the exper-
iment in Section 5, where humans are asked to
perform the same task as the analogy model, yield
an overall JS divergence of 0.16 compared to the
original distributions.

Our analogy model achieves a JS divergence of
0.17 at best, when allowed to memorize its training
data; 0.25 when it does not memorize it. On zero-
frequency bigrams, the best score is 0.25. While
the results are impressive with memorization, its
ability to generalize to zero-frequency bigrams is
8 points worse than LLMs and 11 points worse
than humans. This suggests that our analogy model
does not fully capture human behavior. While a key
part of the modeling assumption is that the training
data represents humans’ known and memorized
bigrams, it is still unclear whether it is human-
like to return the exact perfect distribution—all the
more so considering that we typically ask humans
to give single ratings, not entire distributions.

As an alternative metric, we conduct per-bigram
Kolmogorov-Smirnoff tests (Holm-Bonferroni ad-
justed) comparing the distributions predicted by
the analogy model to the human distributions. We
find that with memorization of the training set, 10
of the predicted distributions are significantly dif-



ferent (p < 0.05), of which 3 are zero-frequency
bigrams; without memorization, this rises to 20.
Since we only have a sample size of n = 12, this is
a conservative estimate. Figure 8 in Appendix C.3
shows a selection of such distributions. The fact
that the analogy model significantly deviates from
the correct distribution for these cases supports our
conclusion that while analogy is successful in most
cases, it does not offer a full explanation.

4.5 Discussion: LLMs

It may seem striking that the analogy model can
achieve the same overall JS divergence as Llama 3
70B Instruct, the best model studied by Ross et al.
(2024), when we allow training set memorization.
However, comparing results on the zero-frequency
bigrams (and also on performance without mem, see
Table 1) shows that Llama 3 70B Instruct general-
izes much better than our analogy model. Further,
fitting a linear regression to predict the LLM’s JS
divergence per-bigram from the Llama embedding
analogy model’s divergence shows that although
the effect is significant (p < 0.001), this only ex-
plains 12% of the variance in the LLM’s ratings
(R? = 0.12; R?> = 0.04 with mem enabled). In
other words, the LLM’s behavior is not particularly
well explained by the analogy model, and it does
not succeed and fail in the same places.

5 Human Analogical Reasoning

While the analogy model allows us to precisely
control the mechanism and data used for analogical
reasoning, it also suffers from an artificial restric-
tion on the bigrams to which it can draw an analogy:
its training dataset is strictly limited to the bigrams
that Ross et al. (2025) gathered human ratings for.
Actual human analogical reasoning would not be
limited in the same way, and is likely to involve a
much wider range of analogy targets. In this ex-
periment on human participants, we expand the
definition of analogy to whatever our participants
construe as analogy (given our instructions and
training examples), enabling access to whatever
bigrams they are able to come up with as suitable
analogies. This allows us to measure two things:
(1) how easy it is for people to come up with analo-
gies at all, and (2) what effect analogical reasoning
has on the resulting rating distributions.

5.1 Method

We select 96 bigrams from the 798 bigrams from
Ross et al. (2025) such that they are evenly bal-

&9

anced by adjective and by zero vs. top quartile fre-
quency, and all have convergent human rating dis-
tributions (¢ < 2 or 1 > 4 on the 5-point scale).’

For each bigram, we show participants the ques-
tion “Is an {adjective} {noun} still a {noun}?” and
first ask them whether they are able to come up
an analogy that helps them answer the question.
We then ask them to answer the question, either
using the analogy or not, depending on their first
answer. Screenshots of each path are shown in
Figure 4. Participants first see an explanation of
what we mean by analogy, including an example
(toy hippo — toy elephant), followed by three train-
ing examples which include another example of an
analogy (melted plastic — melted wax/chocolate).
The full instructions, including our description of
“analogy”, are given in Appendix F. The analogy
text field is limited to 1-3 words to encourage anal-
ogy to adjective-noun phrases (pilot participants
sometimes typed a reasoning process into the field).

We recruited 176 native American English speak-
ers® on Prolific, of which we excluded 33 for not
meeting our native speaker criteria, failed attention
checks, or failing to adequately follow our instruc-
tions for analogical reasoning (verified based on
manual inspection and regular expression searches
on the free text entry fields).

5.2 Results

Overall, participants self-reported that they could
find an analogy for 56.4% of responses. For every
bigram except fake impression, at least one person
was able to find an analogy, although 13 of 143
participants never produced an analogy. A plot of
analogy availability for each bigram is shown in
Figure 7 in Appendix A.°

Type of analogy. Figure 5 shows statistics for
the types of analogy drawn. We find that 58.4%
of analogies use the same adjective as the original
bigram, such as knockoff watch — knockoff purse,
while only 10% change the adjective and use the
same noun, such as homemade money — coun-
terfeit money. A further 6.2% of analogies use a
single noun. While a number of these single-noun
analogies seem intended as same-adjective analo-

"We also attempt to include a high proportion of bigrams
where analogy might be hard—see Appendix D. For example,
we adversarially pick some nouns for homemade which are
likely to yield privative judgments, such as homemade money.

8See Appendix B for detailed criteria.

*We attempted a regression to predict analogy availability
but found nothing of interest; see Appendix D.



Is a counterfeit scarf still a scarf?

Can you think of an analogy to another similar phrase that
would help answer this question?

O No

@ Yes, the phrase I'm thinking of is:

counterfeit watch|

Based on the analogy you chose:

Is a counterfeit scarf still a scarf?

Definitely Probably Probably Definitely
Unsure
not not yes yes

O @) o (@) @)

(a) Path when analogy found.

Is a fake fire still a fire?

Can you think of an analogy to another similar phrase that
would help answer this question?

® No

QO VYes, the phrase Im thinking of is:

Can you answer this question anyway, without thinking much
about it?

Is a fake fire still a fire?

Definitely Probably st Probably Definitely
not not yes yes
O O O (0] O

(b) Path when no analogy found.

Figure 4: Screenshots of questions in the analogy prompting experiment.
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Figure 5: Types of analogy chosen by participants.

gies (such as tiny bed — (tiny) chair), we do see
some interesting cases such as artificial rumor —
lie, which may not be an analogy in the strict sense
but are still solving the task by mapping to a known
phrase. The remaining 25.4% use a different adjec-
tive/modifier and noun.

Qualitatively, we see that our participants reach
for a much wider set of concepts than our analogy
model when drawing analogies; choices such as
homemade lake — homemade cookies, false im-
pression — wrong interpretation or even multicol-
ored weapon — painted nails are common. Partici-
pants are more likely than our model to reach for
nouns that are not that similar to the original noun
but are highly associated with the adjective, such as
knockoff purse (11 occurrences as analogy), coun-
terfeit money (10 occurrences), homemade cookies
or illegal immigrant (3 occurrences each).

Distribution shift. Does analogical reasoning
shift the distribution compared to the original rat-
ings gathered by Ross et al. (2025), where no in-
structions on how to reason were provided? In the
cases where an analogy was found, we find an aver-

age JS divergence of 0.16 overall between bigram
distributions in this experiment vs. in Ross et al.
(2025), with 0.21 on privative-type adjectives (0.32
for fake), 0.35 on homemade (recall that nouns for
homemade were picked adversarially to be more
likely to be privative) and 0.14 on zero-frequency
(presumed novel) bigrams.

We also conduct Kolmogorov-Smirnoff tests per-
bigram (with Holm-Bonferroni adjustment) to de-
termine which of the distributions are significantly
different. Since our n per bigram is quite small for
statistical purposes (at best n = 12, lower if not
all participants found an analogy for the bigram),
no bigrams are significantly different. We cannot
conclude from this that the distributions are indeed
the same when analogy is used; the sample size
is just too limited. Instead, we plot the distribu-
tions for 6 bigrams with the highest JS divergences
in Figure 6. The divergence for homemade cur-
rency and homemade money (and to a lesser extent
false friend) is particularly striking: analogy leads
people to dramatically different inferences in these
cases, since most homemade and many false items
(such as false rumor) still clearly qualify as an in-
stance of the noun.

Correlation between analogy availability and
distribution shift. We fit a beta regression in R
(Brooks et al., 2017) that predicts JS divergence as
a function of analogy availability. We find a strong
negative correlation: JS divergence decreases as
analogy availability increases (p < 0.001). In other
words, the harder it is to find an analogy, the more
likely any analogies that are found will lead people
astray from the original distribution.
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fake concert false friend false gentleman homemade cat homemade currency homemade money
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Rating Source M Human out-of-the-blue [l Human analogy prompting

Figure 6: Distributions for the 6 bigrams with the highest JS divergences when an analogy is used. n = number of
ratings in each distribution; for analogy prompting, this is however many people found an analogy.

5.3 Discussion

This experiment shows that analogy is a viable ap-
proach for many bigrams, and in many cases results
in similar judgments as in Ross et al. (2025), where
participants could reason freely. However, for sev-
eral bigrams such as homemade money, using an
analogy yields dramatically different inferences,
suggesting that analogy was not used to derive the
original distribution. We also see bigrams where
people struggle to come up with any analogy at
all, such as fake impression (n = 0). This was
the case for 10 of our 35 zero-frequency bigrams
(n < 50%), putting into question the viability of
analogical reasoning for generalization. Our anal-
ogy model also shows a higher-than-average JS
divergence for all bigrams (except one) where ana-
logical reasoning substantially shifts human ratings.
It also shows a higher-than average JS divergence
for over half the bigrams where humans struggle
to come up with an analogy. Overall, a linear re-
gression predicting human JS divergence from the
analogy model’s JS divergence explains 40% of
variation, suggesting that analogy serves as a viable
explanation for some, but not all of the variation in
human inferences. As for LLM behavior, human
analogy availability and human-human JS diver-
gence when using analogies both correlate poorly
with LLM-human JS divergence per-bigram, with
R? = 0.05 in both cases (p = 0.03 and p = 0.04
respectively). A similar regression with our anal-
ogy model in Section 4.5 also showed low correla-
tion. This suggests that analogical reasoning poorly
explains LLM behavior, corroborating our previous
conclusion in Section 4.5.

Finally, we observe that our participants use a
much broader definition of “analogy” than our anal-
ogy model (or the examples we gave during train-
ing), suggesting that our model adheres to adjec-
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tive and noun similarity overly strictly. Further,
our analogy model is strictly non-compositional at
the meaning level, whereas some human analogies
such as false impression — wrong interpretation
may well be arising from the participants first com-
posing the meaning of false impression and then
looking for phrases with a similar meaning.'°

6 Conclusion

Ross et al. (2025) claim that humans must be
handling adjective-noun bigrams compositionally,
since they draw consistent inferences about novel
bigrams, and Ross et al. (2024) take LLMs’ capac-
ity to draw reasonably human-like inferences on the
same novel bigrams as evidence for composition.
We explored the possibility that this generalization
might be explained without composition in either
or both cases, specifically by analogical reasoning
over adjective and nouns using previously encoun-
tered and memorized inferences.

Composition in humans. We find that while
many of the novel bigrams in the dataset can in-
deed be handled successfully by analogy, analogy
is not sufficient to explain human behavior fully.
Our analogy model diverges significantly from hu-
man distributions on 20 bigrams and shows insuf-
ficient generalization to zero-frequency bigrams,
with a JS divergence of 0.25 from humans. Hu-
mans both struggle to come up with analogies for
249% of bigrams tested and are led astray when
they do for several bigrams, such as homemade
currency. We thus conclude that analogical rea-
soning is a successful strategy for generalization
in a remarkable proportion of the dataset of Ross
et al. (2025), but analogy does not suffice to han-
dle the full data. Thus, their conclusion that some

10 False may mean not truthful/insincere or just fake (as in
false teeth); the choice of meaning depends on the noun.



mechanism of composition seems necessary to han-
dle the whole range, homemade currency and all,
is supported—even if humans need not (and judg-
ing by our data, quite possibly do not) invoke it
in every case. This conclusion is similar to the
result of Albright and Hayes (2003), who found
that an analogical model of English past tense mor-
phology did not explain participant behavior well,
and concluded that speakers used abstract rules to
generalize rather than analogy.

Composition in LLMs. We likewise find that
LLM behavior can be partially, but not fully ex-
plained by analogical reasoning. Our analogy
model is unable to reach the performance of the
most successful LLMs in Ross et al. (2024), in
particular when generalizing to zero-frequency bi-
grams. Moreover, a linear model predicting LLM
JS divergence as a function of analogy model JS di-
vergence only explains 16% of the variance. While
this does not prove that Llama 3 70B Instruct is con-
ducting bona fide composition, it provides exciting
indications that it might—at minimum, Llama 3
70B Instruct is better able to incorporate the interac-
tion between the adjective meaning and noun mean-
ing than our purely word analogy-based model.
Investigating how composition, typically concep-
tualized as abstract rules, can be implemented in
LLMs would be an interesting avenue of future
research—the abstraction-via-exemplars account
discussed in Misra and Kim (2023) may provide a
promising starting point.

Standards of evidence for composition This
paper contributes to a broader discussion about
the standards of evidence required for composition
(McCurdy et al., 2024; Pavlick, 2025). If behav-
ioral experiments about generalization can provide
evidence about composition (and not all researchers
believe they can), we must be sure to rule out other
methods of generalization such as analogy. We fur-
ther need to ensure we have a precise enough defi-
nition of compositionality to capture our intuition
that analogy, by virtue of referring to information
not (obviously) included in the meanings of the
parts, is not a kind of composition (Szabd, 2012).
By making an explicit model of analogical reason-
ing, we can both show the way in which it requires
this additional information and show that analog-
ical reasoning fails to generalize in the expected
way, relative to our human data.
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A Analogy Availability for Humans

Figure 7 shows the percentage of times participants
were able to find an analogy for each bigram, col-
ored by the estimation of analogy difficulty dis-
cussed in Appendix D.

B Participant Recruitment Criteria

For our experiment in Section 5, we recruit people
on Prolific who self-report English as their first and
primary language and are located in the US. We fur-
ther ask them at the end of the study whether they
learned English before the age of 5 and whether
they speak American English—if not, they are paid
but excluded from the analysis. This implemen-
tation of “native speaker” is merely intended as
a practical way to expect shared language experi-
ences among our participant sample (Cheng et al.,
2021).

C Detailed Analogy Model Results
C.1

As discussed in Section 4.1, the model has three
configurable parameters: whether to do analogy
over just nouns or also to include up to one adjec-
tive (“Noun only” vs.“Noun + Adjective”), how
many nearby bigrams to retain (k), and whether to
return the memorized distributions from the train-
ing set when asked about a bigram in the training
set, or to apply the algorithm as if that particular
bigram were not known.

We consider only up to 1 adjective since a hyper-
parameter search over up to 10 adjectives showed

Model Configuration
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that 1-2 adjectives were always optimal; moreover,
we only have 12 candidate adjectives to begin with,
and manual inspection suggests that at most 1-2 of
them ought to be relevant.

We consider 100 nearby nouns since we do not
want to artificially constrain our model and pre-
vent it from finding enough bigrams that it actually
knows. Having separate steps for adjective/noun
retrieval, assembling candidate bigrams, and then
checking which bigrams are known is an artificial
implementation choice that we make for our al-
gorithm; humans could well be retrieving similar
nouns and checking whether the resulting bigram
is known in tandem. Thus, we always retrieve 100
nearby nouns “just in case” and instead rely on
the number of bigrams k to constrain the model.
As discussed in Section 4.1, we set k¥ < 5 to im-
pose constraints akin to human working memory
(Cowan, 2001; Adam et al., 2017). We allow the
model to do a grid search over the exact value of
1 < k < 5 by evaluating the model on the training
set with memorization disabled. The optimal & typ-
ically ranges between 3-5 bigrams. In Table 1, we
also report the special configuration k = 1, where
the model only considers the most similar bigram
it can come up with. This mimics humans going
with the “first bigram they can come up with”, as-
suming that their retrieval process chooses a good
candidate as its first choice.

The final configuration choice, which we did not
discuss in Section 4.1, is the training data — what
should be considered as bigrams that humans have
previously encountered. Option 1 is to include
all bigrams classed as “high frequency” by Ross
et al. (2024), i.e. all bigrams in the top quartile of
their dataset. This results in sparse data for some
adjectives. Notably, this only includes a single
bigram involving the adjective knockoff and no
bigrams including unimportant, meaning the model
will be at a disadvantage for bigrams with these
adjectives. In the N+A setting, it will have to rely
primarily on bigrams involving e.g. counterfeit;
in the noun only setting, it will often return no
distribution. It is unclear whether this sparsity is
precisely realistic, because these adjectives and
their bigrams are low-frequency, or not. Options
2a and 2b are to train on the top = most frequent
bigrams for each adjective, where we can consider
(a) x = 5 (akin to the k < 5 setting for nearby
bigrams), or (b) x = 23, which results in a nearly
identical size training set (276 bigrams) to taking
the top quartile (279 bigrams). We report all three
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Figure 7: Analogy availability for all 96 bigrams in the analogy prompting experiment. Color indicates whether it
was predicted in advance that it might be difficult to find an analogy, based on the ratings from Ross et al. (2025) in
conjunction with noun frequencies and WordNet-based distance measures (see Section D).

settings in Table 1.

Finally, in the case where no similar bigrams
have known ratings, we opt to return a null dis-
tribution, which is always incorrect. We could
alternatively return a fallback distribution which
concentrates all its probability mass on “Unsure”,
but this will also be very unlike the human distribu-
tions under the Jensen-Shannon metric (which tend
to have high SD when not concentrated at the ends
of the scale), so this makes little difference. In prac-
tice, this only occurs in the “Noun only” setting
for some bigrams involving knockoff and unimpor-
tant when we use the top quartile of bigrams as
the training set, since these adjectives have few or
no high-frequency bigrams (1 for knockoff, O for
unimportant).

C.2 Detailed Results

Table 1 shows the results for the analogy models
built with GloVe embeddings, comparing the noun
only setting with the N+A (noun + adjective) set-
ting, and the single bigram setting (k = 1) with
k < 5. We report the exact value for k chosen by
the hyperparameter search. We also compare train-
ing on the top quartile of bigrams vs. training on
the top 5 or 23 per adjective. Note that for the top
5 case, the set of novel bigrams (column 2, “Novel
bigr.”) is larger than in the other cases. We find
that the simplest setting, analogy to a single noun
(N only, £ = 1) does not outperform a uniform
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distribution baseline overall. However, if we al-
low multiple adjectives, analogy to a single bigram
(k = 1) is sometimes the best (selected even when
we tune on k < 5). We also achieve similarly good
results if we use nouns only but allow averaging
over k < 5 bigrams. In the noun + adjective case,
results are also similar whether we train on the top
quartile of bigrams or the top 23 bigrams per ad-
jective — training set size appears to be the driving
factor, not how it is balanced. However, in the noun
only case, which includes all the WordNet models,
we unsurprisingly see a performance boost from
including more bigrams for each adjective. (When
training on the top quartile, the noun only setting
necessarily fails for all bigrams involving unimpor-
tant, since there is no bigram with unimportant in
the training data, and does poorly for knockoff as
well, since there is only one bigram with knockoff
in the training set.) Memorization of the training
set boosts overall performance, as expected, though
not so much when the training set is very small (top
5 bigrams per adjective).

Further, we observe that performance is gen-
erally lower on privative adjectives than overall,
which makes sense because many bigrams with
subsective adjectives have distributions almost en-
tirely consolidated around “Definitely yes”, and
can be predicted from other bigrams.



JS Divergence (lower is better)

Model Novel bigr. Zero-freq. bigr. Privative A Total Total (+mem)
Human (resampled) N/A 0.04 0.05 0.04 N/A
Human (analogy exp.) N/A 0.14 0.21 0.16 N/A
Llama 3 70B Instruct N/A 0.17 0.26 0.17 N/A
Uniform distr. baseline N/A 0.33 0.20 0.34 N/A
Analogy models: GloVe

N only, k = 1, top qt. 0.44 0.57 0.45 0.39 0.29
N only, k = 1, top 5/A 0.32 0.34 0.44 0.32 0.30
N only, k = 5, top qt. 0.41 0.55 0.39 0.36 0.27
N only, & = 3, top 5/A 0.28 0.28 0.36 0.28 0.25
N only, k& = 4, top 23/A 0.26 0.25 0.33 0.26 0.17
N+A, k =1, top qt. 0.29 0.31 0.39 0.29 0.19
N+A, k = 4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 3, top 5/A 0.27 0.27 0.36 0.27 0.25
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
Analogy models: WordNet

N only, k = 1%, top qt. 0.41 0.54 0.36 0.36 0.26
N only, £ = 1%, top 23/A 0.25 0.24 0.32 0.25 0.16
Analogy models: Llama 3 70B embeddings (final layer)

N only, £ = 1, top qt. 0.44 0.53 0.44 0.40 0.28
N only, k& = 4, top qt. 0.40 0.50 0.37 0.35 0.26
N only, k = 5, top 23/A 0.26 0.26 0.34 0.26 0.17
N+A, k =1, top qt. 0.33 0.33 0.44 0.34 0.22
N+A, k = 4, top qt. 0.28 0.27 0.35 0.28 0.18
N+A, k = 5, top 23/A 0.27 0.26 0.34 0.28 0.18
Analogy models: Llama 3 70B embeddings (initial layer)

N+A, k = 5, top qt. 0.28 0.30 0.35 0.27 0.18

Table 1: Average JS divergence (best / second) between various configurations of analogy models and human rating
distributions, with & without training data memorization, for ‘N only’ vs. ‘N+A’ (1 nearby adjective) and £ = 1
vs. k < 5 nearby bigrams (exact value of & tuned on training data). ‘Novel bigrams’ = bigrams held out from each
analogy model — for humans and LLMs, we can only be sure that zero-frequency bigrams are novel. ‘Privative A’ =
bigrams with “privative” adjectives. * = set k& < 5 but tuning chose k = 1. Llama 3 results and baseline from Ross

et al. (2024).

C.3 Significantly Different Distributions

Figure 8 shows 6 of the 10 bigrams where the anal-
ogy model (GloVe, k < 5, with mem) predicts a
significantly different distribution according to the
Kolmogorov-Smirnoff test (with Holm-Bonferroni
adjustment) in Section 4.4.

D Estimate of Analogy Difficulty

D.1 Overview

For our analogical reasoning experiment, we at-
tempt to estimate which bigrams might be difficult
to find analogies for and balance evenly for this.
We suppose that analogy could be difficult for bi-
grams with one or more following qualities:
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* the noun has no high-frequency neighbors (be-
low median among the nouns in the dataset)

* there are multiple convergent nearby bigrams
with ratings that conflict

* there are non-convergent nearby bigrams (i.e.
bigrams for which the conclusion is uncertain)

We use WordNet (Miller, 1995) rather than word
embeddings to find neighboring nouns, since Word-
Net is manually annotated by human experts, and
the British National Corpus for noun frequencies
(Leech et al., 2014). We manually define adjective
similarity, since WordNet only provides a hierar-
chical taxonomy — and thus, a similarity metric —
over nouns, described in Section D.3.
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Figure 8: Difference between distributions for 6 of the 10 bigrams which are significantly different between
the analogy model (even with mem) and the original human distributions. In each case, the model predicts more

subsective ratings than humans.

D.2 Results

In fact, we find that these criteria do not predict
how often participants were able to come up with
an analogy.

We fit a logistic mixed effects model in R (Bates
etal., 2015) that predicts whether participants could
find an analogy or not. As fixed effects, we include
the three factors described in Section 5.1, as well
as adjective class (typically privative or subjective)
and specificity of the noun (measured by depth in
the Wordnet taxonomy). We include adjective and
participant as random effects. We also fit a second
model where we replace specificity of noun with
bigram frequency (the two are too correlated to
include in the same model). In fact, we find that
none of these factors are significant (p < 0.05) ex-
cept for the presence of nearby divergent bigrams.
This feature, however, only applies to 6 bigrams in
the experiment, so this may just be spurious. This
non-significance may be the result of many false
negatives in our labeling of these factors, since we
can only test for nearby bigrams among the bigrams
that Ross et al. (2025) studied, not among the total-
ity of nearby bigrams. It may also result from our
participants construing analogy much more broadly
than we did, as discussed in Section 5.2.

D.3 Adjective Similarity Details

We use the following (asymmetric) similarities,
which are approximately scaled to match the Wu-
Palmer similarity metric (which is 0.5 for siblings).
1. artificial — fake, false: 0.75
— counterfeit, knockoff: 0.5
2. counterfeit — knockoff: 0.9
— fake, false: 0.75
— artificial: 0.5
3. fake — artificial, counterfeit, false,
knockoff: 0.75
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4. false — fake: 0.9
— counterfeit, knockoff, artificial: 0.75
knockoff — counterfeit: 0.9
— fake: 0.75
6. former — artificial, counterfeit, fake,
false, knockoff: 0.5
homemade — artificial, fake, false: 0.8
— tiny, multicolored: 0.75
— useful, illegal,
unimportant: 0.5
. The remaining 5 subsective adjectives, useful,
tiny, illegal, unimportant and multicolored are
all assigned a similarity of 0.5 to each other
and to homemade.

Note that we provide an unusually privative-
looking set of similarities for homemade since the
examples with homemade in the experiment are
disproportionately chosen to be less subsective and
thus challenging for analogy. Moreover, these sim-
ilarities are adjusted for the fact that these are the
only 12 adjectives available — of course they would
be scaled differently if there were more options.
We do not expect small changes to these similari-
ties to have a noticeable difference on the selected
bigrams.

5.

7.

E Using Human Analogy Bigrams in the
Analogy Model

One bottleneck of our analogy model appears to be
its lack of available bigrams with which to draw
an analogy, i.e. which it has ratings for, compared
to humans. We can try to ameliorate this by ad-
ditionally giving it all the analogies found in the
human analogy experiment, by assuming that the
rating that they provide for the target bigram is the
same as the rating they would assign to the analog-
ical bigram. (This should be true if they are using
the analogy as intended.) We filter the provided



analogy phrases through WordNet to retain only
two-word phrases whose first word is an adjective
and the second a noun. This adds 340 bigrams
involving 91 adjectives and 260 nouns. (The orig-
inal dataset contained only 12 adjectives and 102
nouns.)

Unfortunately, we do not have full distributions
for these bigrams; only 68 of the 340 bigrams so
found have more than one rating, and only 11 have
more than three. For target bigrams with privative
adjectives, whose distributions are often spread out,
analogy to these new bigrams will thus yield a high
JS divergence simply because the distribution is
too sparse. In line with this, the results in Table 2
show that adding these additional bigrams wors-
ens or does not improve the two best-performing
GloVe models from Table 1, though it does result
in different hyperparameter choices during the grid
search (k < 5).

To compensate for only having single ratings, we
can instead evaluate the analogy models with the
more lenient “accuracy within 1 SD of the human
mean” metric proposed for single ratings by Ross
et al. (2024), which lets the model predict a mean
rating instead of a full distribution. It is then judged
“accurate” (enough) if this rating falls within 1 SD
of the mean of the human rating distribution that
bigram (rounded to the nearest integer), incorrect
otherwise. The problem with this metric, besides
being ad-hoc, is that the simple “majority” base-
line described in Ross et al. (2024), which simply
guesses “Unsure” for all bigrams with privative
adjectives and “Definitely yes” for all those with
subsective adjectives, achieves an accuracy of 0.89
using this metric. Bigrams with privative adjec-
tives generally have such a high SD that this is a
large and easy target to hit. Nonetheless, a random
guessing baseline scores only 0.46 on this metric,
so the metric is still somewhat informative.

If we add the new bigrams provided by the anal-
ogy prompting experiment to the training set and
evaluate with this Within 1 SD metric, we do see
a significant performance increase compared to
using just the original training set, as shown in Ta-
ble 3. Note that optimizing over this metric yields
new values for the parameter k, within the con-
straint £ < 5. k = 1 is uniformly chosen during
tuning even when we set k& < 5. In contrast to
the JS divergence, where we generally saw lower
(better) values for subsective adjectives and higher
(worse) values for privative ones, this metric yields
the opposite, since the SDs for subsective-adjective
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bigrams are much smaller: we see lower (worse)
accuracies for subsective adjectives.

This suggests that if we had full distributions for
these bigrams, adding more training data might
indeed significantly improve the model. What
amount of training data is appropriate for modeling
humans remains an open question.

F Experiment Training Instructions

The instructions provided to participants are shown
in Table 4.



JS Divergence (lower is better)

Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)
N+A, k =4, top qt. 0.26 0.26 0.34 0.26 0.17
N+A, k = 4, top qt. + exp. 0.45 0.62 0.41 0.39 0.29
N+A, k = 3, top 23/A 0.25 0.25 0.32 0.26 0.17
N+A, k = 4, top 23/A + exp. 0.26 0.26 0.33 0.26 0.17

Table 2: Average JS divergence (best) between analogy models and human rating distributions for the best GloVe
models in Table 1 and their counterparts trained on the additional bigrams from the human analogy experiment.
This additional training data does not improve model performance as measured by JS divergence, because we do not
have full distributions for many of the additional bigrams.

Accuracy within 1 SD of human mean

Model Novel bigr. Zero-freq. B Privative A Total Total (+mem)
“Majority” baseline N/A 0.91 0.78 0.89 N/A
Random guessing baseline N/A 0.46 0.61 0.46 N/A
N+A, top qt. 0.71 0.77 0.72 0.69 0.78
N+A, top qt. + exp. 0.76 0.76 0.69 0.74 0.81
N+A, top 23/A 0.70 0.76 0.71 0.68 0.76
N+A, top 23/A + exp. 0.75 0.79 0.72 0.74 0.80

Table 3: Results for the best GloVe models in Table 1 and their counterparts trained on the additional bigrams from
the human analogy experiment using the more lenient “accuracy within 1 SD of human mean” metric proposed by
(Ross et al., 2024). All models use & = 1 even when tuned with k& < 5; this makes sense as averaging is less likely
to improve this metric. Unlike for the JS divergence shown in Table 2, results do improve. However, results must be
interpreted relative to the “majority” baseline provided by (Ross et al., 2024), which highlight the difficulty with

this metric.
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This survey involves questions of the form “Is a toy hippo still large?” We’re interested in whether it’s
possible to solve these kinds of questions by reasoning using a similar phrase that you already know
the answer for (“by analogy”), such as “toy hippo” — “toy elephant” (toy elephants are usually not
large). For the purposes of this survey, the similar phrase / analogy can be another similar thing, or a
class of things (like animals or gadgets). The important part is that you know the answer for the new
phrase without having to think about it.

Let’s start with three examples that demonstrate how the survey works and what we mean by analogy.

Each question consists of two parts. First you will answer whether you can think of a suitable analogy
(yes/no), and type in the similar phrase if you answered yes. The phrase should consist of 1-3 words
and will typically be of the form "[adjective] [noun]". Then you will attempt to answer the original
question (e.g. "Is a toy hippo still large?") using the phrase you chose, or without it if you couldn’t
think of one.

Please pay close attention to the following examples, as we will ask you to follow this style of reasoning
in the rest of the survey.

Is melted plastic still plastic?
Can you think of an analogy to another similar phrase that would help answer this question?

You can think of an analogy from “melted plastic” — “melted wax” or “melted chocolate.” This is
useful because you immediately know the answer to “Is melted wax still wax?” or “Is melted chocolate
still chocolate?” So, you would answer “yes” to this question and type “melted wax” or “melted
chocolate” in the text box below.

Based on the analogy you chose:
Is melted plastic still plastic?

Because melted wax is still wax (or melted chocolate is still chocolate), you conclude that melted
plastic is still plastic, or probably still plastic. So, you would answer “Definitely yes” or “Probably yes”
depending on your interpretation.

Is a hard-boiled egg still runny?
Can you think of an analogy to another phrase that would help answer this question?

You probably find it hard to quickly think of an analogy that can help answer the question. While you
may be able to come up with similar phrases, they don’t immediately provide an obvious answer. So,
you would answer “No” to this question.

[Instructions for second part irrelevant, omitted]

Is a decorative pumpkin still edible?
Can you think of an analogy to another similar phrase that would help answer this question?

As in the previous example, it is hard to quickly think of an analogy that can help answer the question.
While you may be able to come up with similar phrases, they don’t immediately provide an obvious
answer. So, you would answer “No” to this question.

[Instructions for second part irrelevant, omitted]

Table 4: Training instructions and examples shown to participants to demonstrate what we intend by “analogy”.
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Abstract

Feature Inheritance is a prominent theoretical
innovation in minimalist syntax, which takes
it further from the formal framework of mini-
malist grammars, the best understood formal-
ism for reasoning about minimalism. Feature
inheritance involves movement targeting non-
root positions, as well as simultaneous move-
ment steps. This turns out to require a formally
innocuous extension to minimalist grammars,
leaving strong generative capacity and worst-
case parsing complexity unchanged.

1 Introduction

Viewing context-free base rules as structure build-
ing operations (a rule S — NP VP builds an
S out of a NP and a V P), the transformational
cycle in syntax was a principle that governed the
interleaving of transformational operations with
context-free structure building operations. In par-
ticular, (cyclic) transformational rules were applied
only once certain categories (always S, often NP,
sometimes PP) of expressions were built. In early
minimalism, the transformational rule of move-
ment was interleaved with the structure building
operation of merge. However, movement could
in principle apply at any time, regardless of the
categorial status of its input. A mechanism of fea-
ture inheritance, introduced by Chomsky (2008),
in effect delays transformations until a particular
category is reached. Thus, minimalism with fea-
ture inheritance seems to be a return to the original
conception of the syntactic cycle.

In this paper we provide a formalization of the
mechanism of feature inheritance in the context of
minimalist grammars (MGs), itself a formalization
of Chomsky’s (1995) Minimalist program. The
weak generative capacity and worst-case parsing
complexity of feature inheritance is then compared
to that of vanilla MGs.
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2 Feature Inheritance

Minimalist orthodoxy assumes a universal hierar-
chy of functional projections: Complementizers
select Tense which selects Voice which selects
Verbs. Underlying these lay terms are the abstract
heads (categories) ‘C’, ‘“T°, ‘v’ (“little-v”’), and
‘V’ (*“big-V”). A large body of work assumes a
shared property between little-v and C; these two
heads are said to define locality domains in the
syntax (called phases). A basic goal expressed
by Chomsky (1995) is to reduce the stipulations
needed in the theory. As little-v and C share one
non-trivial property already, determining whether
more of their properties can be identified would
potentially reduce the number of independent stip-
ulations needed to describe the lexicon. Feature
Inheritance (FI) is introduced in (Chomsky, 2008)
as a way of reconciling a number of related observa-
tions with theoretical assumptions, and is made use
of by little-v and C, which increases their formal
similarity a great deal.

A main theoretical motivation for FI is to give a
larger role to phases. Phases are said to coincide
with the portion of the syntactic structure that the
interfaces can refer to. In other words, they are the
units that semantic and phonological interpretation
are defined over. Chomsky suggests that both inter-
faces refer to the same units of syntactic structure.
In addition, he suggests that syntactic operations
(like movement and agreement) are not distributed
throughout the nodes making up a phase, but are
rather deferred until the last head in the phase (little-
v or C). This desideratum is problematic from the
perspective of orthodox analytical assumptions, as
the T head is generally considered to trigger move-
ment of and agreement with the surface subject.

One relevant observation is that only finite T
heads trigger movement and agreement. A second
observation is that the distribution of finite vs nonfi-
nite T is related to the choice of C: for example, the
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declarative complementizer that selects for finite
T, whereas for selects for non-finite T.

1. John believes that Mary smiled.
2. xJohn believes that Mary to smile.
3. +John hopes for Mary smiled.

4. John hopes for Mary to smile.

Chomsky’s resolution to the problem is to shift
the finite-nonfinite distinction over to C, making
T into an underspecified tense head. Then it is C
which selects for a generic T head, and it must be
C which is responsible for triggering movement
and agreement on T. FI is the mechanism by which
movement triggered by a higher head targets the
projection of a lower head, which allows for the
idea that movement and agreement is deferred until
phase heads are introduced to be realized.

C (and little-v) also permit generic movement
to their edges, for example, to break long distance
movement into phase-sized chunks. Thus C can
trigger movement multiple times, both to its edge,
as well as to the edge of the T head immediately
below it. However, the movements that C now
triggers are typically thought to be of two funda-
mentally different kinds: the movement to T is A-
movement, and that targeting C is A-bar-movement.
These kinds of movements have importantly differ-
ent properties (pronouns can be bound after moving
over them with A-movement, but not with A-bar-
movement, for example), and Chomsky (1995) has
proposed that movement steps between the high-
est A-bar position and the lowest base-merge po-
sition of expressions be invisible to various well-
formedness conditions. Making the A and A-bar
movements which C triggers happen simultane-
ously (as opposed to serially) structures the move-
ment dependencies entered into by DPs as trees (or-
dered by derivational order), rather than sequences.
This then eliminates the need to postulate an in-
dependent operation which deletes intermediate
elements in a sequence of movement dependencies
— these are no longer on a single branch of the tree.

Feature Inheritance thus paves the way for
1. phase heads to be the locus of movement and
agreement triggers, and 2. a novel approach to the
distinction between A and A-bar movements.

3 Formal background

We couch our formalization of feature inheritance
in the formal framework of minimalist grammars

(Stabler, 1997, 2011), an extensible and well-
understood grammar formalism capable of trans-
parently representing minimalist analyses. Min-
imalist grammars are a lexicalized grammar for-
malism, like categorial grammars, with universal
grammatical rules and complex lexical entries. The
categories of lexical entries take the form of lists
of features, written with lower case greek letters,
called feature bundles, where a list is a data struc-
ture where only the first element is directly ac-
cessible. Removing (’checking’) the first element
of a nonempty list o results in the remainder of
the list o/ (so a = a.a’). Features have one of
two polarities (positive and negative), and come
in different kinds, represented as different names
(k, wh, q, d, ...). Two features +x and -y of op-
posite polarity match iff they are of the same kind
(ie. x =y).

A syntactic expression is either a pair (w, a)
consisting of a string of phonemes w and a feature
bundle « (written W: ), or a term o(¢1, to), where
t1 and to are syntactic expressions, and e is either <
or >. The head of a syntactic expression ¢ is ¢ itself,
if a pair, and the head of ¢z if t = e(t1,12), where
tg=t1ife=<andty =ty if e =>.

Given a syntactic expression t, the result of
checking the first feature of its head is written ¢'.
When ¢ is a term, it represents a tree, and the in-
ternal nodes ‘point’ in the direction of the head. A
trace is a pair of the empty string and the empty
feature bundle, written t.

There are two syntactic operations, Merge and
Move. Merge is binary, and Move unary. They are
both restricted in their application by the feature
bundles present in their arguments. The head of the
first argument of both operations must be a positive
feature. Merge applies to two expressions ¢ and s
just in case the heads of both have matching first
features. Move applies to its single argument just
in case this argument contains a unique leaf whose
first feature matches the first feature of the head.

<

/

Xy + = 7

-x.0

Figure 1: Merge of a complement
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The output of Merge depends on whether its first
argument is a leaf or a complex term. If a leaf /,
then Merge(?, s) = <(¢', s'), and if a proper term ¢,
Merge(t, s) = >(t, s'), as is depicted in figures 1

and 2.
>
-x.0
5 v

Figure 2: Merge of a specifier

+X.7y

Move replaces a subterm of the input with a
trace, and so we need a notation which simplifies re-
ferring to subterms. We define maximal projection
contexts C|x] to be either a variable z, or a structure
of one of the two forms: >(C'z],t) or <(t, C|x]).
A maximal projection context C'[x] is a term where
x occurs without any arrows pointing to it, and re-
placing the variable 2 with a term s is written C'[s].
Move applies to ¢ iff ¢ = C[s|, where s is a term
whose head begins with a negative feature which
matches that of ¢. Move(C[s]) = >(s, C[t]'), as
is depicted in figure 3.

-y.0
Figure 3: Movement leaves a trace

Both operations have the effect of removing fea-
tures from feature bundles one at a time, and fea-
tures in feature bundles are checked one at a time
from left to right.

4 Features for Feature Inheritance

Feature inheritance diverges from minimalist gram-
mars as they have been defined above in two ways.
First, movement can target not the top of an ex-
pression, but rather some node embedded inside it.

Second, two features can be checked at the same
time.

To deal with the first difference, we allow posi-
tive features to take a diacritic (written: +xV) in-
dicating that they should target the sister node
to the head. We can augment the Move opera-
tion so that it can deal with these new feature
types. For example, given a term ¢ the first fea-
ture of the head of which begins with +y*, whose
complement C/[s] contains a unique term s with
matching first feature, write t = D[C/[s]]. Then
Move(D[C[s]]) = D[>(s', C[t])]'. This is shown
in figure 4.

+yty

-y.0
Figure 4: Inherited movement

To allow two features to be checked simultane-
ously, we allow feature bundles to contain not just
individual features, but also pairs of features. Given
a pair of features (+X, +y), it is intended that they
be checked during the same derivational step. This
allows us to write lexical items with the desired
behaviour; Chomsky’s C head would have feature
bundle +T.(+k, +wh).-C, indicating that it first
merges with a TP, after which it simultaneously
triggers k-movement to TP and wh-movement to
itself, and then is itself a CP. Introducing two new
feature types (+x* and (f, g)) would allow for lexi-
cal feature bundles of the following forms:

1. +a.+b.+ct.-d
2. +a.+b*.+ct.-d
3. +a.(+b,+c).-d

These bundles express sequences of lexically
driven derivational steps which we view as not in

103



the spirit of Chomsky (2008), which we summarize
with the following principles:

FIUniq Feature inheritance happens just once

FIEarly Feature inheritance happens immediately
after the complement is merged

FISimul Simultaneous feature checking happens
only in the context of feature inheritance

Feature bundle 1 violates the earliness princi-
ple (FIEarly), which requires feature inheritance
to happen immediately after the complement is
merged. Here, feature inheritance of +ct was de-
ferred until after +b was checked. Feature bundle
2 violates both the uniqueness principle (FIUniq),
which requires feature inheritance to occur just
once, and the earliness principle. Here, feature
inheritance occurs both via +b* and +c', and in ad-
dition +c* was deferred until after +b* was checked.
Feature bundle 3 violates the simultaneity princi-
ple (FISimul), which requires that simultaneous
feature checking occur in conjunction with feature
inheritance. Here, features +b and +c are checked
simultaneously, neither of which involve feature
inheritance. These principles conspire to enforce
that lexical feature bundles are drawn from the fol-
lowing regular set, where P := {+x | z € F}, D :=
{+xt |z €F},S:={{d,p) | d € DA p € P} and
N:={-x|z eF}:

(P(D +S)")"P*N*

That is, an inheritance feature occurs only after
the first positive feature, either on its own or as
part of a simultaneous feature. With respect to the
requirement that exactly one of the pair of simulta-
neous features must be an inheritance feature has
a certain coherence to it. Note that with any other
combination of simultaneous features (i.e. where
both are of the same kind) it would be unclear how
to depict the derived tree which should result af-
ter the simultaneous features are checked: as both
target the same position (either the complement to
the head, or the specifier of the same) one mover
would need to c-command the other, from which
one could reconstruct a checking order, belying the
simultaneity of checking.

5 Implementing Feature Inheritance

A naive implementation of inherited movement as
in figure 4 is destructive, in the sense that con-
structing the output requires changing immediate

dominance relations which held in the input. (In
particular, the immediate dominance between the
mother ‘<’ of the head of the tree and the root of
its complement.) For reasons discussed in the next
section, this is to be avoided when possible.

Taken together, the constraints on feature bun-
dles presented above allow for an alternative im-
plementation of feature inheritance. As feature
inheritance targets the first merged argument of the
head, and takes place immediately after this argu-
ment is merged, it is simple to deal with feature
inheritance during this very Merge step, where the
top of the second argument is still accessible. This
avoids the problem of destructivity, as the target po-
sition of the inherited movement has not yet been
assigned an immediate dominance relation. Let ¢
be a lexical item whose feature bundle begins with
the following two features: +x and (+y*, +z). There
are two cases to consider, depending on whether
one mover matches both features in the pair, or
whether they are matched by different movers. For
the first case, let C'[s] be a term with first feature -X,
and where the first two features of s are -y and -z.
Then Merge(¢, C[s]) = >(s",<(¢",>(t,C[t]"))),
as is depicted in figure 5. In the other case, let
C'z, y] be a maximal projection context with two
variables, and let C[r, s] be a term whose first fea-
ture is -X, and where the first features of r and s are
-y and -Z respectively. Then Merge(¢, C|r, s]) =
>(s',<(0",>(r", C[t, t]"))), as is depicted in fig-
ure 6.

It only really matters that the movement steps
be simultaneous if the same mover is targeted in
both cases. This is because Chomsky analyzes the
twin movements as creating different chains — se-
quential movements of the same item would simply
extend a single chain. If two different movers are
targeted, each is going to extend its own chain, re-
gardless of whether this happens simultaneously or
sequencially.

6 Complexity Analysis

Michaelis (2001) (see also Harkema (2001)) proves
the equivalence between minimalist grammars and
multiple context-free grammars, providing a scaf-
folding for future demonstrations that extensions
do not increase generative capacity. To establish
such an equivalence, we need to present the mod-
ified operations in inference rule format, stated
over finite sequences of strings paired with feature
bundles. As noted by Stanojevi¢ (2019), parsers
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Figure 5: Feature inheritance involving a single mover
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Figure 6: Feature inheritance involving two different movers
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derived from this inference rule notation can have
their worst-case time complexity read directly off
of the rules themselves. Representing each string
as a span, a pair of integer variables indicating what
portion of the input string that string should cover,
the number of distinct variables in the antecedents
of a rule polynomially bounds its contribution to
worst case complexity. Our revised implemention
of feature inheritance only modifies the Merge
rule (by adding to it two new cases), and so we
present just these in inference rule format (see Sta-
bler and Keenan (2003) for the others). In inference
rule notation, to each term corresponds a sequence
of string-feature bundle pairs. Each pair beyond
the first corresponds to a maximal proper subterm
whose head begins with negative features. The first
pair corresponds to the term minus these moving
pieces.

The inference rules are given in the figures 7-12.
This summation and the associated computational
complexity is indicated next to the names of each
of the rules above. We see that the rules MrgFI1b
and MrgF12d contribute the most to the worst case
time complexity of the new rules. To put this in
perspective, the worst case time complexity of mini-
malist grammars without feature inheritance is also
O(n2k+3) (Fowlie and Koller, 2017; Stanojevic,
2019). Thus minimalist grammars with feature in-
heritance have the same worst case time complexity
as vanilla MGs.

7 Conclusion

We have presented a formalization of Chomsky’s
((2008)) mechanism of feature inheritance, which
has played an important role in minimalist syntactic
theory over the intervening nearly two decades.
It is formally innocuous: it increases neither the
weak generative capacity nor the worst case time
complexity of the MG formalism.

Another route to this result is to simply note that
lexica containing the new lexical items with feature
bundles of the form +x.+y*.cc and +X.(+y*, +z).a
can be transformed into strongly and weakly equiv-
alent lexica containing only standard feature bun-
dles: given a lexical item U:+X.(+y¥ +Z).a, re-
place it with a lexical item u:+x’.+z.c, where 2’
is a fresh feature name, and for every lexical item
v:[.-X.v add to the lexicon the new lexical item
v:3.+x.-x’.~. This transformation simply pushes
down the inherited features onto the lexical items
which will ultimately inherit them, and ensures that
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they subsequently combine with their benefactors.

Like many proposals in minimalism, the sub-
stance of this one seems to lie in things not so
easily measured, like: 1. providing a formal foun-
dation for the distinction between movement types:
two independent chains branching off of a single
element, one of which c-commands the other, gives
a scaffolding over which different clusters of prop-
erties can be assigned to each, and 2. giving a for-
mal unification of lexical items of a certain type:
VX.+X.(+¢*, +epp).-X is the general format for
phasal heads, where epp is a feature permitting
movement, and ¢ are agreement related features
(and we have used object-level quantification over
feature names to express polymorphism, and 2’ is
the next category up in the extended projection of
x).
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(m, +X.(+y*, +2).a) (n,-x), ¢, (0,-y.=2), 1
<Omn7 a>7 (ZS’ ,l/}
The inference rule MrgFI1a describes the situation where there is a single mover, for whom this is the
last movement step, and therefore is pronounced in its highest position.

MrgFlla  O(n?+2)

Figure 7: MrgFIla

— —

X (YT + - -y.-
<m, X-( VA Z).C¥> Snv X>,¢), <0v y. Z.ﬁ>,¢ MrgFI1b O(n2k+3)

(mn,a), é, (0, B), ¢

The inference rule MrgFI1b describes the situation where the single mover has features left over, and
thus continues moving.

Figure 8: MrgFI1b

<m7 +X'(+y¢> +Z)'a> <n7 _X>7 $7 <0v _Y>7 757 <pa _Z>> X
(pmon, a), ¢, ¥, X
The inference rule MrgFI2a describes the situation where there are two movers, for both of which this is
the last movement step, and therefore are pronounced in their highest positions. In the result, we see that
the phonetic part o of the tucking-in mover is sandwiched between the head m selecting the complement,
and the pronunciation n of this complement.

MrgFI2a  O(n?k+1)

Figure 9: MrgFI2a

— —

X (YT + - - AN

<pmn7 a>’ ¢ <O7 /8>7 w? X’
The inference rule MrgFI2b describes the situation where there are two movers, but the first one continues
moving.

Figure 10: MrgFI2b

— —

<m7 +X'(+y¢> +Z)'a> <n7 _X>’ ¢7 <07 _y>7 1/}7 <p7 _Z"Y>7 )?
(mon, a), 6,9, (p,7), X

The inference rule MrgFI2c¢ describes the situation where there are two movers, but the second one
continues moving.

MrgFI2c  O(n?F+2)

Figure 11: MrgFI2¢

— —

<m7 +X'(+y¢a +Z)'a> <n7 _X>7 QS) <07 ‘Y~5>> Q,b, <pa _Z',y>7 )Z
(mn, ), 8, (0, 8), 4, (p,7), X

The inference rule MrgFI2d describes the situation where there are two movers, and both continue
moving.

MrgFI2d  O(n?+3)

Figure 12: MrgFI2d

107



BMRS-Net: Learning BMRS Predicates as Decision Trees

Yifan Hu"
University College London
yifanhu@umass.edu

Abstract

This paper explores two applications of learn-
ing Boolean Monadic Recursive Scheme
(BMRS) feature predicates, leveraging their
analogy to binary Decision Trees. Through two
case studies, the paper demonstrates how these
applications can successfully fit some datasets
and analyze new phonological transformations
in a decision-based approach, while retaining
high transparency and interpretability.

1 Introduction

Phonology has traditionally been guided by frame-
works such as the Sound Pattern of English (SPE)
and Optimality Theory (OT) to understanding trans-
formations and constraint satisfaction (Chomsky
and Halle, 1968; Prince and Smolensky, 2002).
However, there is an increasing interest in more
computationally oriented models that can handle
large datasets and adapt dynamically to new lin-
guistic context. One such model is the Boolean
Monadic Recursive Scheme (BMRS), a decision-
based approach that utilizes recursive functions and
Boolean logic, making it particularly compatible
for extensive phonological analysis (Bhaskar et al.,
2020; Chandlee and Jardine, 2021).

BMRS is structured around ““if-then-else” ex-
pressions, which resemble the nodes of a binary
Decision Tree where each decision leads to fur-
ther branches and conditions. This decision-based
structure associates it closely with computational
models used in data science and machine learning
(Quinlan, 1986). While BMRS predicates were
typically defined manually (e.g., Hua et al., 2021;
Oakden, 2021; Zhu, 2023; Jardine and Oakden,
2023), recent work demonstrates that decision tree
learning algorithms can classify and stratify con-

* Research conducted while the author was affiliated with
University College London. The author will begin a PhD
program at University of Massachusetts Amherst in September
2025. This paper is a revised version of his MA dissertation.

trastive phonological features accordingly (Chan-
dlee, 2023), suggesting a potential for these algo-
rithms to automate the learning of BMRS feature
predicates.

This paper employs the Classification and Re-
gression Trees (CART) algorithm as a tool for au-
tomating the generation of BMRS feature predi-
cates (Breiman et al., 1984; Pedregosa et al., 2011;
Geron, 2019). We conceptualize a type of bi-
nary decision trees, termed BMRS-Trees, where
the root and each intermediate node utilize only
one Boolean attribute. Additionally, by connecting
multiple BMRS-Trees in parallel, we can output a
comprehensive phonological feature matrix — this
network-like structure is termed the BMRS-Net.

2 Preliminaries

2.1 Boolean Monadic Recursive Schemes
(BMRS)

BMRS (Bhaskar et al., 2020; Chandlee and Jar-
dine, 2021) can best be conceptualized as an index-
by-index UR-to-SF (Underlying Representation-
to-Surface Form) transducer. It processes each
index individually, starting from index 1 and iter-
ating rightwards. To illustrate, in then mapping
from the input string x1x5...2xN to the output
string y1y2 - . . yn, index 1 is the first to be assessed
by BMRS’ feature predicate, returning a Boolean
value T'rue (denoted by T in this paper, or numeric
1 in vectors and matrices) or False (L or 0) that
determines the output y;, then index 2, index 3, un-
til N. Each output character y; is produced based
primarily on its corresponding input character z;,
and the whole input string also provides contextual
information, as well as all the y;’s predecessors in
the output string. Given its index-by-index nature,
BMRS requires its input and output be of the same
length for error-free index iteration.!

'Readers unfamiliar with BMRS transduction may refer to
Appendix A for a running example after finishing 2.1.
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BMRS utilizes two position functions to navi-
gate and manipulate string indices: the predeces-
sor p and successor s, defined for any index ¢ in a
string of length NV as:

riq ift>1
plei) = ifi—1
Tiy1 ift <N
s(ai) = ifi=N

The underscore _ serves as a boundary symbol at
both ends.?

Recursively nesting position functions allows
access to any preceding and succeeding characters
of any given index, indicated by superscripts, e.g.:

p(p(zi))

p*(x:)

s°(2:) = s(s(s(x1)))

A superscripted asterisk () indicates an arbitrary
number of nestings, e.g.: 3

p*(xi) = p(xi), p(p(wi)) or p(p(p(. .- (2:))))

> denotes the Symbol Set or Alphabet, encom-
passing all characters all possible characters in both
input and output strings; the modified ¥_ incorpo-
rates the boundary symbol _. Feature predicates
for each symbol ¢ in ¥ are defined as:

{

These feature predicates assess whether the char-
acter x at the current index “satisfies” or “models”
the symbol o, returning either T or L.* When ap-
plied to output strings, they are subscripted with an
o to differentiate their application context, e.g.:>

O’o(aﬁi) = {

A well-formed BMRS predicate might include:

-
L

ifx ko

o) ifx o

.
1

ify, Eo
ify, o

’The standard implementation uses a left edge (x) and
right edge marker () instead (Bhaskar et al., 2020; Chandlee
and Jardine, 2021), but in this paper use of _ is equivalent.

3The asterisk notation is an ad hoc reader-friendly simpli-
fication. Precise definition will be give in Footnote 6.

%> can denote beyond mere “symbols™: when ¥ denotes a
set of phonological features (e.g., [front], as in Section 3.2) and
x denotes some segment (e.g., [i]), then saying “[i] satisfies
(or E) [front]” makes more sense.

3 oo(x;) is a target feature predicate, see Section 3.1.
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1. Symbolic feature predicates, which are sim-
ple checks like o () that directly assess the “match”
of a symbol at the current index;

2. Position-embedded feature predicates,
more complex predicates like o (p(z)), o(s%(z))
or o(p*(z))° that evaluate the “match” of symbols
at positions relative to the current index; and

3. Conditional logic, which refers to construc-
tion of “if-then-else” statements upon symbolic fea-
ture predicates, position-embedding feature predi-
cates, and T/, e.g.,if o(x) then T else o(p(x)).

2.2 Decision Tree

...1is a supervised learning model is used for clas-
sification and regression tasks (Quinlan, 1986;
Breiman et al., 1984). It recursively splits the
dataset based on input attributes, forming a tree
where each node represents a decision, and each
branch corresponds to a possible outcome. The leaf
nodes return the predicted output.

This paper focuses on binary classification de-
cision trees, where all attributes (including the tar-
get attribute) are Boolean. The training data is
typically in a table, with each row representing a
data instance and each column an attribute for split-
ting. The last column is by convention the target
attribute, which the Decision Tree aims to predict.
An example table is presented in Table 1:

Attribute 1 Attribute 2 Attribute 3 | Target
T T 1 1
T T T 1L
T L 1 1
T 1L T 1L
1 T 1 T
1 T T T
€ € € €
1 L T T

Table 1: Example Attribute Table

Our implementation uses the scikit-learn library
(Pedregosa et al., 2011), which defaults to the Clas-
sification and Regression Tree (CART) algorithm
for growing Decision Trees (Breiman et al., 1984).
When applied to the dataset in Table 1, CART gen-
erates the Decision Tree shown in Figure 1:

STechnically, p*(z) is undefined and not a formal term
used in BMRS. Below, we will first provide a precise definition
of the functions p* and s™:

p*(o,x;) = if o(x;) then T else (if _(x;) then L else p™ (o, p(x)) )
s*(o,x;) = if o(x;) then T else (if _(z;) then L else s* (o, s(z)) )
For simplicity, we will write both functions as o (p*(z)) and
o(s*(z)) in the rest of the paper.



Attribute 1

2

1 Attribute 2
o
Attribute 3

T L
1

Figure 1: Example Decision Tree

While the Tree-growing algorithm is well-
established (see Appendix B for a detailed expla-
nation of CART), our focus will primarily revolve
around extracting robust attributes (feature predi-
cates in the context of BMRS, see Section 3.1).

3 BMRS-Tree

3.1 Implementation

As BMRS calculates output feature predicates
index-by-index, extracting features for the CART
attribute table also requires index-by-index pro-
cessing. Given X and a UR zjx2...xn to SF
Y1Y2 - . - YN mapping, we propose that at each in-
dex ¢ the following categories of feature predicates
be aggregated:

Symbolic Feature Predicates: These represent
whether an input character x; matches each symbol
o in X, denoted as:

Asymbolic = {O-(xz) ‘ oc E}

Local Feature Predicates: To capture phonolog-
ical dependencies from adjacent symbols, we de-
fine local feature predicates within a length of scan-
ning window L(cf. Hua et al., 2021), with L = 2
by default:

Alocal = {U(pk(l'z)) | ceX_,1< k< L}
U{o(s"(z;)) o€ X 1 <k<L}

Here, _ helps BMRS capture the absolute dis-
tance from the boundary, such as _(p(x;)) denoting
whether z; is the first character, or _(s?(x;)) de-
noting whether z; is penultimate.”

"Strictly speaking, _(s?(w;)) does not express “current in-
dex ¢ being penultimate” with complete accuracy: supposing
i already being final, then its successor of successor is still
the boundary symbol _. Hence, in this paper, every position-
embedded feature predicate with respect to _ inherently carries
a second check that its predecessor/successor is not the bound-
ary symbol _ (see below). But for simplicity, we still use
_(s%(z4)) to denote penult(z;) in the rest of the paper.

penult(z;) = if _(s(x;)) then (if _(s(z:)) then L else T)else L

110

Global Feature Predicates: These capture long-
distance dependencies by scanning bidirectionally
through the input, without precise index position-
ing:

Aglobal = {O—(p*(xl)) | oc E}
U{o(s*(z;)) | o € B}

Output-Dependent Feature Predicates: Based
on Output Strictly-Local (OSL) transformations
identified by (Chandlee, 2014) (see also Chandlee
and Jardine, 2014; Chandlee et al., 2015, 2018),
these predicates focus on the most recent output.
We define two sets, local and global:

AlocalOutput = {Uo(pk(l‘i)) | ce¥_1<k< L}
AglobalOutput = {Uo(p*(xi)) | [ Z}

It’s worth noting that output-dependent predicates
AlocalOutput and AglobalOutput differ from input-
related Ajocqr and Agjopar by including only one
position function p, meaning they are restricted to
left-subsequential. Unlike (Oakden, 2021), which
used both left- and right-subsequential OSL func-
tions, this paper prohibits right-subsequential OSL
functions to avoid backtracking, in line with the
no-backtracking mechanism of BMRS. Once an in-
dex returns an output, none of its predecessors can
be reevaluated to adjust earlier outputs. Similar to
Alocal and Aglobal’ AlocalOutput and AglobalOutput
embed an accurate memory of a length L scan-
ning window and a vague memory of long-distance
dependencies with respect to the output, essential
for modeling phonological transformations where
previous outputs influence the current index.

Target Feature Predicates: This category con-
tains Boolean representations of the current index’s
output, with each feature predicate within it serv-
ing as the target attribute (the last column of an
attribute table) and represented as a BMRS-Tree,
denoted as:

Ata'rget = {Uo(xi) | o€ E}

A visual demonstration of the aggregation of
feature predicates is presented in Figure 2, where
each category is labeled with its number and set
name, with superscripts p or s denoting left- or
right-subsequential categories (cf. Oakden, 2021);
application scopes are indicated by solid lines (ac-
curate memory) or dashed lines (vague memory).
All categories except Asqrger (1 to 4) constitute the
set A of “Attributes” in Section 2.2:

A= Asymbolic U Alocal U Aglobal ) AlocalOutput U AglobalOutput
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Figure 2: Aggregation of Feature Predicates at index ¢

The procedure of aggregating feature predicates
is to arrange all the instances we extract into an
attribute table, as displayed in Table 2, where the
header row contains the names of each attribute
a € A, with each attribute a; being an individual
column. By convention the last header corresponds
to one target attribute asqrget € Atarget, the target
BMRS-Tree to be learned from this attribute table.

ap a2 ag a|A| | Gtarget
Idx 1ofDatal | T T L 1 T
Idx2ofDatal | T 1L L T T
Idx NofDatal | L T T 1 1
Idx 1ofData2 | T 1L L 1 T
Idx2ofData2 | 1L 1 L T 1

Table 2: Example Attribute Table for BMRS-Tree

For the table content, every row is filled in with an
instance extracted from one certain index within
a certain piece of data, which represents a compre-
hensive snapshot of the phonological states around
that index position in the string. The attribute table
grows iteratively as we traverse through all possible
indices across every piece of data.

Learning a target BMRS-Tree follows the same
procedure as vanilla Decision Trees, using CART
after arranging the attribute table. However, its
evaluation differs significantly. Traditional Deci-
sion Tree evaluation focuses on cross-validation to
prevent overfitting. In contrast, BMRS-Tree eval-
uation focuses on the purity of leaf nodes. To fit
phonological data, CART minimizes Entropy in
the leaf nodes (Shannon, 1948). In the case of
non-variable mappings, we propose that all leaf
nodes in a well-fitted BMRS-Tree must achieve
zero Entropy, i.e. they are 100% pure. The rea-
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sons are as follows:®

1. BMRS-Tree learning aims to reconstruct de-
terministic phonological rules, rather than to gen-
eralize over unseen data (test set). In the two case
studies discussed in Sections 3.2 and 4.2, all possi-
ble data are provided as the training set.® Thus, the
training data should not be treated as samples from
a larger distribution, but as a complete represen-
tation of the rule-governed system. The learning
task then requires the model to fully capture and
account for all observed patterns.

2. Non-variable mappings require each input to
correspond to exactly one output, i.e., no free varia-
tion or probabilistic choice. If a leaf node contains
multiple output classes, it introduces ambiguity, im-
plying that a single context could trigger more than
one realization. This contradicts the nature of non-
variability and obstructs the derivation of a clear,
well-defined rule. Zero entropy ensures that each
decision path leads to a unique and unambiguous
output—one that is interpretable, consistent, and
faithful to the phonological data.

3. In traditional machine learning, overfitting
refers to a model capturing too many exceptions
or “outliers,” reducing its ability to generalize. In
contrast, exceptions in phonology are integral to
the language and must be explicitly modeled; they
are not noise to be ignored. Thus, requiring all leaf
nodes to be 100% pure doesn’t lead to overgener-
ation; rather, it helps prevent it. BMRS naturally
handles exceptions through structured exception-
filtering logic, represented using a series of em-
bedded “if exception (x) then pathy else pathy”
expressions.

In summary, the BMRS-Tree’s uniqueness lies in
its 100% accurate fit: its goal is to reconstruct the
system rather than generalize from partial data. For
interpretability, the BMRS-Tree can be validated
against real phonological data, deriving rules and
constraints from it (see Section 3.2 for a case study),
which could be compared with already observed
patterns.

3.2 Case Study 1: High Tone Shift in Kibondei

In our toy grammar, which is loosely based on
the high tone shift patterns observed in Kibondei

8We will leave open the question of variability for the
future.

°In Section 3.2, all training data have string lengths ranging
from 1 to 8. However, we propose that the BMRS-Tree learned
from the training set can also successfully generalize to strings
longer than 9, due to the use of Global Feature Predicates,
which are distance-insensitive.



(Merlevede, 1995; Lamont, 2024), elements can
be high-toned (denoted by H), low-toned (L), or
unspecified for tone (0). For simplicity, it is as-
sumed that no more than one high-toned element is
present in the input. The grammar operates under
the following hypothetical rules:

Rule 1: L in the UR faithfully surfaces (L. — L;
L-» H,L-»0).

Rule 2: H shifts to the penultimate element if
possible (e.g., H000 — 00HO0). It can only replace
0 and leaves the original position in 0.

Rule 3: H cannot shift across L. If an L inter-
venes between the [ and the penultimate element,
then H shifts only up to the L (e.g., H000L000 —
000H L000; HO00L00O — 0000L0OHO0).

Rule 4: H cannot surface on the final element.
Underlyingly final H shifts to the penultimate posi-
tion if possible (e.g., 000H — 00H0), and deletes
if the penultimate position is occupied by an L
(e.g.,00LH — 00LO; 00OLH - 0HLO).

To demonstrate the learning results of BMRS-
Trees, we generated a dataset of UR-SF pairs, with
each string having a length between 1 and 8, suffi-
cient to capture potential long-distance dependen-
cies in the high tone shift. The algorithm used to
generate the dataset is provided in pseudocode in
Appendix C. Ten representative data samples are
presented in Table 3:

Data UR SF Data UR SF
1 HOOL O0OHL 6 000HOOL ~ 00000HL
2 LHO000 LOOHO 7 LOOOOHL  LOOOOHL
3 000LOH  000LHO 8 00HOO0OOL ~ 000000HL
4 LHOLOO  LOHLOO 9 LOHOOOLO LOOOOHLO
5 LHOOOLO LOOOHLO 10 LOHOOOOL LOOOOOHL

Table 3: Data Samples of Kibondei High Tone Shift

The first step in attribute aggregation is to enu-
merate each symbol 0 € ¥: ¥ = {H, L,0}.

Next, by aggregating feature predicates from
each index within each data (see Section 3.1), we
obtain the attribute table for learning the BMRS-
Tree of the target feature predicate H,(z). Run-
ning CART on this table (see Section 2.2) with
scikit-learn generates the Tree diagram of H,(z),
displayed in Figure 3.

The BMRS-Tree begins at the root node L(z),
which checks for the presence of L at the current
index. If L(xz) = T, Rule 1 ensures that H cannot
occur at the same index, returning | for H,(x).

Continuing down, the BMRS-Tree evaluates
whether the current index is valid to receive H
shift: Rule 3 ensures that an L at the succeeding

L L(s(x))

s

./H(?r)\L

"
\xz/H\
*xiJ
z/

Figure 3: BMRS-Tree H,(x)

. H(p (z))
T \J_
1

index (L(s(x)) = T) blocks this shift, allowing
the current index to be a valid alternative; Rule 2
prefers high tone shifts to the penultimate position,
which is evaluated by _(s%(x))."°

Rule 3 also implicitly ascertains that the clos-
est H can successfully shift to the current index
without encountering an intervening L:

When the immediate successor is L (L(s(z)) =
T), then the BMRS-Tree returns T if an H exists
either at the current index (H (z) = T) or the im-
mediately preceding index (H(p(x)) = T). The
challenge arises when locating H among all prede-
cessors, evaluated by H (p*(x)). If H(p*(z)) = T,
it confirms an H at some index to the left but
doesn’t verify if it’s blocked by an L. A common
solution is to recursively test two competing ele-
ments H and L to decide which one appears earlier
when looking ahead backward, using a manually-
formulated function defined as:

Hprec(x) = if H(p(z)) then T else
if L(p(x)) then L else Hprec(p(z))

This function finds the closest H or L backward
from the current index, successfully indicating
whether an H can shift without interruption.

By comparison, learned from real dataset, the
BMRS-Tree introduces a refined method by using
an output-dependent feature predicate H,(p*(z)),
which checks if an H has been output among all
predecessors. If H(p*(x)) = T and H,(p*(z)) =
|, it confirms that this H can shift to the current in-
dex, simplifying the decision-making process with-
out recursive backtracking.

10See Footnote 7 for discussion.
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When the current position is penultimate
(_(s*(z)) = T), the BMRS-Tree also ascertains
that H,(p*(x)) = T for an uninterrupted H shift,
validating subsequent paths: H (s(x)) follows Rule
4 for final H shifts, and H (z) and H (p*(x)) check
for H at the current index or among predecessors.

In general, the BMRS-Tree intricately captures
interactions of I and L in an artificial dataset
by integrating output-dependent feature predicates,
simplifying and optimizing the process of locat-
ing valid H shifts. This approach enhances its
capability of handling wider range of phonological
transformations (Oakden, 2021).

4 BMRS-Net

4.1 Implementation

Using phonological features as embeddings allows
parallel processing of multiple BMRS-Trees, form-
ing a complex network-like structure, referred to
as BMRS-Net. This paper proposes a method of
vectorization that treats phonological features as
Boolean values (cf. Prickett, 2021).

Central to this method is the redefinition of each
symbol o € X.. Traditionally seen as mere symbols
(characters) in strings, in the BMRS-Net symbols
in X are understood as underlying components (i.e.
phonological features) of each segment. Thus,
can be defined as:

= {[Fﬂ, [F2]7"'7[Fm]}

where each [F;] represents a Boolean phonological
feature that returns either T (1) or L (0); m equals
|23, the size of the Symbol Set, which signifies the
total count of unique features.

Each segment w from the vocabulary V' (also
referred to as the phoneme inventory) is then rep-
resented as an (m + 1)-dimensional vector. This
vector is constructed by assessing each phonolog-
ical feature [F;] for w, plus an extra 0 as the final
element, which represents an additional phonologi-
cal feature specifically for the boundary symbol _.
This boundary feature returns T only when evalu-
ated on the boundary symbol _. Formally, a char-
acter w in V' can be represented by the vector:

7= ([F](w), [Fo](w), - -, [Fn](w), 0)

We introduce the embedding matrix F, a one-
to-one mapping from each segment to its vector
representation, expressed as:

F:w—1v
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The notation F(w) = ¥ denotes the vector asso-
ciated with a segment w, and its inverse function
E~1(%) = w denotes the retrieval of the original
segment from its vector representation.

By definition, BMRS-Net is the parallel connec-
tion of m + 1 BMRS-Trees, where m = |X|.

The embedding matrix E facilitates transforma-
tion of phonological data into a vector format, es-
sential for BMRS-Net processing. It computes the
output vector v, for a given input segment w. The
input vector ¥ with respect to the input segment w
and the corresponding output vector v, are respec-
tively defined as:

U= E(w)

Vo = ([F1]o(w), [F2]o(w), - .., [Fim]o(w),0)

As can be noticed, v, includes the same fea-
tures as ¥, with an additional zero for the bound-
ary symbol _. Once v, is computed, the inverse
function of E is employed to retrieve the corre-
sponding segment for further analysis or process-
ing. The retrieved segment, denoted as w,, is ob-
tained through:

Wy = E_I(Uo)

Figure 4 visualizes the BMRS-Net transforma-
tion of a given index ¢ (each grey block denotes an
individual target feature predicate):

[F](:)

[B) (i)

5] (i)

[Fon] ()

[BOUNDARY] ()

Figure 4: BMRS-Net!!

4.2 Case Study 2: Rhotacization in Mandarin

This phenomenon refers to the transformation of
a non-rhotic sound into a rhotic one, typically re-
sembling a [{]-like sound (Chao, 1968; Lu, 1995;
Eckert, 2018). It generally occurs at the syllabic
level, and adding the suffix -o~ induces alternations
within the rhyme.

The dataset, summarized in Table 4, draws from
research by Lin (1989), Duanmu (2007), and Zhu

"For simplification,

[F]o(¥) denotes the same as
[Flo(E~(7)).



(2023). This training set includes only the rhyme
components (nucleus + coda) of stems plus the suf-
fix -o+. Glide components in the onset parts of URs
are also included if they trigger Mid Vowel Alterna-
tion (discussed later in this section); rhotacization
can also alter some segments into glides in SFs.

UR SF| UR SF| UR SF UR SF
i jor || u-or  wr 9-9¢ ¥ Jl-ov ot
in-o*  jor || un-o* ur || jo-or  jer ai-ov av
ig-o* jo || ug-o~ U || ye-o+ yer || su-o¢  our
y-o©  [or || a-ov  a* || wo-ov wor || au-or  au
yn-o¢ [o* || an-o¢  a+ || on-o¢ o
ygor  y3 || ag-or & || opor 5 || i0t!2 o

Table 4: Mandarin Rhotacization Dataset

Observing the dataset, we can make several gen-

rhotacization but surfaces as [o+], with the suf-
fix vowel [o+] being deleted.

Rule

a—el/{jul _
o—o/{w__,
9=Y/_ s
o—9/__{n,y}

Description

Undergoes [+front] assimilation
Undergoes [+back] assimilation
Surfaces as [¥] in open syllable stems
Remains unchanged with nasal coda

u}

Table 5: Mid Vowel Alternations

Given that some segments are deleted in the train-
ing set (Table 4), we propose inserting the symbol
0, representing a zero vector where every output
feature predicate returns L, to indicate deleted ele-
ments in the output.'®> This alignment ensures that
each UR-SF pair is of the same length, consistent
with BMRS’ index-by-index nature. The aligned

eralizations, some consistent with Zhu (2023):

1. Alveolar nasal coda [n] does not nasalize
the surrounding vowel, while velar nasal [g] does.
Both nasal codas are deleted in SFs.

2. The segment undergoing rhotacization in
the SF varies significantly depending on the nuclei
of the stems in URs. When the stem nucleus is:

* High front vowels [i]/[y] (Column 1 Table 4):
[i] and [y] reduce to glides [j] and [y], with
[*] becoming the nucleus in SF; the suffix
vowel [o+] becomes the nucleus in the SF.

¢ Back or low vowel [u]/[a] (Column 2 Table
4): [u] and [a] remain as the nucleus and un-
dergo rhotacization; the suffix vowel [o*] then
deletes.

Mid vowel [3] (Column 3 Table 4): [9] firstly
undergoes Mid Vowel Alternation, summa-
rized in Table 5, then the altered vowel be-
comes the nucleus and undergoes rhotaciza-
tion; the suffix vowel [o+] deletes.

Diphthong (Column 4 Table 4): The coda
vowel [i] deletes, and the “real” nucleus un-
dergoes rhotacization. The coda vowel [u]
undergoes rhotacization while the preceding
vowel remains unchanged or undergoes Mid
Vowel Alternation (o— o/ __ u). In both sce-
narios, the suffix vowel [o+] deletes.

* High central vowel [#] (the last line of Col-
umn 4 Table 4): [i] is assumed to undergo

2Two syllabic fricatives ([z] and [z]), also called apical
or fricative vowels, or syllabic approxlimants (cf. Lee-Kim,
2014) are merged into the high central unrounded vowel [i],
according to (Cheng, 1973) and by convention.

training set is presented in Table 6:

UR SF UR SF UR SF UR SF
iov jor uor w0 Qo ¥ 0 oior 0000
inoe jOo' |[unos w00 | joor jeO || aior a 00
igos jOd |fupgor w00 | yoor ye 0| ouo ouO
yor qor aor a0 || woor wo0Of auor auw0
yno yOo | ano a 00| ono 900

ypor y0d |[ager a00 || ogor 300 io o0

Table 6: Mandarin Rhotacization Data (after alignment)

For X, we refer to the Feature Charts from Hayes
(2009) to select relevant phonological features. For
vowels, we include attributes like [high], [low],
[front], [back], and [round]. For the three glides
observed ([j], [y] and [w]), we use [cons] and [syll].
The [nasal] feature covers nasalized vowels and
two nasal codas ([n] and [g]), and additional fea-
tures [COR] and [DOR] help distinguish them.
[rhotic] is specifically used for rhotacized vow-
els.!

> contains all the features above plus the
[BOUNDARY] feature; and the Embedding Matrix E
is outlined using this subpart of the Feature Chart
(see Appendix D).

Following the established procedures from Sec-
tions 3.1 and 4.1, we can learn all the target feature
predicates on Y, provided in Appendix E. Some
representative Tree diagrams will be reproduced in
the following discussion for illustration:

1.  Nasal Assimilation is controlled by
[nasal], () (Figure 5a), and is only triggered by a
surrounding [1], represented by [+DOR].

BSimilar to early OT methods where unparsed segments
were considered deleted.

“The Hayes (2009) feature for rhotacization is [+COR,

+anterior, +distributed, —strident]. Here for simplicity, we use
the informal feature [rhotic].
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[rhotic,(p*(x))

T/ \¢
[DOR)(s* (x)) 1] [syll)(x)
T 7/ \L
[front)(x) [DOR)(p*(x)) [front)(z) [L
VAR 7\ v
[high](z) [high)(p*(x)) | L [low](x) [round](s*(z))
T/ \L T/ \i v/ \L T/ i
n [front)(p*(x)) | L [round)(s*(z)) | L 1
7 !
L L

(a) [nasal]o(x) (b) [rhotic]o(x)

Figure 5

When [DOR](s*(x)) = T ([y] appears among
successors), then all the vowels except [+high,
+front] will be nasalized in the SF, reflected in the
data: [ug-o¢] — [U], [ag-o*] — [@*], [eg-9*] — [3+].

When [DOR](p*(z)) = T ([y] precedes the cur-
rent index), the output segment will be nasalized
only if there is [+high, +front] among its predeces-
sors, reflected in: [ig-o¢] — [j3*], [yg-o] — [go+].

2. Rhotacization is controlled by [rhotic],(x)
(Figure 5b), which decides whether the current seg-
ment can undergo rhotacization in the SF (i.e. to
receive the [rhotic] feature).

The root node [rhotic],(p*(x)) checks whether
[+rhotic] has surfaced before the current segment.
As observed from Table 4, [+rhotic] must be
aligned to the final segment and surface at the fi-
nal position, saying that [rhotic|,(p*(z)) actually
checks whether the output string has reached the
end: if it has ([rhotic],(p*(x)) returns T), then ev-
ery segment from the current position will delete.

In the rest of Figure 5b, all leaf nodes return-
ing T appear when [round|(s*(z)) returns L,
which imposes a constraint-like condition on that a
vowel cannot receive [rhotic] if it’s followed by a
[+round] element (in Mandarin, [u]).!> This is also
coherent to the dataset: if a vowel is succeeded by
a [u], then [u] is always the one to receive [rhotic].

There are only two leaf nodes returning T (the
blue nodes), which denote respectively:

¢ [+front, -low]: [a] (the bottom-left T);
* [-front]: [], [a] and [u] (the bottom-right T).

3. Glide Formation ([j], [q]) in SFs offers
an explanation for why [+high, +front] cannot
be rhotacized. This glide formation is controlled
by [syll],(z) (Figure 6a). It also starts with
[rhotic],(p*(x)), restricting that the output string

'5In Mandarin, [y] never appears in complex nuclei or diph-
thongs.
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(SF) has not yet reached the end. And [syll](x) as-
serts that [-syll] segments won’t surface as [+syll].
The rest of the two intermediate nodes [front](z)
and [high|(x) denotes respectively two categories
of vowels that remain [+syll] in the SF:

* [-front]: [o] and [u];
* [+front, -high]: [a].

The bottom-left | leaf node (in orange) denotes
exactly the category that will possibly be altered to
glides (or even deleted): [+front, +high], consis-
tent with the data in Column 1 Table 4).

4. Mid Vowel Alternation is applied to o
in the stem before deciding whether it receives
[rhotic] or not. It is controlled by three predicates:
[front],(z), [back],(x), and [round],(x) (refer to
Table 9). After being applied to the underlying o,
they are reproduced in Figures 6b, 6¢ and 6d.

All three BMRS-Trees start with [syll](p*(9)),
checking whether a [+syll] segment (i.e. vowel)
precedes 9. This presents a restriction that 9 alter-
nates only if it’s the stem’s nucleus or the so-called
“real” nucleus of a diphthong; the 9 in the suffix -o+
or as the coda vowel doesn’t alternate (though it
never appears as the coda in Mandarin).

Ascertaining that 9 appears as the stem’s nucleus
([syll](p*(9)) = L, this continues as a prerequisite
in the following discussion), Figure 6b then suc-
cessfully models [+front] assimilation: a [+front]
segment preceding the 9 assimilates it into a front
vowel [e] ([front](p*(s)) = T).

The two upper T nodes in Figure 6¢c model
[+back] assimilation: o is [+back] assimilated
when there exists a [+back] segment before or after
it. Continuing down, [front](p*(9)) filters out two
front glides ([j] and [1]) that license the [+front]
assimilation; [cons](s*(9)) filters out two cases
where o is followed by nasal codas [n] and [1)] — the
only two consonants existent in our dataset ([on-9*]
— [0, [on-o] = [5°D).

[high](s*(9)) models another possibility:
pseudo-[+back] assimilation, when followed by a
[+high] segment. This is consistent with the piece
of data: [9-9*] — [¥*], in comparison with [9i-9*]
— [o+] (the o followed by [i] doesn’t alternate). In
fact, this is also consistent with Line 3 Table 5
that o surfaces as ¥ in the open syllable stem (cf.
Duanmu, 2007).

Figure 6d is almost identical to the upper part of
6¢, both seeking a [+back] environment. To gener-
alize, 9 automatically receives [+round] when it re-



[rhoticlo(p*(x

1) (2)
N
[front](x)
v
[high](x)
VN
L

(@) [syll]o(z)

L

(b) [front]o (o)

1

[syll) (p
T

"()
N\
[back](s*(2))
N\
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.

[syll](p* (o

/\

[back]( p

/ [back]( 5*9

(d) [round], (o)

[front](z
-

*(9))
J
[cons](s

T

L “(0))
L
[high)(s

T

L *(0))
L

L

() [back]o (o)

Figure 6

ceives [+back] from its surrounding context, which
is to say, [+back] triggered by “real” [+back]
assimilation innately carries [+round].

All the discussion above serves as an illustra-
tion of complete transparency and interpretability
of BMRS-Trees learned via CART. Collectively,
BMRS-Net successfully fitted the dataset and is
capable of efficiently performing complex string
(vector) transformations.

5 Future Research Directions

First, regarding the class of string functions, the
High Tone Shift in Kibondei can be modeled by
a Subsequential function (Heinz and Lai, 2013;
Heinz, 2018), while the Rhotacization in Mandarin
could be considered Output-Strictly local (Chan-
dlee et al., 2015), at least in this paper, due to its
dependence on the previous output to determine
transformations. However, in our implementation,
all categories of feature predicates (including sym-
bolic, local, global, and output-dependent) were
aggregated to form the attributes used in Deci-
sion Trees for phonological analysis (Section 3.1).
Therefore, it would be beneficial to systematically
analyze which categories of feature predicates are
sufficient to model different string function classes.

Second, the unequal string lengths for Mandarin
Rhotacization (Section 4.2) is handled a little un-
usually in this paper, and the use of zero vector
(0) to indicate deleted segments is obviously not
scalable to inserted one. Thus how to extend the
current implementation to handle both deletion and
epenthesis remains open for further exploration.
According to a suggestion from an anonymous re-
viewer, the use of licensing functions and copy sets,
as discussed in the work of Courcelle and Engel-
friet (2012), offers a promising direction. Besides,
the integration of order-preserving functions (as ex-
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plored by Lindell and Chandlee, 2016) could also
enable deriving both deletion and epenthesis.

If the successful categorization of feature predi-
cates for different string function classes is achiev-
able, and handling epenthesis becomes feasible,
then our BMRS implementation could serve as
a versatile tool for analyzing various classes of
string functions and a broader range of phonologi-
cal transformations, with enhanced flexibility and
expressivity.

6 Conclusion

This paper presents the implementation of BMRS-
Trees and BMRS-Net as an automated BMRS pred-
icate learner, requiring only minimal human input,
i.e., symbol (or feature) selection. Their success-
ful application to two non-trivial (yet still limited)
phonological phenomena substantiates their poten-
tial as an automation tool for researching phonolog-
ical transductions, from segmental alternation, dele-
tion to long-distance shifts (with epenthesis left for
future exploration). The results offer a promising
alternative to traditional rule- or constraint-based
approaches, advancing the integration of machine
learning in computational phonology.
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A Modeling Tonal Shift and Spread with
BMRS

Below is a brief example of BMRS transduction on
a tonal system.

Saghala (Breteler, 2017) has a tone system that
contrasts only high-toned elements (denoted by H)
with unspecified ones (0). An underlying H shifts
to the next position and then spreads one position
further to the right (e.g., 00 — 00, H00 — 0H H,
HO000 - 0HHO0, 0H00 — 00H H).

Assuming ¥ = H,0, we can define H,(x) to
check whether the current index outputs H:

H,(z) = if H(z) then L else (if H(p(x)) then T else H(p?(z)) )

This captures the rightward shift-and-spread be-
havior of H. The tree diagram in Figure 7 also
visualizes this same behavior:

Y

(

z)
\d

1L H(p(x))
T/ \L
H(p*(x

)
N\
1

Figure 7: H,(x)

Table 7 illustrates the index-by-index transduc-
tions on two input-output mappings:
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01 2 3 4 01 2 3 4
input _H 0 0 0 _ 0 H 0 0
H(x) L 7T L 1L 1 L 1L 7T 1L 1
H(p(x)) L L T L1 1L N N
Hp*z) L L 1L T 1 11 1L 1L 7T
H,(z) I s N N
output 0 H H O _ 0 0 H H

Table 7: H000 — 0H HO0, 0H00 — 00H H

B Classification and Regression Tree
(CART) Algorithm

CART (Breiman et al., 1984) builds binary trees.
When used for classification, CART aims to split
the data into subsets that are as “homogeneous”
(pure) as possible with respect to the target at-
tribute.

Entropy, borrowed from Information Theory
(Shannon, 1948), is a common metric to quantify
the degree of homogeneity or impurity in a dataset,
and is employed as the split criterion in this paper.
For a binary classification task that returns Boolean
values, Entropy H of a dataset D is defined as:

H(D) = —pology(po) — p1logy(p1)

where pg and p; refer respectively to the propor-
tions of instances returning L in the dataset and
to that of instances returning T. Entropy H (D)
reaches its maximum when T instances and _L in-
stances are equally distributed (the dataset D being
the most “heterogeneous” or impure) and its min-
imum (zero) when the dataset contains only one
class (completely pure).
CART grows a Decision Tree in these steps:

1. Calculate Initial Entropy: The algorithm
begins by calculating the Entropy of the entire
dataset H (D), which gives a baseline measure
of impurity.

. Evaluate Each Attribute and Choose the
Best Split: For each attribute, CART firstly
considers its split and calculates the Entropy
of two resulting subsets. It then computes the
Information Gain, which is the reduction in
Entropy from the initial dataset to the com-
bination of its two subset. The Information
Gain /G from splitting dataset D on attribute
A is defined as:

[Do|

\Du| gy
[D]

H(Dy) + D]

16(D, 4) = H(D) - ( (D))

where Dy and D4 denote the subsets formed
by the split on attribute A, and |Dy|, |D1|



and |D| denote respectively the number of
instances in the corresponding set.

The attribute that yields the largest Informa-
tion Gain is selected for that split.

. Split the Subsets Recursively: The process
of splitting based on Information Gain contin-
ues recursively for each subset, creating deci-
sion nodes and branches, until all instances in
a subset belong to the same class, or no further
information gain can be achieved (because all
the attributes are used up).

. Assign Leaf Nodes: When no further splits
are possible or necessary, the remaining data
in each terminal node is assigned a label based
on the majority class within that subset, form-
ing a leaf node.

Focusing on reducing uncertainty at each step,
CART constructs Decision Trees that classify the
dataset as accurately as possible, while being rel-
atively easy to interpret and to visualize using the
scikit-learn library.

C Algorithm to Generate the Dataset for
High Tone Shift in Kibondei

Algorithm 1 Generate Input Strings

Require: min_len, max_len
Ensure: A list of input strings consisting of H (at
most 1), L, and 0
1: inputs < []
: for length < min_len to max_len do
strings < all combinations of L and 0 of
length

w N

4:  for all s € strings do

5: Append s to inputs

6: for i < 0to length(s) — 1 do

7: modi fied <— s with character at posi-

tion ¢ replaced by

8: Append modi fied to inputs

9: end for
10:  end for
11: end for
12: return inputs

For reference, when min_len 1 and
max_len = 8, Algorithm 1 returns a list of length
4096, i.e., containing 4096 possible inputs.
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Algorithm 2 Map Input to Output

Require: A string input
Ensure: The output string after applying the
BMRS transduction
if input ends with 0H then
Replace the suffix 0H with H0
end if
if input ends with LH then
Replace the suffix LH with L0
end if
Replace every substring matching pattern
H(@*)L with:
same number of 0’s as in the match, fol-
lowed by HL
if input ends with a substring matching pattern
Ho+ then
Replace it with:
one fewer 0 followed by H0
end if
return input

10:
11:
12:
13:

D Mandarin Feature Chart

Phonological features selected for Section 4.2 are
presented in Table 8.
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Table 8: Embedding Matrix

E Mandarin Rhotacization BMRS-Trees

In this appendix, both original Decision Tree dia-
grams generated directly by scikit-learn and their
simplified (remade) versions are presented in Table
9. 17

15The feature [BOUNDARY] and the default boundary symbol _
are also included in E, for the sake of completeness.

17As can be noticed from Table 4, all [+cons] segments
(i.e., [n] and [g]) are deleted and don’t surface in the output.



The original BMRS-Tree diagrams generated
by scikit-learn can appear perplexing due to its
exceedingly detailed node information, and some-
what counter-intuitive as each node tests whether a
feature predicate returns “False”: the node checks
whether the truth value is <= 0.5. Therefore, origi-
nal and remade versions look like horizontal mirror
images of each other. And given the low readabil-
ity, a remade version is reproduced below in Table
9 and used in the main body of this paper for better
visualization.

One prominently essential parameter exclusively
existing here in Column “Original”, Table 9 is En-
tropy: all terminal leaf nodes’ Entropy equals zero,
which is a key indication of 100% accurate fit.

Reproduced

BMRS-Tree Original

Thighlots

[high](x)
T/ .
[rhoticl,(p*(z))
N\
[round](z)
N\

[front](x

/\

[high]o(x)
[low](
[low]o () ./ \.
[front](z)
[syll] (p* (w)) [syll] (p (x))
./ \l [front}(p (@))
L
[front]o(z)

Therefore, [cons|o(z), [COR],(x) and [DOR],(z) always
return L — this is a side effect of only including the rhymes in
the dataset. [+cons] segments will still surface in the onset.
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Table 9, Continued

BMRS-Tree Original Reproduced
[back](x)
o o
[syll](p* (x))
VRS
s [front](z)
VAR
[back](s*(x))
v N\
[back] (p* (x))
o o
[front](p*(x))
VAR
Jcons](s*(z))
v\
[highl(x)
7N
(high](s* @)
T 0l
[back],(z)
oot [round)(x)
N
[syll](p*(=))
7/ N\
[back](p*(z))
7/ N\
[back](s*(x))
[front](x) <= 0.5 T/ ~
entropy = 1.0
Bt prontl(e)
[round],(x) - ”
entropy = 0.0
samples = 63 J_
[CO?’LS]O(ZL') value = 1.0
(ioticlolp™ ) <= 05 [rhotic]o(p*(z))
samples = 63
value = [38, 25] T \J_
[sylll(x) <= 0.5
entropy = 0.927 [syll] ()
T/ N\
[front|(@)
T/ N\
[high](z)
[syll]o(z) - -
o [DOR(s*(x))
{front](x) <= 0.5 T
valoe = 12, 31 [front](z) [DOR](p*(z))
fhighib <= 05 T / T/
valug =12, 1] [high](x [hlgh] (p*(2)) .
= ;
[front] (p (z)) .
-/ 1
[nasal]o(x)
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Table 9, Continued

BMRS-Tree Original Reproduced
tropy = 0.0
A 1
[COR]O(:C) value = 1.0
tropy = 0.0
SR 1
[DOR]O(ZE) value = 1.0

[rhotic],(x)

Irhoticlo(x)=

oWl <= 0.5
entropy = 0.946

samples = 11
value = (7, 4]

[rhotzc]u(p* (z))

T/ 1
[ front] z)
[low] [round] s*(x
[round](s (x\- -/ \-

Table 9: BMRS-Tree Diagrams in Mandarin Rhotaciza-

tion
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Abstract

This paper introduces a novel method of lin-
earization, casting it as a model-theoretic in-
terpretation. Within Model Theory, an inter-
pretation is a way of understanding a struc-
ture through the lens of another structure— in
this sense, linearization is an interpretation of
atree’s string yield through the lens of the tree.
Such a formal characterization allows us to ex-
plicitly codify locality into the post-syntax (in
line with Embick and Noyer (1999)). This
has strong potential implications for the na-
ture of syntax-phonology interaction in terms
of formal complexity and typological predic-
tions of phrasal phonology. Crucially, casting
linearization in this way also opens the door
for a closer unification of how we understand
the computational properties of interfaces be-
tween linguistic modules more generally.

1 Introduction

Model Theory is a subfield within mathematical
logic that is used to formally reason about struc-
tures and the properties they satisfy. There has
been a rich tradition of using Model Theory within
generative semantics. More recently however, re-
search in theoretical computational linguistics has
shown that Model Theory is an extremely use-
ful tool for understanding syntax, phonology, mor-
phology, and phonetics as well. Due to Model The-
ory’s abstract and domain-general nature, there is
a great deal of freedom in the sorts of structures
that can be defined and the mappings between
them, making it well-suited for linguistic theoriz-
ing.

For example, Model Theory has been used in
syntax to formally reason about the computational
properties of Government and Binding Theory
(Rogers and Nordlinger, 1998). More recently,
Model Theory has been used extensively by pho-
nologists to understand both phonological well-
formedness of structures (Strother-Garcia et al.,
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2016; Jardine, 2017) as well as mappings between
underlying structures and surface structures (Oak-
den, 2021; Bhaskar et al., 2020). In Nelson (2024),
model-theoretic interpretations are used to model
autosegmental coupling graphs, as well as transfor-
mations between them and string representations,
showing a use case in the phonetics-phonology in-
terface. In (Petrovic, 2023), Model Theory is used
to reason about the computational nature of mor-
phological processes. In terms of complexity, this
type of formalization also allows for a richer un-
derstanding of the tight relationship between learn-
ability and computational simplicity with respect
to typological predictions (Lambert et al., 2021;
Rawski, 2021).

Knowing that model-theoretic representations
have given novel insights to our formal under-
standing of separate linguistic modules, a natural
question arises: How can we use knowledge of
these modules independently to understand their
interaction? Namely, if model-theoretic represen-
tations allow us to understand the formal prop-
erties of semantics, syntax, phonology, morphol-
ogy, phonetics in isolation, and we know that it
is extremely well-suited for understanding the re-
lationships between different structures, then it
should also serve as an invaluable tool for under-
standing the formal properties of their interfaces.
This paper is a step in this direction, showing
that linearization can be understood as an inter-
pretation of linear post-syntactic representations
through the lens of hierarchical syntactic represen-
tations. While this is one particular use case for
the much broader endeavor of using Model The-
ory investigations of the interfaces, this opens up
the door for a great body of research while making
novel observations about the nature of lineariza-
tion.

The paper is organized as follows. Section 2
gives an introduction to Model Theory, discussing
string models and interpretations. In Section 3, we
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discuss linearization and show how it can be for-
mulated as an interpretation from trees to strings
and sketches an approach toward incorporating a
simple case of movement into the analysis. Sec-
tion 4 discusses some broader theoretical implica-
tions for this view of linearization.

2 Model Theory

A signature S is simply a collection of functions,
relations and constants. The discussion here will
be limited to dealing with relations, so we will
stick to signatures that contain only relations, not
functions or constants. A relational model is a pair
(D | ri,...7ry) where D is some domain, and
each r; is a k-ary relation from the signature S
over elements in the domain D. In place of model,
the word structure is also commonly used. Here,
k-ary simply means that the relation r; takes k el-
ements of D as its arguments. For example, p(z)
where € D would be a unary relation, ¢(x,y)
where x,y € D would be a binary relation, etc.
The focus of this section is on using these models
to define strings and mappings between them.

2.1 Strings

Consider the string apba. It contains only the seg-
ments {a,b,p} and there are four elements, the first
bearing a, the second bearing p, the third bear-
ing b, and the fourth bearing a. Let the domain
D ={0,1, 2,3} represent the indices of the string
and the alphabet (set of symbols) ¥ = {a,b, p}
represent the labels each index can bear. For each
of these symbols, define a unary relation that in-
dicates whether or not an index z of the string
bears that symbol: so there are three unary rela-
tions a(x), b(x), p(z). For our string apba, it is the
case that a(0), p(1), b(2), and a(3) are all true, and
any of these relations for other domain elements
will be false. Each index bears a label, but there
must be some way to tell what precedes what in
our string. This can be done by relating the indices
through a binary precedence relation. Strict prece-
dence <I(x,y) states that = comes before y with
nothing else in between. A string model for apba
using strict precedence <I(z,y) is shown below:

< /N <9 /N <«

Figure 1: String Model with Strict Precedence

Alternatively, one could use general precedence
< (z,y) where & comes before y at any point in
the string. Whether a structure is defined using
general precedence or strict precedence directly
affects the sorts of generalizations one can make.
For example, using strict precedence it is natural to
ban immediately adjacent segments like a ban on
any obstruent immediately following a nasal (say,
a *NT constraint), whereas using general prece-
dence it is natural to ban sequences of segments
like long distance sibilant harmony that bans an |
following an s anywhere in the string (say, a *s
... J constraint). For a broader picture of how rep-
resentations and the nature of constraints relate to
one another in phonology, see Heinz (2018). This
difference will have important implications for the
motivation of the view of linearization argued for
here.

2.2 Interpretations

Informally, a logical interpretation is a mapping
that takes an input structure ¥ in a signature S and
uses logical expressions to recast it as an output
structure I in a signature G, shown abstractly in
Figure 2. One way to imagine this is interpreting
an output structure I' through the lens of an input
structure 3. It is also convenient to imagine this as
a transformation, where an input structure is trans-
formed into an output structure. Here, the term
logical transduction is used.

Input Output

S-structures G-structures

Figure 2: General Sketch of a Logical Transduction

Let G be our output signature with relations
7“,17 e ,r;. For each relation r;- in the output sig-
nature G, there must be a definition which is de-
fined using only relations r; from the input sig-
nature S or more complex helper predicates con-
structed from them. There is also a copyset C' =
{1,...,m} that copies pieces of the input struc-
ture to be (potentially) used by the output structure.
Essentially for each node x in the input structure
>, depending on the size of the copyset, a corre-
sponding copy is used: there can be an z° copy, z!



copy, 22 copy, and so on up to m, meaning that the
input structure will grow linearly depending on the
size of the copyset.

Consider the input signature S (from the string
model for abpa in Figure 1) and the output signa-
ture G, containing precedence relations that medi-
ate precedence between copies:

S= {a(x)’ b(l?),p(l‘), <l(.’E, y)}
g= {ao(x),po(x),bo(x),al(x),pl(x),bl(as),
<0 (2,y), <% (2, y), <0, y), <M (2, y))

In the output signature G, the relations ¢¥(z') mean
that 2’s O-th copy is labeled with the symbol o and
o!(x) mean that z’s 1-st copy is labeled with the
symbol o. The relations <"/ (z,y) mediate strict
precedence between different copies in the output.
In other words, <1*/ (x, 3y) means that x’s i-th copy
strictly precedes y’s j-th copy in the output. This
is made clear in the example that follows.

Using these two signatures, we will construct an
input S-structure X, an output G-structure I', and
an interpretation will be constructed between them
that epenthesizes a’s between a p followed by a
b. This can be written as a standard rewrite rule
& — a/p_b. Note that a copyset of C = {0,1}
is needed because the string will grow in length
by one node any time there is a ‘pb’ substring.
We proceed by defining each relation in the output
signature using relations from the input signature.
The interpretation is shown pictorially in Figure 3.

For the labeling relations, every node in the 0-th
copy is going to remain faithful to the input. Noth-
ing is deleted, there are only things to add and so
this copy remains the same. In the 1-st copy, only
nodes labelled with an a will ever appear since that
is the only segment we wish to add (since b’s or p’s
will never be epenthesized). For the precedence
relations, strict precedence will hold between two
nodes in the 0-th copy if they aren’t a p strictly
followed by a b. The only time a O-th copy will
strictly precede a 1-st copy is when there is an a be-
ing inserted, namely between a p strictly followed
by a b. The only time a 1-st copy will precede a 0-
th copy is when it is the b in the configuration just
described. There will never be strict precedence
between elements both in the 1-st copy, since this
would correspond to adding two a’s in a row.

In Figure 3, the dashed nodes represent copies
of nodes that are not used in the interpretation.
When the copyset is constructed, all copies have
the potential to be used, but the actual definitions

of the labeling and precedence relations determine
which are actually used. In this mapping, an in-
put string apba will map to apaba, since the a was
epenthesized between the p and b, whereas an in-
put string abapa would simply map to abapa since
there are no ‘pb’ substrings.

input

output
c=0

Figure 3: a-epenthesis between p and b

Thinking more generally, this is an example of
how an output string has a particular form based
on specified conditions on its corresponding input
string. Thus, we are interpreting the output string
through the lens of the input string. Shifting fo-
cus to linearization, an output string structure has
a particular form based on specified conditions on
its corresponding input tree structure. To under-
stand this more clearly, tree models must first be
defined.

3 Linearization as an Interpretation

3.1 Tree Models

It is standard practice within model-theoretic syn-
tax to define trees with respect to a domain D C
N of nodes, a binary general dominance rela-
tion <*(x,y) and a left-of/precedence relation <
(x,y) as in Rogers and Nordlinger (1998). There
are many theoretical reasons to suggest that they
should instead be defined over something more
closely resembling syntactic selection instead of
a precedence relation, but in order to keep the dis-
cussion more tractable, this convention serves as a
suitable starting point. Some ways that this can be
embellished for a more well-rounded account will
be discussed in later sections.

Note that the domain ranges over the natural
numbers N, but the order that they appear doesn’t
matter so long as the relations are consistently de-
fined. For convenience, the convention here re-
flects the order that they are introduced to the
derivation, assuming a bottom up derivation.

"One could also choose to use Gorn addresses as in Lam-



There must also be labels for the nodes of our
tree, so let Xy, be an input alphabet of labels for
nodes of our tree. Since our nodes can bear a wide
range of different syntactic properties, this alpha-
bet can be partitioned into the following sets of
lexical labels, categories, features, and movement-
licensing features:

* L = {THE, MAN, LOVES, CAKE, ... }
* C={V,V,C,D,N,PERF,...}
* FF={sqG,pL,1,...}

e LIC = {+wh, -wh, +nom, -nom, . ..

}

Thus, ¥y, = LU C U F U LIC, and each
o € Xgyn has a corresponding unary relation
o(x) specifying some piece of syntactic informa-
tion. This is one particular choice of how to en-
code this information relationally, inspired by Min-
imalist Grammars (Stabler, 1996), but many other
options are available. While this is not strictly
necessarily, a labelless syntax is assumed (Collins,
2002), such that non-terminal nodes without /exi-
cal labels (bearing no o € L) represent instantia-
tions of Merge.”

We will start with a simplified, abstract example
for clarity and it will be expanded when movement
is discussed. Consider the input signature:

S = {<*(2,9), < (2,9),0:(x)}
where:

* <J*(z,y) is the binary general dominance re-
lation

e < (=,y) is the binary, asymmetric prece-
dence relation

* 0i(x) are unary relations for every o; € gy

To keep the discussion tractable while introduc-
ing the main properties of linearization, only lexi-
cal labels are encoded in this structure, but the gen-
eral points about how labels carry over to the out-
put structure hold for the other category and fea-
ture labels. A simplified example of an S-structure

bert et al. (2021), where domain elements are strings in
{0,1}* where a 0 indicates a left child and a 1 indicates a
right child.

%A series of well-formedness conditions can be defined
that more accurately reflect standard syntactic assumptions
(the nodes that select project, encoding feature percolation,
etc.), some of which will be explored later with respect to
movement.
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in the signature Y is shown in Figure 4 over the
arbitrary, abstract alphabet X.5,,, = {THE, MAN,
LOVES, THE, CAKE}.

Figure 4: Linearization Toy Example

Considering this example, setting aside the is-
sue of movement for later, the linearization intu-
itively yields the string “THE MAN LOVES THE
CAKE”. However, this is a nontrivial task since
branches can be of arbitrary finite length. The next
section lays out an interpretation using First-Order
Logic to yield a string defined using strict prece-
dence.

3.2 Remarks on Linearization

The main contribution of this work is to show that
linearization can be concisely understood as an in-
terpretation between trees and strings. In order to
formalize this, it is crucial to first establish some
theoretical assumptions of both input trees and out-
put strings.

There is a rich body of work debating the status
of linearity and recursion and their presence in syn-
tax and phonology (Scheer, 2012, 2023; Idsardi
and Raimy, 2013; Idsardi, 2018; Elfner, 2015; Ito
and Mester, 2012; Cheng and Downing, 2021;
Miller and Sande, 2021). This paper adheres to the
view that (i) narrow syntax contains recursion but
lacks linearity and (ii) phonology contains linear-
ity but lacks recursion. To understand this, look-
ing at work by Idsardi and Raimy (2013) is help-
ful. They outline three types of linearization, one
of which, immobilization, plays a key role here.
Immobilization transforms hierarchical structures
built via Merge into ordered structures by intro-
ducing adjacency relations. There is a subtle but
crucial point here with respect to the status of lin-
earity in the computation of narrow syntax. The
structure building taking place during narrow syn-
tactic computation is blind to linearity, but linear-
ity is a necessary reflex of externalization given



the temporal nature of the speech stream. So there
must be a stage after syntactic structures are built
which imposes linearity, and this is precisely the
function of immobilization. The finer details of
immobilization are beyond the scope of this paper,
but similar model-theoretic tools are well-suited to
formalize it. In this framework, we assume that
“flattening” occurs after adjacency relations are es-
tablished. Thus, the input trees of our linearization
are the recursive hierarchical trees built by the nar-
row syntax once they have been embellished with
adjacency information, hence the use of the prece-
dence relation < (z,y).

In what follows, we define this mapping using
First-Order Logic, ensuring that the process re-
mains sufficiently restrictive from a computational
perspective. This formulation allows linearization
to be expressed in a purely declarative manner
rather than as a derivational process. It also fun-
damentally codifies the notion of locality into the
representation, which is known to be important for
the post-syntax (Embick and Noyer, 1999).

3.3 Tree-Flattening as an Interpretation

Consider an input S-structure, a tree denoted X,
and an output string G-structure, a string denoted
T, representing the concatenation of 3’s leaves in
the correct order. Recall that the relations of our
output string must be defined in terms of those
input relations (namely, <*, <, o; or helper pred-
icates built using these) and this is precisely the
sense in which the output string is being inter-
preted in terms of the input tree.

As before, two pieces are necessary: (i) which
nodes from the input are relevant for the out-
put and (ii) how they are ordered with respect to
each other. The ordering will be a relation called
lin(x,y) to indicate that = and y in the input tree
meet the conditions for z to strictly precede y in
the linearized output string. Intuitively, only the
leaves will be contained in the output structure,
but the ordering between them may not be read-
ily clear at first glance. Taking the tree in Figure 4,
its intended linearization shown pictorially below
in Figure 5. The example will proceed by reason-
ing why the ordering is the way it is, which will
lead to the formal definition.

O O O O O
MAN

THE LOVES THE CAKE

Figure 5: Output of Linearization Toy Example

We only want to include leaf nodes in our out-
put string, and because the input will not grow
in the output, we only need a single copy set
C = {0}. In fact, this interpretation can be seen
as a mapping that “forgets” the hierarchical infor-
mation and “connects” the leaves in the correct
order via linear precedence. We define a predi-
cate leaf(z) —Jy[<*(z, y)] that says a node
x is a leaf node iff there is no node y that it dom-
inates. Thus, the labeling relations will take the
following form for each item in the input alphabet
o; € Zsyn5

THE? () := THE(x) A leaf(z)

MAN(z) := MAN(z) A leaf(z)

To better understand why the output string has the
linear order it does, some more helper predicates
are defined. A left-leaf is a leaf that has noth-
ing preceding it, and a right-leaf is a leaf that
precedes nothing. Formally,

left-leaf(z) := leaf(z) A =3y[< (y, x)]
right-leaf(z) := leaf(z) A =Jy[< (z,9)]

Using these, we can define predicates to indicate
whether a given node is the left-most leaf of a
particular node, and another to indicate if a given
node is the right-most leaf of a particular node.
For a given node, whichever node is the (unique!)
leaf below it such that nothing is further left is its
left-most leaf and whichever node is the (unique!)
leaf below it such nothing is further right is its
right-most leaf.

The relevance of these becomes clear when
thinking about where lin(z,y) holds true in the
tree in Figure 4. Let’s observe each case: First,
1in(6,5) because both 6 and 5 are leaves and
=< (6,5). Next, 1in(5, 3) because there is a node
whose right-most leaf is 5 and it precedes a node
whose left-most leaf is 3, so no other leaves can be
in between them. Next, 1in(3,1) because 3 pre-
cedes a node whose left-most leaf is 1. Finally,
1in(1,0) for the same reason 1in(6,5), namely
both are leaves and < (1,0).

Thus, in all of these scenarios, expressing strict
precedence in the output requires reference to left-
most and right-most leathood. Every node has a
left-most and right-most leaf, and every leaf node
is its own right-most and left-most leaf (since dom-
inance is taken to be reflexive). Defining one more



helper predicates aids in readability. The follow-
ing predicate indicates that a node y is dominated
by x and dominates z and so we say that y is be-
tween x and z in the tree:

between(x,y, z) := <" (x,y) A <*(y, 2)

Now having seen the importance of these config-
urational relationships to linearization, the formal
definitions for right-most and left-most leafthood
are as follows:

* A node z is the left-most leaf of a node y iff
for all the left-leaf nodes z that y dominates,
the only one with nothing further left is x:

Iml(x,y) = Vz[(<*(y, 2) A left-leaf(z)
A Vs[between(y, s, 2)
A =Tt (L, 8)]]) > 2z = 2]

* A node z is the right-most leaf of a node y iff
for all the right-leaf nodes z that y dominates,
the only one with nothing further right is x:

rml(z,y) = Vz[(<"(y, 2) A right-leaf(z)
A Vs|between(y, s, 2)
A —3t[< (s,1)]]) ¢ z = 1]

Now that these have been given, note that each
of the cases above made some mention of z and y
being the left-most or right-most leaf of two higher
nodes where one precedes the other, we can call
these t and 5.3 Any of these configurations leading
to x strictly preceding y in the output string can
be condensed into the following single condition,
also shown pictorially in Figure 6:

lin(z,y) := 3t3s[< (¢, s)Arml(t, x) Alml(s, y)]

rml(z,t) 1ml(y,s)

olo

Figure 6: Conditions for Strict Precedence in Output

3Since any leaf is its own left-most leaf and right-most, it
can be true that either ¢ = x or s = y or both.
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What we have done is reduced precedence be-
tween any two nodes in the output string to a sin-
gle declarative condition between nodes the input
tree: the node x will strictly precede y iff this con-
dition holds. One of the primary strengths of this
result is that it doesn’t cast linearization in terms
of a procedure, but rather it reduces it to under-
lying knowledge about the structural relationship
between linguistic elements. Another critical prop-
erty of this method of linearization is that it is de-
finable using First-Order Logic, which is desirable
from a formal complexity standpoint. This is be-
cause it limits its use of quantification to individual
elements as opposed to sets of elements as would
be the case in Monadic Second Order Logic. This
is a nice result with respect to computational com-
plexity, since it is subregular.

There is an important question regarding the
choice of strict precedence in the output string. Re-
call from the earlier discussion of strings that the
choice of representation (strict or general prece-
dence) affects the available generalizations one
can define. Using strict precedence it is natural
to ban immediately adjacent segments like a ban
on any obstruent immediately following a nasal
(say, a *NT constraint). For example, with an
alphabet of ¥ = {V,N, T, D}, such a constraint
would accept the string VNDV but reject the string
*VNTV. In fact, this is a strictly local constraint
since it depends only on a window of two ele-
ments (Chandlee, 2014). In contrast, using gen-
eral precedence it is natural to ban sequences of
segments like long distance sibilant harmony that
bans an [ following an s anywhere in the string
(say, a *s ... [ constraint). For example, with
an alphabet of ¥ = {[,s,v,c}, such a constraint
would accept the string [cvev] but reject the string
*scvev[. This is not strictly local because it con-
tains a dependency between elements that can oc-
cur arbitrarily far away from one another. * The
choice of strict precedence in the definition of lin-
earization here formally hard-codes locality into
our post-syntactic representations. The output of
our linearization is a string of nodes labeled with
morphosyntactic information and if they are re-
lated via strict precedence, this prunes out arbi-
trary, word-level parallels of these long distance
generalizations. Thus, post-syntactic operations at

“However, it is possible to define Tier-Based Input or Out-
put Strictly Local functions that have a relativized form of ad-
jacency via a particular feature or category, thus naturally con-
straining the ability to make long-distance generalizations.



this level of representation can be modeled using
ISL functions.

This simplified example did not contain any
feautural information, but this will become rele-
vant when sketching a potential analysis imple-
menting movement. As a start, encoding stan-
dard syntactic mechanisms like selectional require-
ments and feature percolation can be stated as
well-formedness conditions on our input trees. As
an example, suppose we had a well-formedness
condition in our trees that said a non-terminal node
only bears a category label, for example D, iff it
has two children x, y where = shares the category
D and < (z,y), which enforces that the selecting
node will project its features to its parent. Another
example, suppose we define a well-formedness
condition for movement features f which states
that if a leaf node bears a -f feature, this -f fea-
ture must percolate upward to its maximal projec-
tion. These are some ways to understand how this
method of linearization could be expanded going
forward for a more all-encompassing account.

3.4 Incorporating Movement

There are many ways one could imagine incorpo-
rating movement to this analysis. One potential
way is to assume that we have a tree-to-tree map-
ping, where the input tree is a pre-movement tree
and the output is a post-movement tree. While
this does split the division of labor, a notable draw-
back of this approach is that it would require two
separate interpretations: one solely for completing
movement and another for linearization. There is
also the question of how to encode movers. This
could be done by embellishing the alphabet with
movement traces, where our trees would instead
have trace labels at the launching sites and lexical
labels at their landing sites. This would drastically
increase the length of the alphabet since this would
presumably require a trace corresponding to each
label already in L.

Another potential alternative would entail alter-
ing some of our representational assumptions for
input trees. Our input trees could be modified to
include a separate relation to encode movement.
For example, suppose we had a relation M(z, y)
where x is the the highest node of a mover and y
is a node immediately dominating a movement at-
tracting head. This could then be used to define
a structural input condition to determine the place-
ment of 2’s children in the output string.

The alternative sketched here assumes move-
ment takes place concurrently with linearization,
sketched using an example in Figure 7. While an
analysis in which trees are built with a syntactic se-
lection relation as opposed to precedence may re-
flect the nature of syntactic computation more ac-
curately, this would be beyond the scope of this pa-
per. Incorporating the exhaustive well-formedness
conditions, movement configurations, successive
cyclic movement or enforcing relativized minimal-
ity in all generality would be considerably much
more involved than is possible here, but such an
analysis is left for further work. Given the fact that
most work in model-theoretic syntax has assumed
the sorts of representations used here, this is suffi-
cient for the central points regarding linearization.

In the tree in Figure 7, substructures that con-
sist of movers are darkened for clarity. In the out-
put string, the string yield of the movers is out-
lined with a dashed box to clarify that these are
the leaves of an entire substructure with relevant
properties from the input. There are two moving
substructures in this tree. One is the substructure
with the root 9, the phrase “THE MAN”, driven
by a nom feature and the other is the substructure
with the root 2, the phrase “WHICH CAKE”, driven
by a wh feature. In the output string, the moved
phrase driven by nom appears to the left of the at-
tracting head T bearing a +nom feature. Similarly,
the moved phrase driven by wh appears to the left
of the attracting head C bearing a +wh feature bear-
ing a -wh feature.

e lin e lin @ unun @ lin ° lin °
T v

WHICH CAKE DID THE MAN EAT
D N C D N PAST v
-wh +wh -nom +nom

Figure 7: Linearization Toy Example with Movement



What is true about each of these moving sub-
structures with respect to these heads? Each of
them are rooted with a node that bears a -f feature
for some movement-driving feature f, as per the
well-formedness condition posited earlier. Thus,
the yield of this substructure should occur before
the f-movement driving head in the output string,
meaning precisely that the rml of the moving sub-
structure will strictly precede this +f head. In the
case of the nom movement, the output string struc-
ture will have 7 (the MAN-bearing node) strictly
preceding 11 (the +nom-bearing T node). Simi-
larly, in the case of the wh movement, the out-
put string structure will have 0 (the CAKE-bearing
node) strictly preceding 13 (the +wh-bearing C
node). Together with the 1in(x,y) condition, this
covers the movers themselves and their relation-
ship to the movement-driving heads.

There are two remaining tasks: we must deter-
mine what precedes the mover once it lands and
the nodes around its launching site. Firstly, it must
be ensured that the mover’s 1ml comes before
the unique node which would have met lin(x,y)
in the input (where y is the movement attract-
ing head). For example, C will strictly precede
the nom-mover’s 1ml bearing THE. Similarly, the
node bearing WHICH will be the first node in the
string since there is nothing higher than the attract-
ing head. Secondly, it must be ensured that the
nodes surrounding the mover, if they exist, are con-
nected via strict precedence. In other words, the
next highest node that would have met lin(x,y)
where y is the 1ml of the mover should strictly
precede the next lowest node that would have met
lin(x,y) where x is the rml of the mover. For ex-
ample, the node bearing T will strictly precede the
node bearing V since they “surround” the launch-
ing site. Similarly, the node bearing EAT will be
the final node in the string since there is nothing
lower than the mover in the input tree.

This is only sketched out as an example, but
the entirety of the mapping just described is defin-
able by making modifications to the 1in(z, y) con-
dition within First-Order Logic. This is because
in what was just described, it only requires quan-
tification of individual nodes, not arbitrary sub-
sets of nodes, leaving the definition within First-
Order Logic. Even though this substructure can
be arbitrarily large, the only relevant nodes of the
mover to be picked out are its root, rml and 1ml
and nodes in between are covered by lin(z,y).
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An anonymous reviewer points out that the scope
here is limited to a relatively simple case of move-
ment, but further work could provide a more struc-
tured analysis of more complex cases (e.g. multi-
ple movers attracting to a single head, smuggling,
remnant movement, mixed-headedness, etc.) us-
ing these tools and examine whether they remain
within First-Order Logic.

4 Discussion

This novel view of linearization comes with many
theoretical advantages. Firstly, it was shown
(albeit through automata-theoretic as opposed to
model-theoretic means) that Recursive Prosody is
non finite state and thus requires more computa-
tional power (Dolatian et al., 2021). This declar-
ative linearization-as-flattening approach has the
benefit that it only uses First-Order Logic, which
is notably less computationally expensive than
Monadic Second-Order Logic, which is required
for mappings that are finite state or more power-
ful.

This approach may have interesting implica-
tions for our view of the syntax-phonology inter-
face regarding the status of recursion in phonol-
ogy. For a recent view on the debate of the
status of recursive prosodic approaches and pro-
cedural approaches, see Lee and Selkirk (2022);
Newell and Sailor (in press). It is well-known
that there are often mismatches between syntac-
tic and phonological domains (Cheng and Down-
ing, 2016); however, these mismatches often ap-
pear to occur at or very near to Spell-out bound-
aries. Accommodating this notion of “at or very
near to” is extremely amenable to this type of anal-
ysis given its inherent locality properties. If string
yields are embellished with boundary information
(either by means of boundary symbol like x or
X, respectively or relations that hold of a node
winit(T) or prin(x), respectively), then it may be
expected that the range of syntax-phonology mis-
matches are accounted for through by employing
Input Strictly Local (ISL) restructuring functions
(Chandlee, 2014), which are very computationally
restrictive. Dobashi (2003, 2019) has work de-
tailing phonological domain restructuring and its
typological implications. These approaches are
nicely compatible and would serve as a fruitful in-
tegration of theoretical and computational results
at the syntax-phonology interface, creating a new
avenue for more formal analyses in this domain.



There are other computational characterizations
of linearization that exist currently; for example,
(Graf, 2022a,b) gives an elegant formal characteri-
zation which is ISL, a strikingly desirable property
with respect to computational complexity; how-
ever, this does require abiding by quite strong rep-
resentational assumptions about the nature of trees
that are undoubtedly formally well-founded and
rigorous, but have not received a wider adoption
in more general syntactic literature. The analy-
sis makes use of dependency trees, which are rel-
atively uncommon outside of the space of com-
putational syntax. While Graf defines a straight-
forward mapping between more standard phrase
structure trees and dependency trees, the analysis
proposed here takes a view where linearization oc-
curs straight from more standard syntactic repre-
sentations dispensing with the need for such in-
termediate mappings. This also adds to a recent
body of work that has begun to bridge the gap be-
tween theoretical work on the interface and sepa-
rate computational work in phonology and syntax
(Dolatian et al., 2021; Yu, 2021; Vu et al., 2022;
Stabler and Yu, 2023), despite some of the differ-
ing theoretical assumptions regarding the status of
recursion.

5 Conclusion

This paper has presented a novel method of lin-
earization, casting it as a model-theoretic interpre-
tation between strings and trees. It is both compu-
tationally restrictive and hard-codes locality into
the output string representations, all while express-
ing ordering between nodes as a single declara-
tive condition. A potential expansion incorporat-
ing movement was explored through a motivating
example, showing that the tools are amenable to
further modifications. The most central advantage
to this analysis is the fact that it is a step toward
computationally unifying how we think about lin-
guistic modules and their interaction, despite some
of their representational differences.
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Abstract

Adjunction is intuitively a local operation, yet
its subregular complexity is dependent on both
the geometry of the syntactic representation
as well as the specific model of adjunction
assumed. Here, I propose a model of adjunction
which is strictly local (SL) over Minimalist
Grammar (MG) dependency trees, and which
incorporates the core properties of optionality,
iteration, invisibility to selection, and adjunct
ordering restrictions. Non-locality is avoided in
cases of recursive adjunction, and an interesting
treatment of several other formal properties of
adjunction is made possible.

1 Introduction

In the last several years, a two-level classification
of the computational complexity of syntax has
emerged: local dependencies such as selection are
strictly local (SL) over trees, while non-local de-
pendencies such as movement, agreement, and case
assignment are tier-based strictly local (TSL), a
straightforward generalization of SL in which a sub-
set of non-salient elements are ignored (Graf, 2018,
2022b; Hanson, 2023b, 2025; Vu et al., 2019). This
closely matches past results on local and non-local
phonological dependencies, which are predomi-
nantly SL and TSL over strings, respectively (Heinz,
2018), providing evidence of cognitive parallelism
across linguistic domains (Graf, 2022a).

The placement of adjunction within this scheme,
however, has remained unclear, as formal models
of adjunction vary in their subregular complexity
(Graf, 2014). Furthermore, the complexity of ad-
junction interacts with that of selection: in the
derivation tree language for a Minimalist Grammar
(MG) with recursive adjunction, the complexity of
selection is increased to TSL (Graf, 2018). This is
not a terrible state of affairs, as it would mean that
the overall complexity of much of syntax is quite
low, and uniform across operations. At the same
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time, selection is typically considered to be highly
local. For example, a verb may select the category
of its complement, but not the complement of its
complement, let alone more distant items, yet this is
exactly what we would predict if selection was TSL.
Similarly, most of the key properties of adjunction
require only a SL grammar (Hanson, 2023a). We
therefore ask: can the non-locality of adjunction,
and by extension selection, be eliminated?

The answer is affirmative. With minor adjust-
ments, the MG dependency tree model defined in
Graf and Kostyszyn (2021) can easily accommodate
a linguistically satisfactory SL model of adjunction,
which includes the core properties of optionality,
iteration, invisibility to selection, and ordering re-
strictions among adjuncts. The primary change re-
quired is to generalize the model to unranked trees,
which have no maximum branching factor. This is
highly natural from a mathematical perspective, and
brings several added benefits. Selection remains
SL, as does the combined grammar for selection
and adjunction, even allowing for a degree of varia-
tion in the position of adjunction. The model also
provides an interesting perspective on the distinc-
tion between left and right adjuncts which suggests
doubling down on separation between dependency
structure and constituency structure, relegating the
latter to the post-syntactic map.

The remainder of this paper proceeds as follows.
First, I introduce the necessary background on
adjunction, MG dependency trees, and strictly local
string and tree languages ( 2). Next, I implement
a strictly local grammar for MG dependency trees
which includes selection as well as adjunction in
the style of Frey and Girtner (2002) ( 3). From
there, I refine the system to incorporate recursive
adjunction ( 4) and adjunct ordering restrictions
( 5), building on insights from Graf (2018) and
Fowlie (2013). Finally, I address some alternatives
and potential complications for the proposed model,
and directions for future research ( 6).
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Figure 1: MG dependency tree (left) and phrase structure tree (right) for Which reporter did she speak to?

2 Background and model

This section briefly describes the properties of ad-
junction that we aim to capture, the MG dependency
tree model, and SL. grammars over strings, ranked
trees, and unranked trees. More complex formal
languages play no role in the core analysis, though
several TSL and M[ulti]TSL string languages ap-
pear in 6; see Appendix A for a brief overview
and example grammars.

2.1 Properties of adjunction

We are concerned primarily with the following
properties of adjunction:

1. Optionality — an adjunct may be added or
removed without affecting wellformedness
Iteration — if one adjunct may be added in
some context, then any number may be added
Ordering restrictions — when two or more
phrases adjoin to the same head, there may be
restrictions on their order

Invisibility for selection — the properties of a
phrase are determined by the those of its head,
not those of any adjunct

Some simple examples of adjectival modification
are provided below. (la) demonstrates optional-
ity and iteration: any combination of adjectives
denoting size, color, and material can be used, as
long as they occur in that order. The remaining
examples show that other logically possible orders
are degraded.

(1) a.
b.

c.
d.

a (big) (blue) (wooden) house
7?7 a blue big house
?? a wooden big house

7?7 a wooden blue house
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Property #4 is more subtle. Empirically, it means
that every phrase represented by (1a) has the same
external distribution. Theoretically, it means that
the features of the noun ‘house’ project, not those
of the adjectives. This is easily lost in models of
adjunction in which the adjective selects the noun,
and can interfere with the locality of selection.

There are other properties of adjunction that we
might also want to treat, but these four will be
our focus, since they are directly related to the
subregular complexity of adjunction. In 6.3, we
will briefly touch on another structural property:
the c-command paradox for right adjuncts.

2.2 MG dependency trees

Here, we briefly outline the MG (Minimalist Gram-
mar) dependency tree model as defined in Graf and
Kostyszyn (2021).!

In MG (Stabler, 1997, 2011), lexical items pair a
phonetic exponent with a string of features which
control how they may combine in a syntactic deriva-
tion. Standard MGs have two types of binary fea-
tures, controlling the operations Merge and Move.
For Merge, we have selector features (F*) and cat-
egory features (F~). For example, the determiner
the has features N* D~. For Move we have licensor
features (f*), marking the landing site of movement,
and licensee features, marking the head of the mover
(f7). For wh-movement, the landing site bears wh*
and the mover bears wh™. Additional operations
require adding further feature types; we will do this
for adjunction momentarily.

MGs generate a language of derivation trees,
which encode the sequence of operations of
Merge/Move/etc. Several variants exist; here we
use dependency trees, in which all nodes are lexical

'The model first appears in Graf and Shafiei (2019). A
nearly identical framework can also be found in Kobele (2012).



items (traditional derivation trees will be revisited
in 4). Figure 1 shows a dependency tree for a
simple sentence with wh-movement along with the
corresponding phrase structure tree. The daughters
of each node are its arguments, ordered by asymmet-
ric c-command (that is, reverse order of selection).
Movement is represented only via features; arrows
are provided for visual convenience only.

When we say that selection is SL, we mean that
licit and illicit arrangements of selector and cate-
gory features can be distinguished using a SL tree
grammar. Importantly, the complexity of selection
itself could change if other operations are included
in the tree language. We show that this does not
occur in the dependency tree model: not only does
adding movement not matter (as is well established)
but adjunction can safely be added as well.

2.3 SL languages and grammars

SL string languages and grammars are defined in
terms of k-factors, which are substrings of a string
augmented with edge markers. For example, the
3-factors of the string abc are:

{xxa, xab, abc, bex, cxix}

A positive SL-k grammar is a set of permitted
k-factors, while a negative SL-k grammar is a set of
forbidden k-factors. Here, we make use of positive
grammars (interconversion is always possible). For
example, a positive SL-3 grammar consisting of
just the above factors would generate the string abc
and no others. If we add the factors {cab, bca},
then we can also generate abcabc, abcabcabce, etc.
By further adding {abb, bbc}, we can optionally
double the b to produce abbc, abcabbc, etc.

A string language is strictly k-local (SL-k) iff it
can be described using a positive or negative SL-k
grammar. As a regular expression, the language of
the above example is (ab(b)c)*. See Rogers et al.
(2013) for a formal definition and further context.

SL languages/grammars are easily extended to
ranked trees, which have a fixed maximum branch-
ing factor. They can be further extended to un-
ranked trees, which have no such restriction, by
associating each node with an SL string language
that constrains its string of daughters.” We consider
each of these cases in turn.

2Such a tree language cannot be implemented with a
standard bottom-up deterministic tree automaton (BDTA).
Instead, the states of the daughters are processed by a finite
state string automaton, and final state of the string automaton

is combined with the mother node’s label to determine its state.
See Comon et al. (2008) for details.

2.4 Ranked trees, selection

Traditionally, regular and subregular tree languages
are defined over ranked trees, in which each element
has a fixed number of daughters, known as its
rank. The maximum branching factor of a tree is
therefore bounded by the highest ranked element it
contains. For such trees, a SL-k tree grammar is
just a set of permitted/forbidden subtrees of height &
(Rogers, 1997). For the grammar which generated
the example in Figure 1, these include the following,
among others:

(2) Some permitted subtrees of height 2

g Vteppt T™
|
speak :: P* D* vV~

speak :: P* D* V™

she:: D™ epp~ to::D* P~

which :: N* D~ wh~
\

reporter :: N~

to:: DY P~
which :: N* D™ wh~

Of course, this can and should be condensed into
a format which encodes the relevant generalizations,
e.g., every verb with the selector features P* D*
should have exactly two daughters, bearing D~ and
P~, in that order. We will do this in the next section.
For now, we note that because the largest portion of
the tree we need to examine is of height 2 and the
number of possible subtrees is finite, we can list all
licit/illicit subtrees, so selection is SL-2.

2.5 Unranked trees, adjunction

We base our system on the work of Frey and Girt-
ner (2002), who treat adjunction as asymmetric
Seature checking. We add a new class of adjunction
features, notated F¥. Modifying adjectives, for
example, bear N¥, since they adjoin to NPs. Ad-
junction features must be checked against a match-
ing category feature, but the category feature of
the head remains unchecked. This contrasts with
Merge and Move, whose positive features must be
checked against negative features in a one-to-one
manner. Adjunction is therefore optional, and may
also iterate.

In the MG dependency tree model, it is extremely
natural to treat adjuncts as dependents of their heads,
preceding all specifiers and complements. This
is implicitly assumed by Shafiei and Graf (2020)
in their model of adjunct islands, and I do the
same in Hanson (2023a) to handle adjunct ordering.
However, neither work formalizes this, nor do they
treat recursive adjunction. Below are dependency
trees for DPs with 0, 1, 2, and 3 NP adjuncts,
respectively.
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(3) Adjuncts as dependents of the head

the wolf  the big wolf  the big bad wolf
the :: N* D~ the :: N* D~ the :: N* D~
\ \ \
wolf :: N™ wolf :: N™ wolf :: N™
\
big :: N® big :: N® bad :: N®
the big bad scary wolf
the :: N* D™
\
wolf :: N™
big :: N¥ bad:: N¥ scary :: N®

There are two key things to notice here. First,
the noun and its selector remain adjacent, as does
the string of adjuncts and their head. This means
that adjunction to XP is invisible to selection of
XP by another head Y, as desired. Second, there
is no finite bound on the number of daughters of
a node. We therefore require unranked trees, in
which the daughters of a node no longer form a
tuple, but a string. Rather than exhaustively listing
licit subtrees, the label of each node is mapped to a
daughter string language, which may be infinite;
many examples are given in the following sections.
As for the formal implementation, the definition
of an MG dependency tree language needs to be
adjusted slightly, though we do not do this here.’

In the next section, we construct a generalized
SL grammar for unranked trees which handles both
selection and adjunction, and show that it works for
the above structures, among others. In the following
sections, we make some minor adjustments in order
to incorporate recursive adjunction and adjunct
ordering hierarchies.

2.6 Classes of tree grammars

The computational complexity of a tree language
need not be uniform in both the vertical and horizon-
tal dimensions. Adapting the terminology of Graf
and Kostyszyn (2021), a SL-i[SL-j] tree grammar
has a window of i in the vertical dimension and j in
the horizontal dimension, the latter corresponding
to the daughter string languages. It is also possible
to use more a more powerful mechanism in one
or both dimensions. For example, the analysis of

3The first order constraints in Graf and Kostyszyn (2021)
are meant to be combined with an appropriate axiomatization
for the class of ranked finite trees; our modified version should
be instead be combined with the class of unranked trees.
Backofen et al. (1995) provide first-order theories of both
ranked and unranked trees which are minimally different and
have the desired properties, though infinite trees are not ruled
out, as this requires at least monadic second order logic.

136

movement in Graf (2022b) is TSL with a window
of 2 in both dimensions, making it TSL-2[TSL-2],
while the analysis of case in Hanson (2023b) is
MTSL-2[TSL-2], as it involves multiple tree tiers.
For present purposes, the window in the vertical
dimension will never vary (it is not obvious how
a window larger than size 2 would even work),
but the window of the daughter string languages
may vary depending on the number of arguments.
When the window in the horizontal varies by daugh-
ter string language, we take the upper bound as
representative.

3 Adjunction without non-locality

We begin by constructing a SL. grammar which
covers selection and adjunction for unranked trees,
implementing the system from the previous section.
We then augment the system to include recursive
adjunction and adjunct ordering restrictions. The
approach is closely mirrors the use of TSL tree
grammars in Graf (2018) and subsequent work
except that the tier projection step, needed only for
long-distance dependencies, is omitted.

For now, we make no distinction between left and
right adjuncts: their position in the dependency tree
represents only their structural (=scopal) position.
We present a potential problem with this assumption,
as well as a solution, in 6.3.

3.1 Selection

First, consider the case where a node has only
arguments or adjuncts among its daughters, but
not both. The rules for selection and adjunction in
isolation are exceedingly simple, being finite and
SL, respectively. We begin with selection.

(4) Select: If anode bears the sequence of selector
features Xy*, ..., Xy*, then its ith daughter
from the right must bear category feature X;~,
forall1 <i<nt

For example, devour is an obligatorily transitive
verb, with selector features Dt D*. Therefore, its
daughter string language consists of all strings of
length two in which the category of each itemis D™
There is a finite number of selector features on any
given lexical item, and the lexicon itself is finite,
so the daughter string language of each node is
finite, and therefore also strictly local. Specifically,
if the number of arguments is n, the daughter string
language is SL-(n+1). In the case of devour:

4Recall that the arguments of a node appear in reverse
merge order.



(5) Selection grammar for devour (SL-3)
G* ={xxD~,xD"D7,D D™, D" xKx}

The complete grammar is a map from the label
of the mother to the grammar for its daughter string,
based only on its selector features. If the maximum
number of selector features is », then in the classi-
fication introduced in 2.6, the complexity of the
tree grammar is SL-2[SL-(n+1)], since we make
use of a window which is of height 2 and width
(n+1).

3.2 Adjunction

Next, we introduce our adjunction rule.

(6) Adjoin: If a node bears category X~, then it
may bear zero or more daughters bearing X~.
No other daughters with adjunction features
are allowed.

For example, wolf bears N™, so it may have
zero or more daughters bearing N*. If we map the
label of each node to just its adjunction feature, the
daughter string language for each category X can
be described with the positive grammar {xx, XX,
X®X®, X*x}, and is therefore SL-2. Since devour
and most other verbs have at least one argument,
we provide a concrete example for wolf instead:

(7) Adjunction grammar for wolf (SL-2)
Gt = {xx, xN¥, N*N* N*x}

As stated, neither of the above rules works for
nodes with both arguments and adjuncts among its
daughters. Now we combine the two cases.

3.3 Combining the constraints

Recall that we assume all adjuncts to precede all ar-
guments. Therefore, the combined daughter string
language template is the concatenation of the two.

(8) Select + Adjoin: If a node bears the sequence
of selector features X1, ..., Xy and category
feature Y, then its daughter string consists of
zero or more daughters bearing Y~ followed
by n daughters bearing category feature X;~,
from right to left, forall 1 <i < n.

SL languages are not in general closed under
concatenation, so we must show that concatenation
is possible in this case. Specifically, we show
that the combined daughter string language schema
has a factor width equal to the higher of the two
source grammars: if z is the maximum number of
selector features, then the combined grammar is
SL-2[SL-k], where k is the greater of {2, (n+1)}.

The construction is as follows. First, we convert
the SL-2 adjunction grammar to SL-(n+ 1) by
padding its factors, and also remove any factors
that allow a string to end without any arguments.
Second, we add these to the factors of the selection
grammar. Finally, we add any factors needed to
transition from an adjunct to the highest argument.

A concrete example for devour is shown below.
As before, we map each node label to just its ad-
junction or category feature for brevity.

(9) Combined grammar for devour (SL-3)
Gt = {xxD”, xD™D", D'D"X, D KK,
XXV, XVEVE VIV xV*D~, VV*D,
VD™ D"}

Let us apply this grammar to the node devour
in the dependency tree for the sentence The big
bad wolf quickly devoured the little pig, shown
below. For simplicity, we truncate the tree at the
VP level and omit movement features. The reader
may confirm that all 3-factors of the daughters of
devour are licit. To ensure that the entire tree is
licit, we repeat this procedure for every node.

(10) a. Dependency tree:
devour :: D* D* V~

quickly :: V¥ the :: N* D~ the :: N* D™
WOlf‘ZZ N~ pig :‘: N~
big :: N¥ bad :: N*¥ little‘:: N~
b. DS of devour: V¥ D™ D~
c. 3-factors of DS: {xxV®, VD7,

V¥D™D7,D D™ x, D" xKx}

The construction is essentially identical for items
with three or more arguments. For those with just
one, the selection grammar is already SL-2, so
no padding of the adjunction factors is required.
For items with no arguments (including the verb
rain and many nouns), we are back to the plain
adjunction grammar, which remains SL-2.

To briefly review, we achieved a combined SL
model of selection and adjunction over unranked
trees, whose grammar is a mapping from node labels
to daughter string languages, each of which is SL,
for a combined complexity of SL-2[SL-k], with
k > 2. Now, we introduce recursive adjunction.

4 Recursive adjunction

We follow the lead of Graf (2018) by reintroducing
category features on adjuncts. For example, mod-
ifying adjectives carry A~ N¥, and adverbs carry
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either Adv™ A™ or Adv~ V*. Below is an example
adverbial modification of adjectives, which in turn
modify a noun.

(11) the very big very bad wolf

the :: N* D™
wolf‘:: N~
big :: A~ N* bad :: A=~ N*
very :: Adv’ A®  very A‘dv’ A*

Locality is clearly preserved in the dependency
tree model, since adding an adverb under an ad-
jective does not interrupt adjacency between the
adjective and the head noun, just as adding an adjec-
tive below a noun does not affect the relation with
the selecting determiner. Furthermore, although
some category features are no longer checked with
a corresponding selector feature, this can be deter-
mined just from the label of the node in question, so
we do not even need to change the SL tree grammar.
We continue to distinguish items with and without
a final adjunction feature, just as before.

At this point, I should briefly describe the prob-
lem that occurs with recursive adjunction in tradi-
tional MG derivation trees. In this system, internal
nodes represent the Merge/Move/Adjoin operations,
and all leaves are lexical items. The derivation tree
for the current example is shown below.

(12) the very big very bad wolf
Merge

the :: N* D~ Adjoin
/\
Adjoin Adjoin

/\
very :: Adv- A® big:: A~ N¥ Adjoin wolf:: N~

very :: Adv- A¥  bad:: A N*

Here, an adjunct and its head are not necessarily
adjacent, and the distance grows without bound
if the adjunct itself serves an an adjunction site.
As a consequence, adjunction is not SL for any
window size. Furthermore, selection is not SL
either, since the distance between the D head and
the N head grows without bound as adjuncts are
added. If not for recursive adjunction, strict locality
of selection could be rescued via a chain analysis
(e.g. D licenses A, which licenses A, which licenses
N). But with recursive adjunction, the intervening
A heads themselves are not guaranteed to lie within
any finite window.
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According to Graf (2018), Merge and Move are
structure-sensitive TSL (SS-TSL) over derivation
trees (see De Santo and Graf 2019 for the string
case); the complexity of Adjoin is left open, though
it is clearly not SL. Several phonological phenom-
ena are SS-TSL over strings (Graf and Mayer, 2018;
Mayer and Major, 2018), so this is not a catastro-
phe. Additionally, as Graf notes, it would mean
that Merge and Move are extremely closely related
in formal terms, mirroring the view in Chomsky
(2004). However, as the evidence accumulates that
SL and TSL are sufficient for most syntactic phe-
nomena under the dependency tree model (Graf,
2022b; Hanson, 2023b, 2025), one gets the impres-
sion that the need for SS-TSL is an artifact of the
derivation tree representation.

This requires elaboration since, as a reviewer
remarks, there is an inherent trade-off between rep-
resentational and computational complexity, such
that one can often be reduced by increasing the other.
In this case, the information in each representation
is comparable, with sister order in the dependency
replacing the extra nodes of the derivation tree,
but the computational complexity of the former is
lower. Furthermore, the range of patterns which
SL/TSL can produce have wide empirical support,
while SS-TSL serves primarily to factor out the
extra nodes of the derivation tree. An exception
can be found in Principle B of the binding theory,
which seems to require SS-TSL (Graf and Shafiei,
2019), mirroring the occasional SS-TSL pattern in
phonology, but this does not seem to be needed for
most operations. In summary, the dependency tree
model allows us to minimize the overall complexity
of the system while also providing the best fit to the
known typology.

5 Adjunct ordering restrictions

The adjustment we made for recursive adjunction
also lays the groundwork for encoding adjunct
ordering restrictions. The basic insight by Fowlie
(2013) is that a principled treatment of adjunction
ordering requires a pair of features rather than a
single adjunction feature. By tracking both the
position in the hierarchy and the adjunction target
simultaneously, we can avoid resorting to low level
tricks such as adding unmotivated empty categories
or exploding the lexicon.

Rather than implementing her exact system, we
make use of the pairing of category and adjunc-
tion features already in play. Specifically, we split



our adjunction features by adding an index corre-
sponding to the position the item must take in the
relevant ordering hierarchy. The primary difference
between our approach and Fowlie’s is that while she
uses paired features primarily to label adjunction
nodes in the derivation tree, we label the adjuncts
themselves. Consider again the example from (1),
repeated below with its dependency tree.

(13) abig blue wooden house
a:N* D~
\

house :: N~

big :: A7 Ny® blue :: A~ N2 wooden :: A~ N3~

In this case, we included only three indices, but
we can include as many as we need as long as the
number of positions is finite. In the style of the
preceding examples, the rule is as follows:

(14) Ordered adjunction: If a node bears cat-
egory feature X which has n positions in
its adjunction hierarchy, then any pair of
daughters d;, dj bearing X;~ and X;~, where
1 <i < j < n, must be ordered such that d;
precedes d;.

As discussed by Hanson (2023a), ordered ad-
junction is SL-2, just like simple adjunction, even
allowing for iteration, e.g. the big big big blue house.
Viewed as a finite state automaton, the daughter
string language is just the reflexive transitive closure
of the order of adjunction categories. Rather than
clutter the above definition, we proceed directly to
the template which covers all cases:

(15) Adjunction grammar for category N (SL-2)
Gt = {xx, xN;~, XNo~, xN3~, Ny¥No~,
NgzN;gz, N1zN1z, Ngzsz, N3:N3z, N1:l><,
sz[)(’ N3zl><}

This grammar can then be combined with the
selection grammar as before.

It is natural to ask whether it might be better to
split the category feature of the adjunct rather than
the adjunction feature. This would also presumably
work, and would in fact be more faithful to Fowlie’s
system. One small downside is that increases the
size of the lexicon somewhat. For example, if we
split category A into S(ize)/C(olor)/M(aterial)/etc.
then predicational use of adjectives will require
duplicate lexical entries for all selecting heads (be,
seem, etc.). The same is true of adjective modifiers
such as very. While Fowlie presents some poten-
tial solutions, the present approach sidesteps these
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problems altogether, as the effects of the split are
isolated to just the context where they are desired.
We further discuss this alternative in Section 6.4.

6 Extensions and alternatives

At this point, we have achieved what we set out
to do: we have constructed a simple SL model of
adjunction which handles all of the properties spec-
ified at the outset, and which avoids non-locality
in cases of recursive adjunction. Now, we address
some other issues which have not been our focus,
some possible extensions of the current system,
and how some other systems compare. For brevity,
some of the string languages in this section are de-
fined using regular expressions, with the grammars
relegated to Appendix A.

6.1 Ordered and unordered adjuncts

So far, we have mostly ignored adjuncts without
ordering hierarchies, which traditionally include
PPs. To a certain degree, there is not much to say
about them since, if they are indeed unordered with
respect to each other, then the simple adjunction
grammar from Section 3 will do the job. The fact
that they are linearized to the right in English can
be seen as a part of the mapping to the surface,
independent of the dependency tree.

However, there is potential danger to the SL anal-
ysis when we consider both ordered and unordered
adjuncts together. Suppose for the sake of argument
that PPs can be interspersed among adjectives or
adverbs (as determined by scope), and that they can
also iterate in each position. This would yield a
daughter string language along the following lines:

(16) Ordered APs and unordered PPs
P*-A}-P*-AY-P*- AL P*

Such alanguage is not SL, since we need adjacent
items in the adjective hierarchy to appear in the
same window yet there is no limit to the number
of P heads which may intervene. It is uncertain
whether this scenario is actually realistic, but if
so, then the daughter string languages for selection
and each type of adjunction become TSL, and the
combined language would be Multi-TSL (MTSL;
see De Santo and Graf 2019), since the tiers for
each would be different. Even if such constructions
exist, it could be that left and right adjuncts are
not actually interspersed in the dependency tree, in
which the daughter string language remains SL-2.
We consider this possibility in Section 6.3.



6.2 The position of adjunction

In the above analysis, we assumed that all adjuncts
precede all arguments in the derivation tree, which
is equivalent to the assumption that all adjunction
occurs at the XP level. It is also conceivable
that adjuncts could occur in other positions. For
example, Frey and Gértner (2002) assume that
manner adverbs attach to the verb before the object
does in their analysis of German.

We should therefore consider the possibility that
the position of adjunction features within the MG
feature string may vary. Indeed, one could make the
argument that the SL model predicts such variation.
In the example just cited, all manner adverbs follow
the complement, which is an easy change. We might
also ask whether there exist any systems which
are not SL. For example, consider a hypothetical
language in which PP adjuncts can be inserted freely
in any position, similar to (16):

(17) Hypothetical non-SL version of devour
P*-D-P*-D-P*
This particular example would again be MTSL.
If adjunction is SL, then such adjunction paradigms
should not exist, even if some other variants do.

6.3 Left vs. right adjuncts

Right adjuncts in English are unordered, with con-
stituency and scope diagnostics suggesting that the
outer adjuncts are higher, but c-command diagnos-
tics such as NPI licensing go the other way.

(18) a. John saw [no one] [anywhere].

b. * John saw [anyone] [nowhere].
(Ernst, 1994)

In previous work (Graf and Shafiei, 2019;
Hanson, 2025), a relation called d/erivational -
command, which combines the dominance and
left-sister relations of the dependency tree, serves
as the analog of c-command in the phrase structure
tree. The NPI data can therefore be accommodated
if we assume that right adjuncts appear after all
arguments in the dependency tree.

(19) Abbreviated dependency tree for (18a), show-
ing d-command relations
e VET™
\

saw :: D* D* V™

John::D~ mnoone: D~

v

anywhere :: Adv~ V~

In doing so, we affirm the idea that sister order
encodes command at the expense of losing a direct
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correspondence to constituency and scope. These
would instead need to be introduced in the mapping
from the dependency tree to the corresponding
phrase structure tree. Such an approach would be
reminiscent of the dual model of ‘cascade syntax’
and ‘layered syntax’ in Pesetsky (1996). I leave the
exploration of this possibility to future work.

6.4 Adjunct subcategories

As mentioned in Section 5, the closest alternative
to the proposed approach to adjunct ordering—
splitting the category rather than the adjunction
feature—introduces some lexical redundancy in-
dependent of that introduced by the inclusion of
adjunction features. But perhaps we could do
away with adjunction features entirely and rely
on the local context to identify adjunction, as in
Fowlie (2013). The structure of the daughter string
language would be essentially identical, just with
N1¥/N2~/N3~ substituted by S™/C~/M~, and so on.
This has been done for example (15) below:

(20) Adjunction grammar for category N (SL-2)
Gt ={xx, xS, xC™, xM~,S"C~,C" M,
$°§,CC,MM,Sx,C x, M x}

Aside from creating some lexical redundancy in
the selectors of S/C/M/etc., a major disadvantage of
such a model from a subregular perspective is that
arguments and adjuncts of the same category can
no longer be easily distinguished for long-distance
operations such as movement, as sisterhood in the
dependency tree is not preserved by projection to
a tree tier. Arguments and adjuncts are usually
thought to differ in their behavior with respect to
movement (both as movers and as containers for
movers), casting doubt on the viability of such an
approach, though see 6.6 for a counterargument.

6.5 Selectional approaches

As noted by Fowlie (2013), models that attempt to
reduce adjunction to selection suffer from various
formal and linguistic shortcomings, particularly in
accounting for ordering hierarchies. For example,
we could implement a functional sequence, e.g. D
< S < C <M <N, by including empty elements
to fill the unused slots. Each modifier needs a
single lexical entry, but the empty items have no
independent morphological or semantic motivation
and are therefore “nothing more than a trick to hold
the syntax together” (Fowlie, 2013, p. 16).



(21) Functional sequence

wooden :: N* M~ g Nt M~
blue :: Mt C~ g MY C™
big:: C* S~ g::C*s™
the :: ST D~

Conversely, we can avoid empty heads by means
of lexical homophony, but the lexical redundancy
factor is far worse than other alternatives, on the
order of n? (ibid.). Even if we dismiss the increased
memory burden, the pattern feels particularly acci-
dental when analyzed in this way, as there is nothing
which prevents items of the same category from
selecting a different set of ‘next’ elements.

(22) Massive homophony

wooden — N* M~

blue - N* G~ /M* C~

big > N* S~ /M* S~ /C* S~

the - N* D~ /M* D~ /C* D~ /S* D~

A third alternative, not considered by Fowlie,

utilizes ‘adjunctizer’ heads which introduce the
adjunct itself as a specifier. This contains the scope
of redundancy to a small subset of the lexicon, but
then we are back to the problem of unmotivated
empty elements.

(23) Adjunctizer heads
M-ADJ — N* M* M~
c-apy —» N* C* C~ /M* C* C~
s-apy —» N* §* S~ /M* S* S~ /C* S* S~
the - N* D~ /M* D~ /C* D~ /S* D~
In each case, the difficulty of distinguishing ar-
guments and adjuncts which we noted earlier still
applies. Overall, it seems to be preferable to keep
adjunction as a distinct operation, and factor out
ordering restrictions into the SL grammar.

6.6 Additional puzzles

Throughout this paper, I have assumed that the given
generalizations about adjunction are actually cor-
rect, but various exceptions have long been known.
For example, as a reviewer notes, violations of
the adjective order in cases of recursive adjunction
seem less bad compared to simple adjunction.

(24) a. abig blue house
b. 77 a blue big house

(25) a. avery big very blue house
b. ? a very blue very big house

As discussed by Hanson (2023a), there are var-
ious ways in which adjunct orders are more fluid

141

than is often supposed; in languages such as Ger-
man, they seem not to exist (Thomas Graf, p.c.).
It is therefore not clear that they should even be
modeled in the syntactic grammar. For present
purposes, the crucial point is that if we decide to
do so, they remain within the power of SL.
Similarly, I have taken for granted that the
argument-adjunct distinction exists and must be
accounted for. This might also not be so clear cut:
a reviewer cites McInnerney (2022), who argues
that the distinction is not well-supported on syntac-
tic or semantic grounds. This seems compatible
with the central claim of this paper, since selection
and adjunction are SL both in isolation and in com-
bination. It would be only a small step to eliminate
the distinction entirely, with the caveats discussed
in 6.5. That said, given that the study by Mcln-
nerney focuses almost exclusively on PPs, further
investigation is needed to determine whether the
same arguments apply to adjectives and adverbs.

7 Conclusion

I have shown that a linguistically appealing model
of adjunction based on a pairing of category and
adjunction features is SL over MG dependency
trees, inclusive of formal challenges such as recur-
sive adjunction and adjunct ordering restrictions.
Selection and adjunction can be combined into a
single SL daughter string language, and beyond
this, certain variants such as low manner adverb
attachment and the distinction between left and
right adjuncts may be accommodated.

Overall, these results support the classification
of adjunction as a local phenomenon. If it is
determined that the interspersing of ordered and
unordered adjuncts in the dependency tree cannot be
avoided, then the combined complexity of selection
and adjunction increases to SL-2[MTSL-k]. Now
that most major syntactic operations (selection,
adjunction, movement, case, agreement, binding)
have been studied in isolation, the next step is to
determine to what extent the interactions between
them can be handled within the bounds of the
(M)TSL tree languages.
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A Additional adjunction grammars

Section 6 provided examples of daughter string lan-
guages for several hypothetical adjunction patterns,
not all of which are SL. Very briefly, a TSL lan-
guage is one in which certain elements are ignored,
forming a tier projection. Which elements appear
on the tier is determined completely by their labels,
and those that do are treated as if adjacent, subject
to a SL grammar. See Heinz et al. (2011); Lambert
and Rogers (2020) for details. An MTSL grammar
is just the intersection of several TSL grammars
(De Santo and Graf, 2019).

A.1 Ordered and unordered adjuncts

First, the hypothetical language from 6.1, which
freely intersperses ordered AP adjuncts and un-
ordered PP adjuncts, is repeated below. The con-
straints of the grammars are unchanged from our
earlier SL grammars. The only difference is that tier
projection is used to ignore adjuncts of the opposite
type. For simplicity, I use mnemonic labels rather
than MG feature specifications.

(26) Ordered APs and unordered PPs (MTSL-2)
a. Language:
P*-A}-P*-AY-P*- A% P*
b. AP adjunction grammar (TSL-2)
T ={Ay, Ay, A3}
XX, XA, XAy, XA3,

Gt A1Ar, ArAj,
A1A1, A2Ay, A3As3,
A1X, A, AsX
c. PP adjunction grammar (TSL-2)
T ={P}

G*= {xx,xP, PP, Px}

A.2 Unordered adjunction everywhere

If unordered adjuncts can be freely interspersed
with arguments, the result is MTSL, similar to
free mixing of ordered and unordered adjuncts. In
Section 6.2, I predicted that this should not occur.

(27) Unordered adjunction + selection (MTSL-3)
a. Language:
P*-D-P*-D-P*
b. Selection grammar (TSL-3)
T ={D}
G*= {xxD,xDD,DDx, Dxx}
c. Adjunction grammar (TSL-2)
T ={pP}
G*= {xx,xP, PP, PXx}

A.3 Low adjunction

The proposed daughter string language and gram-
mar proposed for low manner adverbs as described
in 6.2 is given below. Unlike the previous gram-
mars, this one remains SL.

(28) Low adjunction equivalent of devour (SL-3)
a. Language:
D-D-Adv*
b. Grammar:
XxD, xDD, DDxX,
Dxx, D D Adv, D AdvAdy,
AdvAdvAdv, D Adv X,
AdvAdyv x, Adv X X

G* =

This could be further generalized to allow differ-
ent types of adjuncts in different positions as long
as they can be distinguished from one another, as
shown below.

A.4 Left and right adjuncts

Inoted in 6.3 that a grammar with left adjuncts at
the beginning and right adjuncts at the end would
be SL, as long as distinct indices are used. In this
case, we can safely allow ordered adverbs on the
left and unordered adverbs and PPs on the right.
For simplicity, I assume a single index R for
right adjuncts, and I do not pad the 2-factors to
3-factors as is technically required (such a factor
should be interpreted as standing in for any 3-factor
that contains it as a substring). Effectively, we
combine the grammars from (9) and (28).

(29) Left and right adjunction (SL-3)
a. Language:
Advy-Adv; - Adv;-D-D - Advy
b. Grammar:

XX, XA, XAy, XAj3,
A1Az, ArAs,
A1Ay, ArAr, A3As,
A1D, A,D, A3D,
XXD, xDD, DDX, DXKX,
DAR,ARAR,ARD(
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Abstract

Should phonotactic knowledge be modeled as
categorical or gradient? In this paper, I present
new data from a Turkish acceptability judgment
study that addresses some limitations of previ-
ous work on this question. This study shows
that gradient models account for the variability
in acceptability ratings better than categorical
ones. However, I suggest that the distinction be-
tween gradient and categorical models is some-
what superficial when we think of models in a
mathematically general way. I propose on this
basis that both categorical and gradient models
have a role to play in linguistic research.

1 Is phonotactics gradient or categorical?

Phonotactics is the restrictions that languages place
on how sounds can be sequenced into words. Dif-
ferent languages impose different phonotactic re-
strictions. For example, although English and Span-
ish both contain the sounds {k, p, s, i}, a word like
/skip/ ‘skeep’ is only possible in English. Spanish
has more restrictive phonotactics, prohibiting /s/-
initial complex onsets. For similar reasons, a word
like /fstfoys/ is a perfectly fine Polish word (wstrzgs
‘shock’), but would not be a suitable English word
because of English’s more restrictive onset phono-
tactics. It is generally accepted that phonotactic
knowledge is learned by generalizing across forms
in the lexicon (e.g. Chomsky and Halle, 1968; Bai-
ley and Hahn, 2001; Edwards et al., 2004).

One common method of probing phonotactic
knowledge is phonotactic acceptability judgments,
where participants are asked to rate the acceptabil-
ity of novel words as possible words in their lan-
guage. A longstanding empirical observation is
that phonotactic acceptability judgments are gradi-
ent. That is, participants do not simply treat words
as acceptable or not, but rather ascribe varying de-
grees of acceptability to them. A classic example
from Chomsky and Halle (1968) is the three nonce
words /blik/, /bnik/, and /bnzk/. Despite all three
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being unattested in English, English speakers (or
at least Chomsky and Halle) rank them in terms of
acceptability such that /bnzk/ < /bnik/ < /blik/.
That is, speakers judge /bnik/ to be a more accept-
able word than /bnzk/, but a less acceptable word
than /blik/. Similar results have been found in a
wide range of studies (e.g. Coleman and Pierrehum-
bert, 1997; Scholes, 1966; Hayes, 2000; Bailey and
Hahn, 2001; Hayes and Wilson, 2008; Albright,
2009; Daland et al., 2011, a.o.).

Two question that naturally arise from these re-
sults are where this gradience comes from and how
we should represent it in our models of language.
There have been two broad theoretical approaches,
which we will cover in the following sections (see
Schiitze, 1996, for a discussion of these perspec-
tives in linguistics more broadly).

1.1 Gradient models of phonotactics

The first approach proposes that we see gradience
in these studies because the phonotactic grammar is
itself gradient, or that a gradient measure of accept-
ability can be derived from the grammar. Chomsky
and Halle (1968) write that “a real solution to the
problem of ‘admissibility’ will not simply define
a tripartite categorization of occurring, accidental
gap, and inadmissible, but will define the ‘degree
of admissibility’ of each potential lexical matrix in
such a way as to distinguish /blik/ from /bnik/ and
/bnik/ from /bnzk/, and to make numerous other
distinctions of this sort” (pp. 416-417). They
operationalize this ‘degree of admissibility’ as a
quantity derived from the phonological grammar
and the lexicon: the minimum number of featural
changes required to convert a word into an existing
word in the language. Chomsky and Halle also
note that this gradience exists within the lexicon
itself (p. 418). In English, for example, there are
semi-admissible words like /sfigks/ ‘Sphinx’ that
constitute exceptions to otherwise strong phonotac-
tic restrictions on onset formation.

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 144-154.
Eugene, Oregon, July 18-20, 2025



Chomsky and Halle do not do away with the con-
cept of grammaticality: there are still forms that
can be produced by the grammar and forms that
cannot. Rather, they suggest that a gradient accept-
ability score can be derived from the grammar by
some additional mechanism. Subsequent propos-
als have gone further, claiming that the grammar
itself generates both categorical and gradient out-
comes: whether we get one or the other depends
primarily on the amount of variability in the learn-
ing data. It’s beyond the scope of this paper to
cover these approaches in detail, but many have
been expressed within the context of Optimality
Theory (Prince and Smolensky, 1993/2004) and
typically either vary constraint rankings in order
to generate gradient outcomes (e.g. Hayes, 2000)
or derive probabilities from weighted constraints
(e.g. Hayes and Wilson, 2008; Dai et al., 2023).
Gradient models of phonotactics have also been
proposed in the context of formal language theory
(Mayer, 2021). Under these approaches, gradience
emerges from an interaction between the grammar
and the learning data, not a bespoke mechanism.

This perspective is supported outside the world
of generative linguistics, where phonotactic knowl-
edge is typically treated as gradient, and is often
represented by simple probabilistic n-gram models
(Markov, 1913; Shannon, 1948). Gradient knowl-
edge of phonotactics has been claimed to play an
important role in areas such as speech perception
(e.g. Norris and McQueen, 2008; Dupoux et al.,
2011; Chodroff and Wilson, 2014; Steffman and
Sundara, 2023), speech production (e.g. Edwards
et al., 2004), word segmentation and learning (e.g.
Mattys et al., 1999; McQueen, 1998; Mersad and
Nazzi, 2011; Vitevitch and Luce, 1999; Storkel,
2001), and speech errors (e.g. Goldrick and Larson,
2008; Taylor and Houghton, 2005; Warker, 2013;
Warker and Dell, 2006, 2015), among others.!

1.2 Categorical models of phonotactics

The second theoretical approach to gradience pro-
poses that the phonotactic grammar is fundamen-
tally categorical (that is, it really does judge words
to be acceptable or not) and that gradience in ac-
ceptability judgments is solely the result of extra-
grammatical factors such as task effects or mis-

"We do not consider neighborhood density here, another
important property that influences wordlikeness judgments.
For discussion of the relationship between neighborhood den-
sity and phonotactic probability, see e.g. Bailey and Hahn
(2001); Steffman and Sundara (2024).
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perception (e.g. Gorman, 2013; Durvasula, 2020;
Kostyszyn and Heinz, 2022; Dai, 2025). There are
two main sources of evidence for this view.

The first is that extra-grammatical performance
factors have indeed been shown to influence phono-
tactic judgments. A convincing demonstration of
this comes from Kahng and Durvasula (2023), who
show that some variability in nonce word judg-
ments by Korean speakers is the result of misper-
ception of certain consonant clusters.

The second source of evidence is several stud-
ies suggesting that categorical models do as well
as or better than gradient models in predicting ac-
ceptability judgments. As Gorman (2013) puts it,
“simple baselines better account for gradient well-
formedness judgements than current computational
models of phonotactic knowledge, suggesting that
the gradience observed in these tasks [does] not de-
rive from known grammatical mechanisms” (p. 17).
Specifically, categorical models have been claimed
to better predict English onset acceptability (Gor-
man, 2013; Durvasula, 2020; Dai, 2025), Polish on-
set acceptability (Kostyszyn and Heinz, 2022; Dai,
2025), Turkish vowel harmony (Gorman, 2013;
Dai, 2025) and English medial consonant cluster
distributions (Gorman, 2013).

We will focus on the second type of evidence
here. With regards to the first, note that propo-
nents of gradient models do not suggest that extra-
grammatical factors have no role at all in the gra-
dience exhibited in acceptability judgment tasks.
Rather, the claim is that a substantial part of the
gradience can be predicted by grammatical factors.
Hayes (2000) puts it as follows:

[P]atterns of gradient well-formedness
often seem to be driven by the very
same principles that govern absolute
well-formedness [...] I conclude that
the proposed attribution of gradient
well-formedness judgments to perfor-
mance mechanisms would be uninsight-
ful. Whatever “performance” mecha-
nisms we adopted would look startlingly
like the grammatical mechanisms that ac-
count for non-gradient judgments (p. 90).

In other words, gradience in acceptability stud-
ies is often predictable from “soft” versions of the
same constraints that govern more categorical pat-
terns like phonological alternations.



1.3 Limitations of past work

There are three important limitations to previous
work comparing categorical and gradient models
of phonotactics. First, these papers have used a
relatively small number of data sets, almost all
focusing on consonant clusters. This makes it dif-
ficult to evaluate how generally these results hold
across different types of phonotactic dependencies.

The second limitation is that the authors of these
papers do not all subscribe to the same definition
of categorical. In some cases the grammar truly is
categorical, assigning words either grammatical or
ungrammatical status (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). In other cases, simi-
lar to Chomsky and Halle (1968), some secondary
gradient measure of admissibility is derived from a
categorical grammar (Durvasula, 2020; Kostyszyn
and Heinz, 2022). We will treat these two defini-
tions of categorical as separate models below.

The third limitation is that the gradient model
typically used is the UCLA Phonotactic Learner
(Hayes and Wilson, 2008), an influential phonotac-
tic learning model implemented in the maximum
entropy Optimality Theory framework (Goldwater
and Johnson, 2003; Mayer et al., 2024). Although
it does implement a gradient model of phonotac-
tics, it has the additional task of inducing the con-
straints themselves from the data. The categorical
models in these papers are typically provided with
predefined constraints (though cf. Dai, 2025). It
is unclear whether the poor performance of the
UCLA learner is due to the fact that it is gradient
or to some aspect of the constraint induction pro-
cess. The UCLA learner is also sensitive to how
it is parameterized, and it is not typical for these
studies to compare performance under a range of
hyperparameters.

1.4 The remainder of the paper

While this paper will by no means resolve this de-
bate, I will try to achieve two more modest goals.
First, I will present new data from a phonotactic
acceptability judgment study of Turkish that ad-
dresses some of the limitations expressed above.
This study will show that gradient models are bet-
ter able to predict participant judgments. Second,
I will try to convince you that the distinction be-
tween categorical and gradient grammars is in fact
a somewhat superficial one when we consider the
matter from a mathematical perspective, and that
both conceptualizations of the grammar have a role
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to play in linguistic research and theory-building.

2 Defining our grammars

We will consider three classes of models in the
rest of the paper. Boolean models, cost models,
and probability models. Abstracting away from the
internal details for a moment, we can think of each
of these models as defining a score function that
assigns some value to a string:

score : X5 —= T

where X is a set of symbols, >* is the set of all
possible strings generated from this set, and 7 is
some set of values. The three models differ in what
type of value the score function assigns.

2.1 Boolean models

We will use boolean models to correspond to the
theoretical position that the phonotactic grammar
is categorical, with gradience stemming from non-
grammatical factors (Gorman, 2013; Kostyszyn
and Heinz, 2022; Dai, 2025). The score function
for these models assigns boolean values to strings:

score : ¥* — {0,1}

Such models cannot represent a situation where
the acceptability of /bnzk/ < /bnik/ < /blik/. If
we take /bnzk/ to be ungrammatical and /blik/ to
be grammatical, the model must place the interme-
diate form /bnik/ into one of these two categories.

2.2 Cost models

Cost models will correspond to the theoretical po-
sition that a gradient measure of acceptability is
derived from a categorical grammar. There are
many ways such a proposal could be implemented,
but we will follow Durvasula (2020) and Kostyszyn
and Heinz (2022), who derive such a gradient mea-
sure by counting the number of (categorical) con-
straints that a form violates. The score function
for cost models assigns non-negative integer val-
ues to strings, with larger integers corresponding
to lower phonotactic acceptability:

score : ¥ — {0,1,2,...

}

In this model, acceptability is bounded on one
side by 0, which corresponds to a “perfectly accept-
able” form that violates no constraints. The other
end of the scale is unbounded, since a form can vi-
olate arbitrarily many constraints. This means that,



unlike the other two model types, we expect ac-
ceptability to decrease as the score increases. Such
models can represent the case where the acceptabil-
ity of /bnzk/ < /bnik/ < /blik/ by assigning the
forms successively decreasing integer values.

2.3 Probability models

Probability models will correspond to the theo-
retical claim that gradience in acceptability cor-
responds directly to gradience in the grammar. Gra-
dient grammars do not necessarily have to generate
probabilities, but we will assume that is the case
here. The score function for probability models is:

score : ¥ — [0, 1]

Such models can also represent the case where
/bnzk/ < /bnik/ < /blik/ by assigning the forms
successively increasing probabilities.

3 Turkish study

We will compare these three classes of models
against new data from a large, online acceptabil-
ity judgment study of Turkish nonce words.? This
study expands on a previous acceptability judgment
study on Turkish (Zimmer, 1969) by including a
much larger number of stimuli and participants
and using a slider task rather than a binary forced
choice task. We will focus on backness harmony
and rounding harmony, which are common in Tur-
kic languages. Backness harmony requires vow-
els to agree in backness with the preceding vowel,
while rounding harmony requires high vowels to
agree in roundness with the preceding vowel (see
Table 1). We can implement these restrictions us-
ing the following bigram constraints over vowel
sequences:

* *[aback] [—aback]: a vowel must agree in
backness with the preceding vowel.

* *[around] [—around, +high]: high vowels
must agree in roundness with the preceding
vowel.

These constraints govern suffix allomorphy: e.g.,
the plural form of /kedi/ ‘cat’ is [kedi-ler] ‘cat-PL’,
while the plural of /kuf/ ‘bird’ is [kuf-lar] ‘bird-
PL’. Vowel harmony is is also evident as a strong
tendency across the lexicon (though many dishar-
monic words exist, particularly loanwords) and in
acceptability judgment tasks (Zimmer, 1969).

>The data and code for this paper can be found

athttps://github.com/connormayer/turkish_
phonotactics
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[—back] [+back]
[—round] | [+round] [—round] | [+round]
[+high] i y w u
[—high] e 0] a 0

Table 1: The vowel system of Turkish

3.1 Methodology

The stimuli consisted of 576 wug words with
CVCVC shape. A Python script was used to gener-
ate every possible Turkish CVCVC word. Attested
words found in the Turkish Electronic Living Lexi-
con (TELL; Inkelas et al., 2000) were automatically
removed. Subsequent manual filtering was done by
two native Turkish speakers. The remaining words
were scored for unigram and Laplace-smoothed
bigram probability using the UCI Phonotactic Cal-
culator (Mayer et al., under revision) based on fre-
quencies from citation forms in TELL. For each
unique pair of vowels (8 x 8 total pairs), nine words
were sampled such that they were distributed in a
roughly uniform way across the unigram-bigram
probability space. As a result, the mean probability
of the tokens for each vowel pair was roughly the
same (Fig. 1). The 576 tokens were synthesized to
speech using Google Cloud. The recordings were
vetted by the same two native Turkish speakers for
naturalness and clarity.

The experiment was administered using Gorilla
(www.gorilla.sc Anwyl-Irvine et al., 2020).
All materials were presented in Turkish. After
providing consent, participants completed a short
demographic questionnaire. Participants then com-
pleted two screening tasks. The first was an audio
check that asked them to identify a word presented
to them acoustically. The second was a training run
of the main experimental task, where participants
were instructed to make a specific selection at the
end as an attention check. Failure in either of these
tasks led to exclusion from the experiment.

Finally, in the main experimental task, partic-
ipants were asked to provide acceptability judg-
ments of the stimuli based on their suitability as
words in Turkish using a sliding, unnumbered scale.
The right side of the scale corresponded to higher
acceptability, and high-, mid-, and low-probability
words were provided as landmarks (Fig. 2). Stim-
uli were presented with simultaneous audio and
orthographic representation. Slider responses were
represented on a numeric scale between 0 and 100,
with 100 being the most acceptable.
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Figure 1: The distribution of unigram and bigram prob-
abilities of the stimuli within each vowel group.

115 native speakers of Turkish were recruited
using Prolific (www.prolific.com). 25 partic-
ipants were excluded because they failed to provide
consent or failed one of the two screening tasks.
An additional 5 participants were excluded because
they indicated in the demographic questionnaire
that they had hearing impairment or that Turkish
was not their native language. This left a total of 85
participants (38F; mostly age 25-35). Each partic-
ipant rated 192 tokens after training and attention
checks, leading to a total of 16,320 token ratings
(about 28 ratings per word). Raw slider responses
were normalized to z-scores within participant to
control for idiosyncratic differences in mean and
spread between participants.

3.2 Results

Fig. 3 shows participant responses broken down
by harmonic class. Participants’ responses reflect
sensitivity to both backness and rounding harmony.

4 Modeling the Turkish data

In this section, we’ll compare how well the differ-
ent models described above predict the acceptabil-
ity judgment data from the Turkish study. Crucially,
each of these models employs the same set of pos-
sible constraints, differing only in the values they

Deney -
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Figure 2: The experimental interface.
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Figure 3: Normalized, mean participant responses bro-
ken down by harmonic category. Participants are sensi-
tive to both backness and rounding harmony.

assign to each. This allows the effect of different
value choices to be compared more directly.

Because our interest is primarily in vowel har-
mony, we will use tier-based strictly local models
with bigram constraints on the vowel tier (a TSL-2
model). It is beyond the scope of this paper to pro-
vide a full definition of TSL (see Heinz et al., 2011),
but informally it means that we ignore consonants
completely and assign scores based only on vowel
bigrams. Bigrams can also reference word bound-
aries (#). This means the models are sensitive not
only to which pairs of vowels occur in a word, but
also which vowels begin and end the word.

Each model type has a A function that assigns
a value to a bigram. These bigram values are then
aggregated into the value returned by the score
function discussed above.

4.1 Boolean models
Under a boolean model, the A function is:
Ay : X% = {0,1}

where Y2 is the set of all possible bigrams, in-
cluding the word boundary symbol . The boolean
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values assigned to each bigram in a string are ag-
gregated into a single boolean by conjoining them:

n—1

scorep (21, .., n) = [\ Do(s, 7i11)
i=1

Legal and illegal bigrams receive scores of 1 and
0 respectively. The score for a string is 1 iff it
contains only legal bigrams and O otherwise.

4.2 Cost models

Under a cost model, the A function is:
A.:¥? —={0,1,2...}

The integers assigned to each bigram are aggre-
gated into a single integer score by summing them.

n—1

axn) = Z Ac(l'ia xi+1)

i=1

scorec (1, .. .

We will interpret the integer cost assigned to
a bigram as the number of bigram constraints it
violates. For example, a vowel bigram like /oi/
that violates both backness and rounding harmony
might be assigned a cost of 2, while a bigram like
/oy/ that violates only backness harmony might be
assigned a cost of 1. Although these models could
in principle represent varying constraint strengths
by assigning different integer costs to each con-
straint, we will assume following previous work
that all constraint violations are equally penalized
(Durvasula, 2020; Kostyszyn and Heinz, 2022).

4.3 Probability model
Under a probability model, the A function is:

Ay X2 —[0,1]

The probabilities for each bigram are aggregated
into a single probability by taking their product:

n—1

score, (1, ..., Ty) = H Ap(xi, zig1)
i=1

The individual probabilities assigned to bigrams
typically reflect their frequency (though this need
not be the case). The probability assigned to a
string reflects the probabilities of the bigram se-
quences it contains.
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4.4 An example calculation

Consider again the vowel bigram /oi/. In Turkish,
this may be dispreferred because it violates both
backness and rounding harmony. Below I show
how the score for this sequence can be calculated
under each of the three types of models described
above (we will discuss where the values assigned to
each bigram come from in the following section).

scorey (/0i/) = Ap(#0) A Ap(oi) A Ap(i#)
=1A0A1
=0

score.(/oi/) = Ac(#0) + Ac(oi) + Ac(i#)
=0+2+0
=2

scorep,(/0i/) = A, (#0) x Ap(oi) x Ap(i#)
= 0.08 x 0.107 x 0.458
= 0.0004

4.5 Defining A

A question that remains is how to actually define A
for each model: that is, what specific values do we
assign to each bigram? We will test several variants
that differ in how A is defined.

4.6 A in the probability model

In the probability model, A, (x,y) is defined to be
P(y|x), the conditional probability of the second
sound in the bigram given the first. These proba-
bilities were estimated using add-one smoothing
(Chen and Goodman, 1999) from 18,472 citation
forms in the TELL database (Inkelas et al., 2000)
using the UCI Phonotactic Calculator (Mayer et al.,
in press). The conditional probabilities assigned to
each bigram are shown in Fig. 4. Note that both
backness harmony and rounding harmony are re-
flected in these probabilities: for the most part,
harmonic sequences have higher probabilities than
disharmonic ones (though other constraints are also
apparent, such as a strong dispreference for /@/ and
/o/ in non-initial position).

The UCI Phonotactic Calculator returns log prob-
abilities to avoid numerical underflow. The results
in Section 4.7 use these log probabilities rather than
the standard probabilities shown in Fig. 4.

4.6.1 A in the boolean model

We will test three variants of the boolean model.
The first we will call the harmony model, based on
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@ TRUE TRUE TRUE TRUE TRUE
E € TRUE TRUE TRUE TRUE TRUE
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E y TRUE i
2! Legal bigram?
2 O TRUE TRUE TRUE - FALSE
o
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8 u TRUE
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First segment

Figure 5: The boolean harmony model

Gorman (2013). Under this model, any bigram that
violates either rounding or backness harmony (or
both) receives a value of 0 and all other bigrams
receive a value of 1. This model is shown in Fig. 5.

The second variant we will call the exception fil-
tering model. This is a categorical Turkish phono-
tactic grammar from Dai (2025), which was learned
by a statistical exception filtering process. For rea-
sons of space I will not described the filtering pro-
cess here, but it results in a more restrictive boolean
model that still reflects backness and rounding har-
mony. This model is shown in Fig. 6.

The third variant we will call the threshold
model. Under this model, a bigram is legal only
if its conditional probability (as defined in the pre-
vious section) is above the 40th percentile of all
the conditional bigram probabilities. The 40th
percentile was opportunistically chosen because
it maximized the performance of the model against
this data. This is similar to the exception filtering
model in that it is derived from frequencies in the
lexicon, but it is generally more permissive. The
values assigned by this model are shown in Fig. 7.

Gorman (2013) and Kostyszyn and Heinz (2022)
also explore models where bigrams are only gram-
matical if they are attested. Unfortunately, all
vowel bigrams are attested in TELL, which means
such a model makes no predictions in this case.
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5 1 e -
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TRUE TRUE
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TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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Figure 6: The boolean exception filtering model
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Figure 7: The boolean threshold model

4.6.2 A in the cost model

We consider only a single variant of the cost model,
which uses the same bigram constraints as the har-
mony model but assigns them integer values in-
stead. Bigrams that violate both backness and
rounding harmony have a cost of 2; bigrams that
violate one or the other have a cost of 1; and all
other bigrams have a cost of 0. The values assigned
to bigrams by this model are shown in Fig. 8.

4.7 Results

Each of the five models was used to score the 576
words from the acceptability judgment study. The
model scores were correlated against the mean of
the normalized acceptability scores for each word
collected in the study. Table 2 reports Pearson,
Kendall and Spearman correlations (See Albright,
2009, for some discussion of differences between
these metrics in the context of phonotactics).

Value type | Constraints r T p
Probability | Cond. probs || 0.54 0.36 0.50
Boolean Threshold 046 037 045
Cost Harmony 0.38 0.30 0.38
Boolean Harmony 0.38 0.30 0.37
Boolean Exception 0.36 0.27 0.33

Table 2: Correlations between model scores and mean
acceptability judgments.
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Figure 8: The cost harmony model

These results generally support the probabilistic
model as the best approximation of human accept-
ability judgments. The boolean threshold model
comes the closest to matching its performance (and
modestly surpasses it according to Kendall’s 7). It
is important to consider, however, that this model is
derived from the conditional probability model: in
other words, the best performing categorical model
was produced by attending to gradience in the learn-
ing data. This is exactly the kind of model argued
against by Chomsky (1957), where we “sharpen the
blurred edges in the full statistical picture” (p. 17)
by designating high probability forms as grammati-
cal and low probability forms as ungrammatical.

Chomsky’s objections aside, two natural ques-
tions the threshold model must deal with are (a)
why the learner should track variability during ac-
quisition only to discard it once the grammar is
formed; and (b) how the threshold separating gram-
matical and ungrammatical structures is set. The
learning algorithm in Dai (2025) uses a similar
thresholding parameter to determine whether a bi-
gram is exceptional or not. However, Dai finds that
the best values of this threshold differ across data
sets, and provides no principled way to derive it
from the data. In contrast, the conditional bigram
model is fit using maximum likelihood estimation,
a robust and well-understood learning procedure.

These results favor the use of gradient models for
modeling phonotactics. However, in the remain-
der of the paper I hope to convince you that the
similarities between these models outweigh their
differences.

S Reconciling gradient and categorical
models

Although these three model types differ in the val-
ues they assign to strings, there are many similari-
ties in their basic structure. The boolean, cost, and
probability models all assign some value to each
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segmental bigram (booleans, integers, or probabili-
ties respectively) and aggregate them to get a single
value for a string using some binary operation (con-
junction, addition, or multiplication respectively).
Approaching the models from this perspective, we
can abstract away from the specific values and ag-
gregation methods and express them in more math-
ematically general terms.
A maps bigrams to some set of values 7

ArY? —T
Our score function aggregates these values us-
ing some binary operator () over 7

n—1
score(xy ... 2Tp) = @ A(zi, Tit1)
i=1

The boolean, cost, and probability models de-
scribed above can be instantiated from this more
abstract model by specifying particular values of
T and (V.

If () is associative and there is an identity ele-
ment T in7 suchthata@® T = T ®a = a, which
is the case for each of the set-operation pairs consid-
ered here, then (7, ) forms a mathematical ob-
ject called a monoid. Thinking in monoid-general
terms allows us to take the same abstract model and
parameterize it with different monoids. This means
the same underlying model can compute different
quantities, unifying models that appear to do vastly
different things on the surface (Goodman, 1999;
Eisner, 2003; Chandlee and Heinz, 2017). In other
words, we can separate the structure of the model
from the values it computes.

In addition to the monoids discussed above, our
humble bigram model can actually compute a range
of other useful quantities, such as constraint viola-
tion profiles using the monoid (N*, +), where N*
is the set of vectors of natural numbers of length &
(e.g. Riggle, 2009), or even input SL-2 string trans-
duction (e.g. Chandlee, 2014) using the monoid
(X*, ), where - is a string concatenation operator.

Most of the models we work with in formal lan-
guage theory, such as subregular models (Heinz,
2018), finite-state automata, context-free gram-
mars, and so on, can be expressed in these general
terms. Although non-deterministic models require
an additional operator to combine multiple parses
of the same string, a more complex mathematical
structure called a semiring can be used analogously
to monoids for such models.>

3The probability monoid/semiring is usually defined to



5.1 Monoids in phonology

Why is the idea of monoids useful for us as pho-
nologists? An example comes from the domain
of semantics: Giorgolo and Asudeh (2014) apply
different semirings to the same underlying seman-
tic model to capture differences between heuristic
and mathematical reasoning. They suggest that the
underlying structure of both reasoning processes is
the same, but that these processes can generate dif-
ferent types of outcomes depending on the context
(in this case, how important it is to be precise).

There’s perhaps an analogy to be made here with
our categorical and gradient models of Turkish. It is
clear from the results above and past work on Turk-
ish that vowel harmony is centrally important for
both suffix allomorphy and phonotactics (it is strik-
ing how much of the variation in participants’ re-
sponses above can be captured by only attending to
the vowels in each word). However, these sensitivi-
ties manifest in different ways in each domain. Har-
mony constraints are essentially categorical when
determining suffix allomorphy (it’s always [kedi-
ler] and never *[kedi-lar]), but these constraints
provide only a gradient preference when determin-
ing word acceptability.

Even if we choose to treat alternations as es-
sentially categorical and phonotactics as essen-
tially gradient, our categorical and gradient mod-
els have more in common than might be evident
at first glance. Each of the models we discussed
in this paper are TSL-2 grammars: they employ
the same types of representations (segments, con-
straints, etc.); they operate on the vowel tier; they
are sensitive only to constraints between adjacent
vowels; and they disprefer the same types of struc-
tures. The fact that these same representations and
dependencies appear to be necessary for modeling
both gradient and categorical phenomena suggest
that both are governed at least in part by the same
underlying linguistic system (Hayes, 2000), and
past work has claimed that there is a close con-
nection between the acqusition of alternations and
phonotactics (e.g. Hayes, 2004; Chong, 2021; Jun
et al., 2025)

assign values from R, with the additional implicit restriction
that the assigned values must form a valid probability distribu-
tion. There are non-trivial issues that arise in choosing exactly
which particular values (or weights, to use the more technical
term) our model should assign, such as normalization in prob-
abilistic models, whether the order of the values is total and
monotonic, etc. These considerations are not the focus of this

paper.
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6 Conclusion

Durvasula (2020) implores us to prioritize categori-
cal models of phonotactics so that we can “focus on
what’s a possible constraint or rule” and “commit to
a specific set of representations.” I contend that this
is a false dichotomy: constraints and representa-
tions in the grammar can be studied independently
of the values the grammar assigns. This flexibility
allows us to engage with a broader range of empir-
ical phenomena for which categorical or gradient
models provide better approximations while still
relating these phenomena to the same core linguis-
tic knowledge (Hayes, 2000). Although the results
of this study support the position that phonotactic
knowledge is best captured using gradient models,
we can gain insight into the representations and
dependencies in the linguistic grammar by consid-
ering both types of models.
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Abstract

When considering the acquisition of un-
derlying representations (URs), two com-
mon challenges are often levied against
the inclusion of abstract URs in phonolog-
ical theory: (1) permitting abstract URs
causes the search space of potential URs
to grow to a computationally intractable
degree, and (2) learners have no recourse
through which to prefer minimally ab-
stract URs over increasingly abstract alter-
natives when both types of URs model the
data with equal success. This paper di-
rectly addresses the second issue by imple-
menting a MaxEnt learner equipped with a
bias that penalizes disparities between UR
inputs and their corresponding outputs.
By favoring mappings with minimal diver-
gence, the bias generates a preference for
minimally abstract URs when competing
candidates perform equally well in model-
ing the data. In addition, the paper pro-
poses a conceptual framework for address-
ing the first issue, in which the space of
potential URs is organized so that candi-
dates are considered serially, beginning
with those that exhibit the fewest dispar-
ities. This method offers a potential strat-
egy for avoiding the added compute time
introduced by permitting UR abstraction.

1 Introduction

A subject of significant debate since the ad-
vent of generative phonology concerns the
level of abstraction that underlying represen-
tations (URs) are permitted to assume (Ken-
stowicz and Kisseberth, 1979). Classic gener-
ative phonology holds the rather strong posi-
tion that a UR can be completely covert in rela-
tion to all of its allomorphs, never showing its
true identity in surface forms. However, from
a learning perspective, permitting this level of
abstraction poses serious challenges. One of
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the most compelling objections is that covert
URs render the learning problem intractable.
Two key difficulties arise. First, the space of
potential URs that a learner must consider be-
comes prohibitively large. When highly ab-
stract URs are allowed, the search space ex-
pands dramatically, exceeding what can feasi-
bly be explored in its entirety by a learner (Al-
bright, 2002; Jarosz, 2015, 2019; Wang and
Hayes, 2025).

Most models attempt to solve this issue by
curtailing the level of abstraction URs can
take, in essence shrinking the search space to
a manageable size. For instance, Wang and
Hayes (2025) constrain the search space by
restricting the abstractness of candidate URs
using a hierarchy of representational abstrac-
tion defined in Kenstowicz and Kisseberth
(1977, ch.1). The model is impressive and suc-
cessfully accounts for analyses at various lev-
els of abstraction, but it fails to account for
datasets requiring covert URs, like the Pun-
jabi nasality pattern considered in this paper.

The second issue that arises when learning
covert URs is that the learner has no means
through which to prefer a less abstract UR
over a highly abstract UR if both representa-
tions succeed in modeling the data. One par-
ticularly promising approach aimed at allevi-
ating this computational burden is outlined in
O'Hara (2017) with the use of a Maximum
Entropy (MaxEnt) grammar called MaxLex.
O'Hara provides compelling evidence from
Klamath showing that a stem-final [i]-[@] al-
ternation in words like [?eiw-a] 'is deep' ~
[2e:witk"] 'deep' cannot be captured by either
epenthesis or deletion but instead requires a
covert UR, /e/, that deletes when not in the
initial syllable, unless deletion would produce
an illicit consonant cluster, in which case /e/
is raised to [i]. Importantly, /e/ is covert in

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 155-165.
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the stem-final position of stems like /?e:we/
because it never surfaces in any allomorph.
Moreover, O'Hara demonstrates that MaxLex
has an emergent preference for minimally ab-
stract URs, driven by an L2 Gaussian Prior
that attempts to minimize increases in the
weights of faithfulness constraints.

In this paper, I primarily address how the
learner might come to prefer minimal UR ab-
straction. I first show that MaxLex fails to
prefer minimally abstract URs over increas-
ingly abstract alternatives for a set of non-
alternating pre-nasal vowels in Pakistani Pun-
jabi (Paramore, 2023). This failure arises be-
cause both the minimally abstract UR and
more abstract alternatives provide equally ac-
curate accounts of the data and require identi-
cal changes in faithfulness constraint weights
to do so. As a solution, I propose an updated
MaxLex learner equipped with a disparity bias
that penalizes changes in UR—SR mappings.
The effect of this bias is that, if two URs model
a set of data equally well and do not differ in
the minimization of the MaxLex L2 prior, the
learner selects the UR that generates the min-
imum number of disparities. In addition to
creating a preference for minimal UR abstrac-
tion, this disparity bias has potential to pro-
vide a mechanism through which the learner
can efficiently search the space of potential
URs without needing to stipulate its contents,
as discussed in section 6.

2 MaxLex

The basic learning procedure taken by
MaxLex is similar to other MaxEnt learning
models (e.g. Hayes and Wilson, 2008; Pater
et al.,, 2012; Wang and Hayes, 2025). Two
general stages characterize the process. In
the first stage, the learner is oblivious to mor-
phological alternations and paradigmatic re-
lations, and, as a consequence, the identity
of underlying forms and mappings from those
underlying forms to surface realizations is not
considered. Instead, the learner has been
confronted with a wealth of linguistic data
and focuses on acquiring fluency in language-
specific phonotactics, an aspect of the gram-
mar that remains unchanged regardless of
what the underlying forms turn out to be.

In computational terms, at the outset of
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the phonotactic stage, MaxLex is fed a batch
of data, a set of constraints with intermedi-
ate weights (e.g., 50), and the parameters
for what constitutes a violation. Equipped
with this information, the learner uses gradi-
ent descent optimization to minimize an ob-
jective function (in this case, the negative log-
likelihood of the data) by adjusting the con-
straint weights appropriately until it arrives
at the minimum possible value. A grammar
with a 100% probability of producing the ob-
served data will have an objective function
value of zero, but a grammar with only a 50%
probability of producing the observed data
will result in a much higher objective function
value.

In the second stage of learning, MaxLex
becomes morphologically aware, understand-
ing that words are constructed from mor-
phemes, and those morphemes sometimes
appear in phonologically distinct ways, de-
pending on the context. For instance, dur-
ing the phonotactic stage, the learner ignores
the morphological relationship between the
'breaths', focusing only on phonotactic well-
formedness. In the morphologically aware
stage, however, the learner has discovered
that the same morpheme for 'breath' occurs
in both words and seeks to assign a single UR
that can map to both of the observed forms.
As such, the learner is confronted with a more
complex learning problem in which it must
work to determine what combination of con-
straint weights and underlying form probabili-
ties maximizes the likelihood of observing the
data to which it has been exposed (Jarosz,
20064a,b).

A crucial aspect of the morphologically
aware learning stage that MaxLex capitalizes
on is the way in which abstraction is miti-
gated in the choice of potential URs. Specif-
ically, the objective function in MaxLex is
constructed from the negative log-likelihood
of the data plus the value of an L2 Gaus-
sian Prior that prefers to use constraints ac-
tive elsewhere in the grammar to account for
abstract phonological patterns rather than al-
tering the weight of novel constraints to ac-
complish the same task.! The negative log-

!Both Pater et al. (2012, p.66) and Wang and Hayes



likelihood (NLL) of a dataset, given in equa-
tion 1, is calculated by determining the combi-
nation of constraint weight (w) and UR proba-
bility () values that maximize the likelihood
(thereby minimizing the NLL) of observing a
set of observed words (O; - O,,).

[T OIWE])] (1)
=1

To increase grammar restrictivity, the L2
Gaussian prior shown in equation 2 inherently
favors markedness constraints with maximum
weights of 100 and faithfulness constraints
with minimum weights of zero. This bias is
implemented by taking the squared difference
of actual weight values (w;) from their ideal
weight (¢;).? If, however, the language data
confronted by the learner indicates that dif-
ferent constraint weights would improve the
success of the grammar in modeling the data
(i.e., sufficiently lowering the NLL), these bi-
ases can be overcome. Thus, if a faithful-
ness constraint is given a non-zero weight to
model some phonotactic pattern in the first
stage of language learning, that same con-
straint will be preferred over a novel con-
straint with a zero weight to model another
pattern concerning underlying forms, assum-
ing both constraints can account for the ob-
served data equally well. This preference to
use the already-active faithfulness constraint
falls out from the fact that the MaxLex prior
seeks to minimize deviations in constraint
weights from their optimal values. Because
of this, O'Hara argues that a segment's UR is
naturally restricted in its potential for abstrac-
tion by this bias.

Opea(W,m) =NLL + > (wi

wW; EW

NLL =—-1In

(2)

%
L2 Gaussian Prior

The success of MaxLex in learning covert
URs is demonstrated by examining a stem-
final [i]~[g] alternation in a set of Klamath

(2025, p.17, 34-35) incorporate similar biases favoring
markedness constraints over faithfulness constraints.

2¢; is set to 100 for markedness constraints and zero
for faithfulness constraints. O’Hara (2017) uses o7 as a
plasticity constant (which he sets at 20 for markedness
constraints and 25 for faithfulness constraints) to mod-
ulate how much deviations from ideal weights impact
the value of the objective function.

verbs, which, as O'Hara (2017) shows, capital-
izes on a faithfulness constraint that is active
in another area of the grammar to account for
the alternation. As O'Hara delineates in de-
tail in his computational proof, Maxlex takes
advantage of these faithfulness constraint
weight differences when deciding upon the
optimal covert UR. However, that same learn-
ing process used to constrain UR abstraction
in the Klamath [i]~[@] alternation is unavail-
able for the URs of non-alternating pre-N vow-
els in Punjabi.

3 Pakistani Punjabi

Pakistani Punjabi is an Indo-Aryan language
spoken by about 78 million people, primar-
ily in the Punjab province of Pakistan (Bashir
and Conners, 2019). Long vowels in Punjabi
contrast in nasality, but this contrast is neu-
tralized before nasal consonants (e.g., [taa]
'warmth' vs. [tdd] 'that' but [tGdn] 'melody’ vs.

*[taan]). Additionally, Punjabi exhibits a pro-
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cess of nasal harmony, in which contrastive
/VV/ vowels trigger the leftward spread of
nasalization, with glides and vowels partici-
pating and other consonants acting as block-
ers, as shown in Table 1i. Pre-N vowels, on
the other hand, surface as categorically nasal-
ized and phonetically identical to contrastive
/VV/ vowels, but they do not trigger nasal
harmony (Table 1ii) (Paramore, 2023).

To account for the phonetic indistinguisha-
bility of /VVN/ and contrastive /VV/ vowels
in terms of their nasality coupled with the
fact that only contrastive /VV/ vowels trig-
ger nasal harmony in Punjabi, /VVN/ vow-
els must be analyzed as underlyingly [-nas]
without ever surfacing as such. In this view,
the nasal harmony pattern in Punjabi serves
as a straightforward example of counterfeed-
ing opacity, in which underlyingly oral pre-N
vowels undergo a predictable process of nasal-
ization. Nevertheless, only underlying /VV/
vowels trigger nasal harmony. Harmony in
Punjabi is thus sensitive to whether a vowel
is underlyingly oral or nasal — even for vow-
els that are always phonetically nasal. This
implies that /VVN/ vowels have abstract oral
URs that are consistently distinct from their
phonetic forms.



'breath-PL'
ii. /taavaan/ — [taavddn] 'penalty’

Table 1: Nasal Harmony in Punjabi.

i. [saal 'breath’ ii. [sdadaal 'breaths'
iii. [ufaal 'morning' iv. [uf@ddAad]l 'mornings'
v. [gaal 'cow’ vi. [gaadaal 'cows'
vii. [tfhadl 'shade’  viii. [t{*Gaddaal 'shades'
ix. [taavddn] 'penalty’  x. [provddn] 'accepted'

Table 2: Punjabi surface forms fed to MaxLex

4 MaxLex and Punjabi pre-N vowels

In attempting to learn the opaque nasaliza-
tion patterns in Punjabi, MaxLex begins with
an initial phonotactic learning stage. The ob-
served data fed to the learner is given in Ta-
ble 2. Forms 2i-iv show that underlyingly
oral vowels are nasalized via nasal harmony
when the appropriate suffix is attached (in
this case, the plural marker). The forms in
2v-viii show the learner that a nasality con-
trast exists for vowels; otherwise, the learner
may choose to analyze the vowels in 2i-ii as
underlyingly nasal to explain the nasal har-
mony distinctions found between /VVN/ and
contrastive /VV/ vowels. Finally, the forms in
2ix-x provide the learner with examples of the
underapplication of nasal harmony for non-
alternating /VVN/ vowels.

Individual Python scripts were developed
for the phonotactic learning stage and mor-
phologically aware learning stage to carry out
the computational optimizations. The con-
straints used in the learner are provided in Ta-
ble 3 with the initial weights set at 50, along
with the weights acquired in the phonotactic
learning stage in the rightmost column. Most
of these constraints are straightforward, but
a few merit further explanation.? First, as is
well known, the standard parallel evaluation
architecture of MaxEnt learners presents diffi-
culty for the successful acquisition of opaque
processes like nasal harmony in Punjabi (Mc-
Carthy, 2000, 2007). To handle this, I choose
to analyze the nasality patterns using con-
textual faithfulness constraints (Hauser and
Hughto, 2020), but other approaches capable
of handling counterfeeding opacity in a paral-
lel framework are equally viable. At its root,

3See 5 in the appendix for a full set of constraint

definitions.
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the contextual faithfulness constraint schema
penalizes changes to a specified feature for
a segment that occurs in a specified context
in the input. The contextual faithfulness con-
straint relevant to the Punjabi nasalization
data, ID[nas]/_V, penalizes changes in nasal-
ity to a segment occurring before a vowel that
is oral in the input. When high-ranked, this
constraint precludes underlying oral vowels
— as /VVN/ vowels are proposed to be here —
from continuing the transmission of nasal har-
mony to its immediately preceding segment.

Another important note is the inclusion of
ID[rd] and *LOWRD in the constraint set. For
reasons that will become clearer when dis-
cussing the updated learning algorithm in sec-
tion 5, I provide the learner with two po-
tential covert URs to choose between. The
restrictedly abstract and intuitively most ap-
pealing covert UR for a /VVN/ vowel like
[ad] in [taavddn] is /aa/. /aa/ possesses an
identical feature set to [Gd] except for one
disparity: nasality. Because nasality is the
key underlying feature that results in distinct
harmony patterns for /VVN/ and contrastive
/VV/ vowels, it makes sense for nasality to
be the only feature that changes between the
UR and SR of /VVN/ vowels. With that said,
MaxLex does not contain an inherent mech-
anism to act upon this sensible conclusion.
Instead, the learner is free to choose any
covert UR that models the data and minimizes
changes in constraint weights from their bi-
ases, regardless of whether there are one or
fifty feature disparities in the UR—SR map-
ping.

To focus on the learner's preference for min-
imally abstract URs, I provide MaxLex with
one additional potential covert UR, /pp/. Just
like its unrounded counterpart /aa/, the low
round back vowel /pp/ is quite similar to
its corresponding SR, [dd], except it contains
two disparities rather than one: nasality and
roundedness. Importantly, any increasingly
abstract UR (e.g., diacritics) would suffice in
the following discussion, but /pp/ is an espe-
cially good candidate because it is more ab-
stract than /aa/ (/pp/ never surfaces in Pun-
jabi and has more disparities in the input-
output mapping) but only minimally so. Thus,
/pp/ serves as a stand-in for any overly ab-
stract covert UR that needs to be ruled out,



Constraint Type |initial w |final w
ID|nas| faith. | 50.00 | 51.37
IDFIN|nas] faith. 50.00 | 44.83
SPRD-L[nas|| mark. 50.00 | 92.83
*NASOBS mark. 50.00 | 100.00
*NASG mark. 50.00 | 99.48
ID[nas|/_V |contfaith.| 50.00 |100.00
*VVN mark. 50.00 | 100.00
ID|xrd] faith. | 50.00 | 0.00
*LOWRD mark. 50.00 |100.00
Table 3: Constraint weights after phonotactic

learning with MaxLex.

and if /pp/ is ruled out, potential URs with
greater disparities will also be ruled out.*
The weights acquired in the phonotactic
learning stage of MaxLex demonstrate three
phonotactic restrictions in Punjabi that must
hold regardless of the particular UR chosen
for /VVN/ vowels. First, low round vowels
never surface in Punjabi, so *LOWRD is un-
dominated and ID[rd] is inactive and set to
zero. As shown in (1), this weighting relation-
ship appropriately unrounds all inputs con-
taining /pp/ with a probability of 1.0.

(1) Low Round vowels never surface

*LOWRD [ ID[rd] .

/soo/ 1l 100.00 | 0.00 | * | P

a. = saa -1 0 1.0
b. SDD -1 -100 | 44

Another phonotactic restriction MaxLex ac-
quires is the absolute ban on nasal obstruents
in Punjabi. To accomplish this, *NASOBS must
outweigh SPRD-L, as in (2).

(2) Obstruents never nasalized

— [["NASOBS | SPRDT. .

/saavdd/ || 10000 | 9283 | L | P
a. = saavaa 1 [-92.83[0.999
b, saacaa| -1 7100 | 8 *

Finally, in order for /VVN/ vowels to sur-
face consistently as nasal vowels, either *VVN
or SPRD-L must outweigh ID[nas]. In fact,
both constraints end up outweighing ID[nas],

“Note that a covert UR like the nasalized low back
round vowel /Dd/ only has a single disparity in its map-
ping to [dd] (roundedness), so it would tie /aa/ in its
performance on the disparity component of the objec-
tive function. However, just like the concrete UR /ada/
fails to model the lack of harmony triggered by /VVN/
vowels in Punjabi, any other nasal vowel would run into
the same issue.
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Constraint Type |initial w |final w
ID|nas| faith. 51.37 3.36
IDFIN[nas| | faith. 44.83 | 99.96
SPRD-L mark. 92.83 5.65
*NASOBS | mark. 100.00 | 100.00
*NASG mark. 99.48 0.19
ID[nas]/ V| contfaith.| 100.00 | 100.00
*VVN mark. 100.00 | 100.00
ID[xd] faith. 0.00 0.00
*LOWRD mark. 100.00 | 100.00
UR P
/taavaan/ | 1.0

Table 4: Constraint weights and UR probabilities
with concrete URs only

resulting in /VVN/ vowels always surfacing
as nasal, as in (3).

(3) /VVN/ vowels always nasalized

- *VVN [ID[nas] | SPRD-L .
/siin/11100.00| 51.37 | 92.83 | * P
a. = simn 1 1 [ -1442] 1.0
b. siin|| -1 -2 |-285.66|3e52

Once the morphologically aware learning
stage begins, MaxLex recognizes that surface
alternations such as [saa] and [sdd] belong
to the same underlying morpheme. We will
first consider the use of concrete URs to
model the data. For our purposes, the im-
portant morphemes are those containing non-
alternating pre-N vowels like [taavddn]. Be-
cause [taavddn] only exhibits a single surface
form, only one concrete UR is available to
MaxLex, and using it prevents MaxLex from
accurately modeling the data. The results for
constraint weights and UR probabilities with
only concrete URs are given in Table 4. Again,
because [taavddn] does not exhibit morpho-
logical alternations, there is only one poten-
tial UR, and it receives all of the probability
as the correct UR for modeling the data.

However, using only concrete URs results in
the model's inability to successfully learn the
appropriate constraint weights and an almost
zero probability of learning the correct nasal-
ization pattern of forms with /VVN/ vowels.
This is exemplified by the tableau in (4). Be-
cause the URs for both /VVN/ and contrastive
/VV/ vowels are identical, MaxLex cannot
correctly learn the pattern. When presented
with /taavddn/, the learner incorrectly as-



signs almost all the probability to the candi-
date that exhibits nasal harmony.

(4) Failure of Concrete URs to model Pun-
jabi nasalization

L *VVN | SPRD-L | *NA: ID[n ~
‘ /taavadn/ Hl(;/o\./oo‘ssl.{es 0.1?3G‘ 356 | M ‘ P ‘
a. taavddn -3 -16.95 | 0.012
b. taavaan|| -1 -4 -1 [-125.96 [6e=°°
c. taasadan 1 -1 2 | -12.56 | 0.988

Up to this point, the learning process
has followed the same general pattern as
the Klamath [i]-[¢] alternation discussed in
O'Hara (2017). The phonotactic patterns
were learned, and using a concrete UR for
/VVN/ vowels resulted in a failure to accu-
rately predict the observed data. Now, just as
for Klamath, MaxLex is provided two covert
URs to consider when modeling the data. The
results of the morphologically aware learning
stage with /ad/, /aa/, and /pp/ included as
potential URs are provided in Table 5. Here,
the final constraint weights are quite simi-
lar to the weights when concrete URs were
the only potential option, but the inclusion
of the covert representations as potential URs
for forms with /VVN/ vowels allows MaxLex
to accurately model the data, with a .98 to-
tal probability of observing the correct sur-
face forms for all words fed to the learner.
However, while MaxLex is successful in mod-
eling the data with the inclusion of these
two covert URs, it is unsuccessful in discrim-
inating between them, instead assigning an
equal 0.5 probability to both covert URs. In
other words, the MaxLex prior cannot distin-
guish between a restrictedly abstract UR like
/aa/ and an unnecessarily abstract UR like
/op/. The reason for this is that changes
in constraint weights from the phonotactic
to the morphologically-aware learning stage
are identical regardless of which covert UR is
used. To permit the nasal harmony pattern in
forms with contrastive /VV/ vowels, ID[nas]
and *NASG need to lower so that their com-
bined sum is less than SPRD-L. This change
holds regardless of whether the UR for the
/VVN/ vowel in [taavddn] is /aa/ or /pp/.
Additionally, ID[rd] — the faithfulness con-
straint associated with the increasingly ab-
stract UR, /pp/ — remains at zero without any
pressure to increase. This is because no al-
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Constraints | Type |initial w|final w
ID|nas| faith. 51.37 | 0.07
IDFIN[nas| | faith. 44.83 |100.00
SPRD-L mark. 92.83 5.42
*NASOBS | mark. 100.00 | 100.00
*NASG mark. 99.48 0.02
ID[nas]/ V| contfaith.| 100.00 | 100.00
*VVN mark. 100.00 | 100.00
ID[xd] faith. 0.00 0.00
*LOWRD mark. 100.00 | 100.00

UR P

/taavaan/ | 0.5

/taavoon/ | 0.5

/taavaan/ | 0.0

Table 5: Constraint weights and UR probabilities
with abstract URs included

ternation exists for /VVN/ vowels, so faithful-
ness constraints are not driving their surface
realization. In cases like Punjabi, then, when
an alternation does not exist but a covert UR
is still needed, the MaxLex prior fails to re-
strict abstraction because minimally abstract
URs like /aa/ and increasingly abstract URs
like /pp/ do not rely on distinct constraint
weights to accurately model the data.

5 Learning via Disparity
Minimization

In this section, I propose an update to the
MaxLex learner that generates a preference
for minimally abstract URs over increasingly
abstract alternatives, even when the mini-
mally abstract UR does not outperform the in-
creasingly abstract UR in either its accuracy in
modeling the data or its deviation from a prior
on constraint weights. Specifically, if the dis-
parity component in equation (3) is added to
the objective function, assigning probability
to URs that introduce disparities increases the
loss. Consequently, abstraction will only be
preferred if doing so sufficiently increases the
likelihood of observing the data.

k; 2

D(IOJ) = z l{sfj@s?jzz} + Z l{sfpiﬁés%j}
i=1 feF
(3)

As shown in the equation, the disparity
value for the jth input-output mapping is com-
puted by summing squared segment-level dis-
parity terms across all k; aligned segments.



Each term within the summation compares
the ith input segment (sifj) with the corre-
sponding output segment (sioj). Two indica-
tor functions contribute to segment-level dis-
parities: the first returns 1 if exactly one of
the two segments is null (i.e., an insertion
or deletion has occurred); the second iterates
over all features f in the feature set I, re-
turning 1 whenever the corresponding input-
output segments differ on that feature. When
either s/; or s?j are null, the second term con-
tributes 0 vacuously, since the null segment
has no features over which to compare. In
effect, incentivizing the minimization of the
disparity bias encourages the learner to ac-
quire input-output mappings with as few dif-
ferences as possible between corresponding
segments. Squaring segment-level disparities
before aggregating them results in a quadratic
increase of the disparity bias as the number
of disparities for a given segment increases,
thereby enacting harsher penalties for under-
lying segments that are increasingly divorced
from their realization.

The inclusion of a disparity bias in the
learner is motivated by both theoretical as-
sumptions and empirical observations about
how underlying representations are selected.
From a modeling perspective, the updated
learner satisfies Occam’s Razor: among com-
peting hypotheses that account equally well
for the data, the disparity bias favors the
simplest one. In the context of UR selec-
tion, increasingly abstract URs introduce addi-
tional complexity by requiring more transfor-
mations between the underlying and surface
forms. In the absence of independent moti-
vation, positing such abstract forms results in
unnecessary representational complexity.

Indeed, linguists often assume that URs re-
flect SRs faithfully unless motivated other-
wise (Kiparsky, 1982; Bakovié et al., 2022).
This assumption is formalized in Tesar
(2014, p.1) through the principle of surface-
orientedness, whereby “disparities between
input and output are introduced only to
the extent necessary” to satisfy indepen-
dent grammatical restrictions.  Similarly,
Prince and Smolensky (1993/2004, p.225-
226) propose the Lexicon Optimization Prin-
ciple, which holds that learners should select
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URs that result in the most harmonic output,
minimizing violations unless a more abstract
UR yields a demonstrable advantage. Finally,
empirical evidence supports the notion that
language learners disprefer abstract URs. As
shown by Kiparsky (1973), covert URs are of-
ten reanalyzed over time as surface-true by
successive generations of learners, suggesting
a robust bias in favor of minimizing dispari-
ties.

What follows demonstrates the computa-
tional success of incorporating the disparity
bias into the MaxLex learner. The procedure
begins in the same way as MaxLex, with an
initial stage of phonotactic learning followed
by a morphologically-aware learning stage.
Here, as in the previous section, the algorithm
is provided with two potential covert URs to
consider, /aa/ and /pp/. Importantly, these
are the only two URs that need to be con-
sidered under the present analysis to demon-
strate that the model prefers minimal abstrac-
tion. That is, if /pp/ can be ruled out by
the disparity bias, any other covert UR with
a superset of the disparities of /aa/ can also
be ruled out. In this case, the UR of /VVN/
vowels must be oral to appropriately model
the data, and /aa/ only differs from the sur-
face form [dd] in its nasality value. As such,
any other potential UR that could effectively
model the observed Punjabi forms with a suf-
ficiently high likelihood necessarily possesses
a superset of the disparities of /aa/ and will,
therefore, be dispreferred by the disparity
bias.

The results of the simulation with the up-
dated learner are provided in Table 6. The
weights the learner arrives at are almost iden-
tical to the weights learned by the original
MaxLex learner. The key difference here
is the probability given to the three poten-
tial URs considered for [taavddn]. Whereas
MaxLex assigned equal probability to both
covert URs because they model the grammar
equally well and minimize the prior to the
same degree, the updated learner assigns es-
sentially all of the probability to the mini-
mally abstract covert UR, /taavaan/.

In sum, O'Hara (2017) demonstrated that
MaxLex effectively constrains UR abstrac-
tion in cases where surface alternations are
present and potential covert URs do not dif-



Constraints | Type |initial w|final w
ID|nas| faith. 51.37 | 0.00
IDFIN|nas] faith. 44.83 | 100.00
SPRD-L mark. 92.83 4.61
*NASOBS | mark. 100.00 | 100.00
*NASG mark. 99.48 0.00
ID[nas]/ _V|contfaith.| 100.00 | 100.00
*VVN mark. 100.00 | 100.00
ID[rd] faith. 0.00 0.00
*LOWRD mark. 100.00 | 100.00
UR P

/taavaan/ | 1.00

/taavopn/ | 9e~1°

/taavddn/ | 2e~

Table 6: Constraint weights and UR probabilities
with abstract URs and the DISPARITY bias.

fer in their disparity count (as in Klamath).
Incorporating an explicit disparity bias into
MaxLex extends its utility by enabling it to
constrain unnecessary abstraction in forms
that lack alternations but still require a covert
UR for an adequate analysis.

6 Traversing the Search Space

The proposed disparity bias in equation (3) is
intimately connected to output-driven maps
defined in Tesar (2014, 2016). Tesar’s frame-
work shows how disparities between underly-
ing and surface forms can be used to organize
the space of potential URs in a way that allows
the learner to search efficiently and avoid un-
necessary computations.

Output-driven phonology imposes entail-
ment relationships on UR-SR mappings based
on their disparity profiles. If a UR maps to
a given surface form with n disparities, then
any UR that maps to that same surface form
with a proper subset of those n disparities
must also be grammatical. For instance, if
the mapping /ta/ — [tu] is grammatical, then
/to/ — [tu] must also be grammatical because
/to/ — [tu] possesses a proper subset of /ta/
— [tu]’s disparities. However, this relation-
ship does not hold between URs that have
non-nested disparity sets; for example, /ti/
differs from [tu] in two features (e.g., [front],
[round]), but /to/ differs in only one ([high]).
Because the disparities in /ti/ — [tu] are not
a superset of those in /to/ — [tul], no en-
tailment of grammaticality follows between
these mappings.
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These entailment relationships allow the
learner to organize the space of potential URs
for a given surface form into a structured lat-
tice (Figure 1), with the fully faithful UR at
the top and increasingly abstract URs further
down. Each node represents a potential UR,
and edges lead to forms lower down in the
lattice that differ by one additional disparity.
If a UR at some level of the lattice fails to gen-
erate the observed SR, then all URs that in-
clude a superset of that UR’s disparities (i.e.,
nodes further down the lattice) can be imme-
diately ruled out. This structure allows the
learner to efficiently eliminate broad swaths
of the search space.

Importantly, the use of output-driven
phonology by Tesar (2014, 2016) to structure
the space of potential URs is primarily nega-
tive: it is designed to rule out more abstract
URs based on the failure of a less abstract UR
— one higher in the lattice — to map success-
fully to the surface form. It does not address
how a learner might efficiently traverse the re-
maining space of successful URs that can gen-
erate the correct SR but differ in the number
of disparities they require. Consider again the
example lattice in Figure 1. If a learner con-
siders /to/ as a potential UR for [tu] and finds
that it is successful in modeling the data, no
mechanism exists to prevent it from also need-
ing to consider /ta/, /to/, /td/, or any other
potential UR that contains a proper superset
of disparities in its /UR/—[SR] mapping to
[tu].

I propose extending output-driven phonol-
ogy in precisely this direction. A learner
equipped with the disparity bias outlined in
the previous section and a likelihood thresh-
old at which success in modeling the data is
'good enough' can use the lattice structure not
only to eliminate chains of incompatible URs,
but also to stop searching the space once this
likelihood threshold has been reached and fur-
ther levels of abstraction only trivially im-
prove the likelihood of observing the data.

More precisely, the search for the optimal
UR could be conducted serially rather than
initializing UR optimization with the full set
of potential URs in contention simultaneously.
A learner would begin by considering URs
with O disparities and then move on to gener-
ate and consider URs with successively more



Figure 1: Example lattice for the output form [tu]
(c.f. Tesar, 2016)

disparities as needed. As a result, the size of
the search space would be irrelevant because
the learner does not need to cover the entire
space (or even most of it) to decide on the op-
timal UR.

In sum, the disparity bias does more than
minimize abstraction: it also provides a
principled way to structure and efficiently
search an otherwise infinite space of poten-
tial URs. By combining the lattice structure
from output-driven phonology with a dispar-
ity bias and principled likelihood threshold of
acceptability, the framework not only curtails
unnecessary abstraction but also offers a com-
putationally efficient method for identifying
the optimal UR.

7 Conclusion

This paper introduced a disparity bias as an
addition to the MaxLex learner from O'Hara
(2017) to improve its preference for min-
imally abstract underlying representations
when multiple URs generate the same sur-
face data with similar likelihood. By penal-
izing input-output disparities, the model fa-
vors URs that more closely resemble their sur-
face realizations, thus curtailing unnecessary
abstraction.

In addition to implementing this disparity
bias, the paper outlined a blueprint for ad-
dressing a second major challenge posed by
abstract URs. Specifically, permitting abstrac-
tion causes the space of potential URs to grow
beyond a size that is computationally fea-
sible to search. Drawing on insights from
output-driven phonology, I proposed organiz-
ing the UR space into a lattice structured by
disparity count and conducting a serial search
through this space. By incorporating a likeli-
hood threshold that defines when a UR ade-
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quately models the data, the learner can stop
the search once candidates with additional
disparities fail to meaningfully improve the
likelihood of observing data.

While the paper provided a computational
implementation of the disparity bias, the pro-
posed method for structuring and traversing
the UR space remains conceptual. Future
work is required to develop this proposal com-
putationally. This is a non-trivial task. Al-
though concrete URs can be easily identified,
generating the set of potential URs for the
learner to consider at each increasing dis-
parity level poses a combinatorial challenge.
That is, as the number of disparities grows,
the number of combined ways in which a seg-
ment could be altered to achieve that number
of disparities explodes. The matter only wors-
ens when considering multiple segments in a
UR. Thus, additional work is needed to deter-
mine principled ways to constrain the set of
potential URs at each disparity level consid-
ered by the learner.

A second open question concerns the like-
lihood threshold. Although I suggested a
threshold as a stopping point, future re-
search must investigate how this value can be
grounded empirically. It may be that no sin-
gle threshold is appropriate across a popula-
tion of learners, and that the stopping crite-
rion must be calibrated on a speaker-specific
basis.

In addition, future work should explore
how the disparity bias interacts with the
MaxLex prior introduced in O'Hara (2017).
This paper has shown that the MaxLex prior
alone is insufficient for limiting abstraction in
the case of Punjabi pre-N vowels. However,
the prior remains crucial in cases like Kla-
math, where multiple URs generate the same
surface form with equivalent disparity counts.
Thus, it should be examined whether the dis-
parity component and the MaxLex prior ever
conflict, and if so, how such conflicts would
be resolved in the learning process.

Finally, the disparity bias was implemented
on data from Punjabi, but its application to
phonological patterns from other languages
that require varying degrees of abstraction is
necessary. The cases discussed in Wang and
Hayes (2025) would be an interesting set of
case studies to begin with in this regard.
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A Appendix
(5) Constraints used in Modeling Punjabi
i. SPRD-L[nas] (cf. Walker, 2003, 47)

For every occurrence of a [ + nas] feature
in a prosodic word, if that [ + nas] feature
is dominated by some segment, assign a
violation for every segment to the left of
that segment in the prosodic word that
does not dominate the [ +nas] feature.

ii. *NAsSOBs (Walker, 2003, 51)
Assign a violation for every obstruent
that dominates a [ +nas] feature.

iii. *NASG (Walker, 2003, 51))
Assign a violation for every glide that
dominates a [ + nas] feature.

ID[nas]

For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A.

iv.



vi.

vii.

viii.

ix.

. IDFIN[nas]

For every segment, A, assign a violation
if the output value for the [nas] feature
dominated by A does not match the input
value for the [nas] feature dominated by
A in the final syllable of a prosodic word.

*VVN

Assign a violation for every vowel that
dominates a [-nas] feature when directly
preceding a nasal consonant.

ID[nas]/_V

Let A be a segment that occurs before an
oral vowel, _V, in the input. Assign one
violation if the output correspondent of
A does not have the same specifications
for [nas] as A.

ID[rd]

For every segment, A, assign a violation
if the output value for the [rd] feature
dominated by A does not match the input
value for the [rd] feature dominated by
A.

*LOWRD

Assign a violation for every vowel that
dominates a [rd] feature and a [low] fea-
ture simultaneously.
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Abstract

How we answer questions is often affected by
whether our response conforms with the bias,
or tilt, encoded in the question. For example,
if we have a ‘yes’ answer to a negatively-tilted
question like You arent eating, right?, we
may delay, hedge and explain our answer. We
examine these phenomena at scale through
the Switchboard Corpus: We determine
which aspects of answer design tend to appear
together and how this relates to question tilt
through latent class analysis. We find three
groups of design features that, respectively,
challenge assumptions of the question-answer
sequence, expand on the answer, and delay
presentation of the answer. We also find that
answers contradicting the question’s tilt are
much closer in design to tilt-conforming
answers than responses without polarity,
though they do disfavour answers that have
none of the three classes of features. Results
support a gradient and multi-dimensional
conception of conversational preference.!

1 Introduction

Questions are often designed to be biased, or tilted,
towards certain types of responses (Bolinger 1957,
Heritage & C Raymond 2021). For example, This is
true, isn t it? is tilted towards ‘yes’, and This isn t true,
is it? towards ‘no’. An answer congruous with the
question’s tilt promotes solidarity; the opposite
answer may threaten it. This is part of a wider
phenomenon called preference in Conversation
Analysis (Pomerantz & Heritage 2012, Nishizaka &
Hayano 2015, Pillet-Shore 2017), specifically the
preference for agreement, a type of action preference:
Some actions (e.g. answering positively a positively-
tilted question) are preferred actions, while others

! Thanks to Karen Nylund-Gibson and Delwin Carter for
help with modelling, Simon Todd for extensive comments
on the paper, and John W DuBois, and members of UC
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(e.g. answering negatively a positively-biased
question) are dispreferred actions.

Previous research finds that people minimise the
face threat in dispreferred responses by designing
them to be less direct (Sacks 1987 [2010], Pomerantz
1985). They may delay the answer using silence,
audible breaths, laughter, or words like well, uh;
qualify it using phrases like / think, or explain the
answer. Such answers have dispreferred turn formats;
by contrast, short and straight answers have preferred
turn formats. In other words, previous research found
that action preference and design preference tend to
go together: preferred actions tend to be implemented
with preferred turn formats, and vice versa.

Traditionally, these observations come from
qualitative analyses of small datasets. Recent
quantitative studies both confirm these observations
and complicate the picture. Stivers et al. (2009) find
that responses that do not really answer the question
are produced slower than answers, and tilt-non-
conforming answers are slower than conforming ones.
Roberts et al. (2015) find that positive answers are
only slightly (~55 ms.) faster than negative ones.
Robinson (2020a) argues against the claim that
‘neutral’ yes-no questions, e.g. Do you have cats?
asked by someone who does not know the answer,
prefer ‘yes’; instead, both ‘yes’ and ‘no’ answers are
preferred responses, while conditional (‘it depends’)-
type answers are dispreferred. Kendrick & Torreira
(2015) found that longer delays are much more
strongly associated with dispreferred turn formats
than with dispreferred actions. Kendrick & Holler
(2017) found that dispreferred responses to polar
questions were 123-165 ms slower than preferred
ones (depending on the operationalisation).

Previous studies have not extensively investigated
differences between the various strategies for creating

Santa Barbara’s CEILing group and the California Annual
Meeting on Psycholinguistics for additional discussion.

Proceedings of the Society for Computation in Linguistics (SCiL) 2025, pages 166-181.
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dispreferred turn formats, which may serve different
functions and have different relationships with action
preference. This may be in part due to sample size
limitations, as disentangling the many strategies
requires more than the 200 or so question-answer
pairs analyzed in previous work (Robinson 2020a,
Kendrick & Torreira 2015). This study examines
these differences using corpus-based computational
methods, leveraging rich annotations available for the
Switchboard Corpus (Godfrey, Holliman and
McDaniel 1992). Focusing on polar (i.e. yes-no)
questions and their answers in American English, we
aim to answer:

1. Are there regularities as to how different answer
design strategies appear together?
2. If so, how are the different groups of strategies

related to action preference?

The first question is answered by sorting answers
into classes according to different features of turn
design, then examining which features are associated
with which classes, using a latent class model
(Nylund-Gibson & Choi 2018). The second is
answered by predicting class membership from
action preference, using tilt-conformity as an
auxiliary variable (Asparouhov & Muthén 2014).

2 Data and methodology

2.1 Corpus and extraction of question-answer

pairs

This study uses the Switchboard Corpus (Godfrey,
Holliman and McDaniel 1992), consisting of
American English telephone conversations between
strangers on researcher-designated topics. We mainly
made use of the annotations made available in XML
format through the NXT-format Switchboard Corpus
(Calhoun et al. 2010) and the Switchboard dialogue
act corpus (SWDA) (Jurafsky, Shriberg & Biasca,
1997), as converted into CSVs in Potts (2011).

The corpus is divided into approximately
utterance-sized units called slash wunits. SwDA
assigns a dialogue act annotation to each slash unit,
e.g. qy for polar questions, ny for ‘yes’ answers, etc.
Tags are often modified by adding letters followed by
~, e.g. “r means something is a repetition. Unless
otherwise specified, when mentioning a tag in this
paper, all the modified versions are included.
Appendix A lists and defines all the SwDA tags
relevant to this paper.

Polar questions were extracted by searching for the
tags gy and "g. For each extracted question, the next
turn from a different speaker than the one who
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produced the question was extracted as the answer.
Question-answer pairs where there was a gap of 5
seconds or longer between the question and the
answer were excluded, as they are likely to be
erroneous. See Appendix B for the treatment of rare
edge cases like multiple questions and turn
increments. After question-answer pairs were
extracted, we determined whether the answer
implements a preferred action and detected different
answer design features.

2.2 Features of answer design

Before extracting the features of responsive turns,
each turn was divided into three parts. The first slash
unit to convey the polarity of the answer (generally
tagged ny, na, aa, nn, ng, ar, no, am, arp, nd) is
called the core of the answer in this paper. The parts
preceding it are pre-core, and the parts following it
post-core. Answers without detectable cores are not
considered. An example is given in Table 1.

IA|l # Like Garth Brooks. # / Question [y~ d
B2 |Garth Brooks, {F oh } / Pre-core |*h

3 lyes, # / Core ny

4 |{D you know } he's fine. #/ [Post-core|sv”e

Table 1: Examples of pre-core, core and post-
core slash units.

Features of the responsive turn considered in this
study are divided into two groups: Those preceding
the core or concerning the core itself, and those
following the core. The following paragraphs
describe how the features were extracted. Though
many features were extracted based on the literature,
only those appearing >5% of the time were included
in the final dataset. Full details of the extraction
process and excluded features are in Appendix B.

Pre-core/Core features. The OFFSET between two
turns was calculated by taking the timestamps of the
last word of the question and the first word of the
answer. Non-linguistic vocalisms at edges of turns are
not considered part of the turn in this calculation. This
resembles Offset 2 of Kendrick & Torreira (2015). A
negative number indicates overlap between the two
turns; a positive number indicates a gap.

Fillers and discourse markers were tagged in the
corpus (Meteer & Taylor 1995). Features related to
these words are detected either directly using those
tags, or using the forms of words (since there are
missing tags):

o FILLERS: either words other than o/ tagged {F
}or having the form uh or um



e DMOTHER: discourse markers other than o#,
tagged {D } or with the forms well or you know.
e DMOH: discourse marker oh. It is considered
separately as it does not serve to delay the answer,
but challenges the question’s appropriateness and
asserts the answerer’s epistemic authority

(Heritage 1998, 2005).

Other core-delaying features like breath and laughter
were excluded as they did not exceed 5%.

Cores were also tagged for whether they are
interjection-type — simple, single-word answers that
convey polarity and do not grammatically combine
with other words — or non-interjection-type ones
(NONINTERYJ) (called #ype-nonconforming answers
in G Raymond (2003)). Cores tagged nn, ny, are
treated as interjection-type answers, plus words like
right, yeah, sure, probably, certainly when standalone;
the rest are non-interjection-type answers. Non-
interjection answers are mostly repetitional (Heritage
& G Raymond 2012, Enfield 2019), repeating words
and grammatical structures in the question (B: Well,
do you do any rvecycling? A: Uh, we do here.). Some
are transformative answers (Stivers & Hayashi 2010)
which indirectly imply the answer (A: You use your,
your company §? B: My husband s, which implies a
positive answer, but rejects the presupposition that the
company is owned by B).

Finally, we looked for words and phrases
expressing qualification or epistemic downgrade
(DOWNGRADE), ie. lowering the answer’s
confidence, before or at the core:

o Adverbs like probably, somewhat, sometimes,
personally, maybe, perhaps;

o  Modal auxiliaries like could, might, may;,

e Degree adverbs like really, so, very, too, usually,
with a negator (e.g. Uh not really);

o Epistemic/evidential verbs like think, believe,
guess, know, say, feel, and common paraphrases,
based on Cappelli (2007) and Thompson (2002);

e Slash units tagged ~h (hedge).

Extraction was aided by part-of-speech tagging and

dependency parses from spaCy (Honnibal & Montani

2017) with a three-stage process: adverbs and modal

auxiliaries were extracted from the corpus, those

related to epistemic downgrade were manually
chosen, and then the corpus was reprocessed to detect
the chosen forms, reducing the possibility of missing
forms that were mistakenly tagged. Note that some
downgraders act as interjection-type answers alone

(Stivers 2022: 95).

Post-core features. A post-core has the feature
SAMEPOLA if it contains a polarity-conveying
dialogue act with the same polarity as the core. It has
the feature COREEXT if it contains an extension of
the core (with the tag ~e): these are utterances that
repeat or qualify the polarity of the answer, but with
more complex expressions than the core (e.g. Yes, [
do.). A post-core has the feature EXPAND if it has a
statement (with tag sv or sd) without the
modification ~e — roughly corresponding to turn
expansions (Ford 2001, Lee 2015) in Conversation
Analysis. Such expansions can include explanations
and elaborations of the core, twists on the core, etc.

Features for fillers, discourse markers, and
downgrade were also extracted for the post-core
(other than oA, which has no known consistent post-
core function). An additional feature extracted for
post-core but not pre-core is CONJBUT, consisting of
conjunctions but and (al)though, because they often
present information that contrasts with the polarity
conveyed by the core, often in order to qualify it.

Feature Definition Location | Example
OFFSET Time (sec.) between question and PreC/C B: Do you have kids? /

answer A: [offset =1.794s] I have three.
FILLERS Words like uh or um that fill pauses Both {F Uh, } we will be.
DMOH The discourse marker o/ PreC/C {F Oh, } I do.
DMOTHER Discourse markers other than o/ Both {D Well, } {F uh, } I have thought about it.
NONINTERJ Repetitional and transformative PreC/C B: Is Texas one of them?

answers A: Texas is not one of them.
DOWNGRADE | Language for epistemic downgrade Both Probably not.
SAMEPOLA Polarity-bearing dialogue act with the | PostC No, / no.

same polarity as the core
COREEXT Extension of the core PostC No, /I'm not. / [sd”e]
EXPAND Statements expanding on the core PostC Yeah. /{F Uh, } I understand. [sv]
CoNJBuT Contrastive conjunctions like but PostC No, /Tdon’t, / {C but } I think I know what it is.
SISR Self-initiated self-repair PostC Yeah, /[ we, + we've ] seen that, /yeah. /

Table 2: Summary of features included in the final modelling, alongside actual examples from the corpus. PreC/C = Pre-
core/core, PostC = post-core, Both = both Pre-core/core and post-core.
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Unlike the case of pre-core/core, self-initiated self-
repair (SISR) appeared in post-core positions >5% of
the time, and was therefore included. A post-core has
the feature SISR if it has either a slash unit with the
tag % (abandoned utterance), or brackets [] which
indicate repair in the transcriptions (Meteer & Taylor
1995). Table 2 summarises and exemplifies all the
features included the final modelling.

2.3  Determination of tilt-conformity

The biases that the forms of questions impose on the
answer are called conduciveness (Bolinger 1957,
Quirk et al. 1985) or #lt (Heritage & C Raymond
2021). Three question design factors determine tilt:
syntactic type, polarity of the question, and presence
of negative polarity items.

There are three main syntactic types of questions:
Inverted questions (ak.a. interrogative-formatted
questions) are those where the auxiliary verb precedes
the subject, e.g. in Are you eating?, the auxiliary are
precedes the subject you. Queclaratives (ak.a.
declarative-formatted questions) have the same
syntax as a statement (e.g. So you're eating.) but

serves as a question, sometimes with rising intonation.

Tag questions consist of a declarative plus a tag that
turns it into a question, usually the word right or an
inverted auxiliary-subject sequence with polarity
reversed from the statement, e.g. You are eating,
aren t you?, where aren t you inverses the polarity of
you are. The three types are largely determined from
SwDA tags: inverted questions have unmodified tags,
whereas queclaratives take the modifier ~d and tag
questions “t. Some exceptions were manually
corrected; details are in Appendix B.3.

The polarity of the question is in most cases the
polarity of the root of the question in a dependency
parse: if a negator depends on it, then it is negative,
otherwise it is affirmative. For tag questions, the
polarity of the question is defined as the polarity of
the declarative portion of the question. When a tag
question has an auxiliary-subject sequence as the tag,
the root is located in the tag rather than the declarative
(e.g. the second are in You are eating, aren t you), so
the polarity of the question is the opposite of the root.
Details are in the Appendix.

Negative polarity items (NPIs) are words like ar
all, any, yet etc., which occur only in negative
statements and questions, and are usually said to shift
the tilt towards ‘no’ answers (e.g. Heritage & C
Raymond 2021).

From the three question design features above, the
tilts of the questions were determined following
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Type Pol | Tilt | Example
Inverted | + yes | Are you fly fishing?
- yes | Isn't that correct?
Quecla- | + yes | Now this is a LeBaron?
ratives - no You can't read labels?
Tag + yes | Those are good aren't they?
no You don't have mountains
in Texas, do you?

Table 3: Types of question syntax without NPIs
and their associated tilts. Pol = polarity.

standard overviews (e.g. Heritage & Clayman 2010:
142-143, Pillet-Shore 2017, Stivers 2022: 11).
Queclaratives are tilted towards the same polarity as
the statement, e.g. So you re eating? is biased towards
‘yes’, So you're not eating? towards ‘no’. Tag
questions are similarly tilted towards the same
polarity as the declarative portion of the question.
Positive inverted questions are assumed to be biased
towards ‘yes’ answers, e.g. Are you eating? is biased
towards ‘yes’, as are negative inverted questions like
Aren t you eating?. Table 3 summarises this situation.
Questions with NPIs are assumed to be negatively-
tilted, unless they are found in negative inverted
questions.

Answers were sorted into tilt-conforming polarity
(TC), tilt-non-conforming polarity (TNC), and no
polarity (NP) by considering the polarity of the
answers. Answers with cores tagged ny, na, aa,
sd”m were considered positive, and those tagged nn,
ng, ar were considered negative; these polarities
were compared with the tilt of the question to
determine tilt-conformity. Those tagged arp and nd
(answers classified by SWDA as dispreferred) were
manually annotated for polarity. Answers tagged no,
am were considered NP; they are neither ‘yes’ nor
‘no’, e.g. ‘maybe’ or ‘it depends’ answers. Answers
without any of these dialogue acts were excluded
from the sample; they typically involve
transformative answers that do not clearly give a ‘yes’
or ‘no’, but do not explicitly refuse to provide a
polarity like no, am either.

2.4  Statistical analysis

The statistical approach taken is mixed mode latent
class analysis (MMLCA) (Morgan 2015), which
combines latent class and latent profile modelling
(Nylund-Gibson & Choi 2018) by allowing both
categorical and continuous variables. It identifies
distinct categories of answer designs, called /atent
classes, in a data-driven way that does not predefine
groups. Each latent class has a distinct distribution of
feature values, as well as a prior probability
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Figure 2: An illustration of the MMLCA for an
answer instance with feature profile y; =

[, X, 3.5], with two dichotomous and one
continuous variable.

representing how prevalent it is in the overall corpus.
For each answer, the model generates the posterior
probability of it belonging to each class, rather than
assigning it to a single class. Examining the feature
distribution of each class allows us to see and interpret
answer designs holistically, abstracting over
individual features.

The overall likelihood of the mixed modal latent

class analysis model (MMLCA) is:
K

N N J
l_[f(}’i|‘1>) = l_[ 2 T nfjk()’ijlajk)
i=1 i=1 \ k=1  j=1
where y; is the profile of answer design features like
fillers, discourse markers and offset time extracted for
answer instance i, ® is the model parameters, N is
sample size, K is the number of latent classes of
answer designs, J is the number of features, 1y is the
prior probability of an answer belonging to latent
class k , and Oj, are the class-specific model
parameters for the distribution of each feature j in
class k. Note that the probability of the features
conditional on latent class are multipled together to
get their joint probability, i.e. within each latent class,
features are assumed independent. For each
observation, the most likely latent class is:

J
argmax | my 1_[ fik (J/ij|9jk)
1<ksK j=1

After fitting the model, tilt-conformity is used to
predict the design of the answer with the ML three-
step approach (Vermunt, 2010). The full process is
implemented in MPlus (Muthén & Muthén 2019),
accessed through MPlusAutomation in R
(Hallquist & Wiley 2018).
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3 Results

Atotal of N=2233 Q-A pairs were extracted from the
corpus, slightly more than Stivers’ (2022) 1738 and
considerably more than most other studies. As shown
in Figure 2, there are considerable skews in tilt-related
properties: Positive inverted questions without NPIs
are by far the most common, followed by positive
queclaratives; other categories are much rarer. Other
descriptive statistics are in Appendix C; this section
will focus on modelling results.

3.1 Latent classes and features

Mixed mode latent class models were run on all the
binary turn design features plus OFFSET, which is
modelled as Gaussians with class-varying means and
variances. Models with 1-7 classes were fitted, with
8000 random starts and 4000 remaining at the final
stage. Although different random starts converged to
slightly different log-likelihood values, inspection of
parameter estimates for top values reveals that they
are almost identical.

To find the optimal number of classes, the models
with 1-7 classes were compared using a variety of
quantitative measures to determine the optimal model,
following Nylund-Gibson & Choi (2018). This
includes a series of information criteria, plus p-values
of the BLRT and VLMR tests, which compare
consecutive models: a significant p-value means the
more complex model is better than the simpler one
(Table 4). After the 5-class model, AWE shows an
increase (worsening), and all other information
criteria show diminishing returns clearly kicking in at
the 6-class model (Figure 3). BLRT is significant for
all models; VLMR is insignificant from the 4-class



#C | #Par | LL BIC aBIC CAIC | AWE BLRT VLMR
1 15 —15,934 31983 | 31936 | 31998 | 32144 | - -

2 31 —14,327 28893 | 28794 | 28924 | 29225 | <0.001 <0.001

3 47 —13,776 27915 | 27766 | 27962 | 28418 | <0.001 <0.001

4 63 —13,472 27430 | 27230 | 27493 | 28105 | <0.001 0.15

5 79 —13,287 27184 | 26933 | 27263 | 28030 | <0.001 0.07

6 95 —13,176 27085 | 26783 | 27180 | 28103 | <0.001 0.15

7 111 —13,092 27041 26688 | 27152 | 28229 | <0.001 0.24

Table 4: #C = Number of classes, #Par = Number of parameters; LL = model log-likelihood; BIC =
Bayesian information criterion; aBIC = sample size-adjusted BIC; CAIC = consistent Akaike information
criterion; AWE = approximate weight of evidence criterion; BLRT = bootstrapped likelihood ratio test p-
value; VLMR = Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test p-value.
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Figure 5: Estimated probabilities of each binary answer design feature by class. The fact that lines cross
each other suggests that they play different functions in answer design. If all the features played similar
functions and one simply uses more of them if the turn is “more dispreferred’, we would expect the lines
for different classes to roughly be parallel.

Cl | Description PreC/C | Answer | PreC/C Core Post-core
fillers, type downgrade | extension expansion & fillers,
DMs DMs, etc.
A | Assumption-challenging, Most Both Many Very few Most
strongly delayed & expanded
B | Assumption-challenging, Many Both Many None Little
moderately delayed, unexpanded
C | Assumption-conforming, weakly | Some Inter;. None Most Most
delayed, strongly expanded
D | Assumption-conforming, Few Interj. None Some Little
undelayed & unexpanded
E | Unusual offsets Some Mixed Little Mixed Mixed

Table 5: The five classes with key properties and brief descriptions of each class. DM = Discourse marker.
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model on, though the p-value dipped to .07 at the 5-
class model. With all metrics considered, we chose
the 5-class model.

In the following paragraphs, we will answer our
first research question on which answer design
features tend to appear together by examining the
design feature values associated with each of the five
classes.

All five classes’ feature profiles (Figure 5 and
Figure 6) are amenable to straightforward
interpretation. Sample dialogues from each class are
in Appendix D. Class A contains strongly delayed,
hedged, and lengthy answers: these are characterized
by the longest offset, are often non-interjection-
formatted and downgraded answers, and are most
likely to have fillers and discourse markers pre-core
as well as expansions and associated features like
fillers and discourse markers post-core. Class B is
like Class A, but with little post-core material and
slightly less fillers and discourse markers. Inspection
of transcripts also shows that they are mostly
transformative, not repetitional answers. Class C has
much shorter offsets than A-B, many fewer pre-core
fillers and discourse markers, and mostly interjection-
type answers, but has a similar rate of expansions as
Class A. Class D has the shortest offsets and least pre-
core material, is largely interjection-type, there are
some core extensions but almost no expansion. Class
E has greatest offset variance and largely captures
instances with very long gaps or overlaps. In terms of
turn design, it only stands out in having the greatest
chances of SAMEPOLA, mostly due to turns with long
overlaps necessitating repetition; thus, it does not
shed much light on the relationship between answer
design features, and will not be discussed further in
the following paragraphs.

From these observations, we can group features
according to the classes they are associated with.
Firstly, non-interjection-type cores, pre-core/core
epistemic downgrades and lack of core extensions are
associated with Class A+B over C+D. These features
are ASSUMPTION-CHALLENGING: They convey some
stance against what is typically expected of an
answer. Epistemic downgrades challenge the
assumption that the answerer knows the answer with
certainty. Non-interjection-type answers can reject
different assumptions, e.g. challenging the relevance
of the proposition raised by the questioner, assuming
more control over the topics discussed, or increasing
one’s epistemic authority (Raymond 2003, Enfield et
al. 2019, Stivers 2022); this is especially clear in the
case of transformative answers, which as mentioned
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above are most common for Class B. The lack of core
extensions is because non-interjection-type answers
are already complex and thus hard to extend.

Secondly, post-core expansions and most other
post-core features like downgrades, fillers, repair,
discourse markers and but (which are most likely
found in expansions rather than core extensions) are
mostly associated with Class A+C over B+D. A+C
may be labelled EXPANDED ANSWERS, B+D as NON-
EXPANDED ANSWERS.

Finally, pre-core fillers and discourse markers
follow the pattern A>B>C>D. These features DELAY
the presentation of the answer core. The fact that they
differ across all four classes suggests that they serve
the double function of anticipating (a) assumption
challenges (hence A, B > C, D) and (b) a longer,
multi-utterance turn (hence A> B, C > D).

Interestingly, offsets pattern primarily with the first
group (A, B > C, D), not other delay-related
properties, as it is unclear that A>B or C>D. Thus,
while our results support Kendrick & Torreira’s (2015)
suggestion that offset length is an aspect of turn
design, silent delays may play a more restricted role
than delays with fillers and particles: Longer silence
primarily signals assumption-challenging answers,
not expanded ones. These differences are small but
noticeable: A and D are 151 ms apart.

3.2 Relationship with tilt-conformity

We now proceed to discuss how the various answer
design features relate to action preference by
examining their relationship with tilt-conformity,
under the assumption that tilt-non-conforming
answers implement dispreferred actions. Comparing

TC

™e NP
Figure 7: Distribution of probability mass
assigned to each class in difference tilt-
conformity conditions.

Queclarative Inverted

TC THC NP TC THC NP

TC THNC MNP

Figure 6: Distribution of probability mass assigned
to each class by tilt-conformity and question type.



tilt-non-conforming (TNC) and tilt-conforming (TC)
answers, D is much less probable in TNC than TC
answer: the odds of getting A, B and C over D are
higher in TNC answers (A vs D: p=.003; Bvs D: p
=.005; Cvs D: p <0.001). All other comparisons are
insignificant. Comparing non-polarity-bearing (NP)
answers to TC ones, the odds of A and B are
significantly higher than C, D and E for NP answers
(p < 0.001 for all); as is clear in Figure 6, TC-NP
differences are much larger than TC-TNC ones,
showing that assumption-challenging features are
much more associated with NP than turn expansions.

To determine whether this pattern is unique to
inverted questions, which dominate the sample, a by-
question type barchart is given in Figure 7. The TC-
TNC difference is still much smaller than TC-NP or
TNC-NP. Because TNC cases are underrepresented,
in most cases there is not enough power to
quantitatively detect differences between TC and
TNC. Visually, however, in tag questions, TNC may
favour B (assumption-challenging, non-expanded)
over not just over D (p = .007) but also C (p = .105)
and A (p = .057), suggesting that assumption
challenges play a bigger role than expansions in TNC
answers to tag questions. However, a larger sample is
needed to verify this.

4 Discussion and conclusion

This paper examined turn design in one context:
Answers to polar questions in American English,
mostly information-seeking questions due to the
corpus’ nature. We first examined what turn design
features tend to go together. Most of the features
examined fall into three categories depending on how
they co-occur: assumption challenges, answer
expansions, and delaying strategies. The three typical
sets of strategies traditionally said to characterise
dispreferred turn formats (Pillet-Shore 2017) —
qualification, accounts (i.e. answer explanations) and
delays — fall into these three categories. This suggests
that the three types of strategies have distinct
distributions and thus functions.

Two unexpected observations emerge from this
typology. Firstly, while the choice between
interjection- vs. non-interjection-type answers 1is
usually associated with a separate dimension (G
Raymond 2003) from the dispreferred turn design
strategies of qualification, account and delay, we find
that it patterns with qualification in the assumption-
challenging category. Indeed, only 5% of interjection-
type answers are downgraded, while 21% of non-
interjection-type answers are. Secondly, offset

patterns with assumption-challenging features rather
than other (nonsilent) delay-related features,
suggesting that silent delays project only assumption-
challenging, not expanded answers.

The fact that nonsilent delays correlate with both
assumption challenges and answer expansions may
be explained by multiple mechanisms. Firstly, they
may anticipate the other turn design features, e.g.
Heritage (2015) argues that wel/ alerts the listener to
upcoming nonstraightforward, transformative and
expanded answers. They may also directly signal
similar meanings as some other answer design
strategies, e.g. difficulty in memory retrieval or lower
level of knowledge (Smith & Clark 1993, Brennan &
Williams 1995), which presumably correlate with
epistemic downgrades.

To examine how action preference is related to
answer design, we also examined the relationship
between tilt-conformity and answer design. As
expected, tilt-nonconformity disfavours answers with
no delays, expansions, or assumption-challenging
features over answers with at least some of these.
TNC status may favour assumption-challenging
features even more in tag questions, probably because
they have stronger tilts, and thus going against the tilt
poses a greater face threat. Yet, regardless of question
type, the tilt-conformity effect is far smaller than the
difference between non-polarity-conveying and
polarity-conveying answers (regardless of tilt-
conformity): Answers without polarity are
overwhelmingly designed with non-interjection-type
answers and/or epistemic downgrades, likely because
they inherently challenge the assumption that the
answerer is willing and able to give a straightforward
yes/no. This extends Robinson’s (2020a) hypothesis
that ‘yes’ and ‘no’ answers are both preferred answers
to positive inverted questions, and only conditional
answers are dispreferred, by expanding it to all polar
question formats with non-polarity-bearing answers.
One difference between Robinson’s and our study is
that he found no significant difference in pre-
beginning behaviour (including fillers and discourse
markers in our study) between tilt-conforming and
tilt-nonconforming answers, while we do find that
tilt-nonconforming answers disfavour class D, which
has the least pre-beginning behaviour. This is likely a
result of our larger sample size, and supports
Robinson’s idea that although the social action of
asking a positive inverted question doesn’t by itself
impose a preference, the syntactic form still encodes
a tilt (Robinson 2020b).



Our results favour a gradient, multidimensional
view of preference (Robinson 2020a). Limited by the
categories employed by pre-existing SwDA
annotations, our study cannot fully examine this
richness, e.g. we could not distinguish between
expansion types or determine which questions are
truly information-seeking. Future studies will
hopefully shed further light on these dimensions, a
key piece of research as dialogue systems strive to
mimic human conversational behaviour (Alloatti et al.
2021, Dingemanse & Liesenfeld 2022, Lah & Lee
2023).
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Appendices

A Switchboard tags

qy polar question

ny ‘yes’ answer

nn ‘no’ answer

ny affirmative non-‘yes’ answer
ng negative non-‘no’ answer
no other answer

nd dispreferred answer
aa acceptance

aap | partial acceptance

am ‘maybe’ answer

ar rejection

arp | partial rejection

h hold

“r self-repetition

~m other-repetition

“e expansion

"9 tag question

~h hedge

sd statement, not opinion
sV statement, opinion

{F } | filler

{D } | discourse marker

{C } | conjunction

5 abandoned utterance
[] repair

<> vocalism

B Details of feature extraction

B.1 Details of extracting question-answer pairs
and answer features

Before further processing, any slash unit with + as its
dialogue act was merged with the preceding act by the
same participant. When there are additional slash
units after the first question slash unit of a certain turn
(for example, reformulations of the question or turn
increments), all slash units up to either the the slash
unit right before the start of the next turn or the one
right after the start of the next turn were considered,

whichever one’s midpoint was closer to the start of
the next turn.

The last question slash unit of the question turn
was considered in determing question type and
polarity. This question was parsed with spaCy. If
spaCy identified multiple sentences within the slash
unit, then we took the one with a question mark if
there is only one such slash unit; we took the longest
sentence with a question mark if there were multiple
such slash units; and we took the longest sentence if
there were no question marks.

The following were treated as potential answer
cores: ny (yes answers), nn (no answers), na
(affirmative non-yes answers), ng (negative non-no
answers), no ("other answers’), sd"m (repetition of
the other’s question, which generally affirm the
answer in this corpus), aa and ar (acceptance /
rejection  of  question-formatted  collaborate
completions), plus any sd with the word ‘depend’ in
it. For each responsive turn, the first slash unit with
one of these dialogue acts was treated as core. Some
yes/no answers were mistakenly tagged as b
(backchannels); when they are classified as
interjection-type answers (see below) and there are no
other slash units in the response, they are treated as
‘yes’ answers. Although sv and sd often also
implemented polar answers, they were not included
as it is difficult to automatically determine whether
they bear polarity and, if so, whether they are positive
or negative. Determination of answer polarity was
discussed in the main text.

Well and you know were originally extracted
separately from other discourse markers, but later
merged into the general category.

OFFSET, SISR and NONINTERJ were mostly
extracted as stated in the main text; NONINTERJ are
those answers classed as nn and ny. In addition, a
small number of answers from other classes were also
interjection-type. These were extracted by
considering a list of potential interjection-type
answers: yeah, no, yes, uh-huh, right, huh-uh, okay,
sure, exactly, absolutely, definitely, certainly,
probably, yep, yip, mm-hm, of course, no question, I'll
say, possibly, maybe, alright, fine. This list combines
the one in Stivers (2022), plus other interjection-type
answers fouund in an inspection of all one-word cores
attested in the corpus. An answer is considered
interjection-type if its core contains one of these
interjections alone, or one of these interjections after
by uh, um, oh, well.

The determination of DOWNGRADE was relatively
complex. Lists of adverbs and auxiliaries were
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created by parsing all the answer (pre-)cores in the
corpus, extracting all adverbs and auxiliaries, and
determining polarity. Auxiliaries deemed to be
downgraders include could, might, should, may, can,
ought, must. Adverbs deemed to be downgraders on
their own were probably, somewhat, sometimes,
personally, maybe, perhaps, possibly, fairly. Adverbs
deemed to be downgraders when combined with
negation were really, so, very, too, usually, exactly,
normally, particularly, always; these were only
considered downgraders when there is a negator in
the same sentence.

Epistemic verbs include the lemmas think, believe,
guess, suppose, know, feel, hear, assume, bet,
conjecture, consider, doubt, expect, fancy, figure,
reckon, gather, imagine, judge, presume, sense,
surmise, suspect, trust with I as subject, and say with
subjects other than /. Other phrases included were my
guess, my feeling, [ get the feeling, looks like.

B.2 Unused answer design features

The following features were extracted but not used in
the end because they appeared less than 5% of the
time.

A pre-core/core has the feature HOLD if it contains
a slash unit tagged h (hold).

Non-linguistic vocalisms are transcribed in the
corpus within angular brackets <>. Four were coded
into features: Throat-clearing (THROAT) from the tag
<throat clearing>, laughter (LAUGH) from the
tag <laughter>, lip-smacking (LIPSM) from the tag
<lipsmack>, and breaths (BREATH) from the tag
<breathing>.

Conjunctions (CONJ) marked {C }, with the forms
so, but, because, and sentence-initial And were treated
as conjunctions. Edit terms (EDITTERM) were
extracted with {E }, with / mean originally extracted
apart from other edit terms; all edit terms were
discarded in the end.

The feature DIFFPOLA was used for dialogue acts
conveying a different polarity as the core.

Sure, exactly and really were considered
UPGRADER when not accompanied by negators.
Absolutely, definitely and certainly were always
considered upgraders.

B.3 Determination of tilt-conformity

Generally, any question without an auxiliary-subject
(or copula-subject) sequence or a tag is considered
queclarative. This include subclausal questions. The
main exception is that when a question omits a copula
or auxiliary verb that cannot be omitted in

declaratives; in this case, this is considered ellipsis of
the beginning of the question (Quirk et al. 1985), e.g.
you got any hobbies that you want to talk about?. For
questions starting with sow about (e.g. {C And } how
about SILENCE OF THE LAMB? /), the question
type was set to be the same as that of the previous
question.

In general, question slash units with ~d were
treated as queclaratives, those with ~g as tag
questions, and other questions were treated as
inverted. Sub-clausal questions were treated as
declarative. However, there are a number of cases
where the Switchboard corpus appeared to use
intonation instead of syntax to determine ~d would be
used. To smooth out these inconsistencies, if a
question was tagged as inverted but our syntactic
parse finds an auxiliary-subject sequence, or the other
way around, we manually checked them to determine
question type.

Polarity was determined as described in the main
text: For all questions but tag questions with
auxiliary-subject tags, it was whether the root had a
negator dependent; for tags with auxiliary-subject
tags, it was the opposite polarity as the tag.

Answer polarity largely was determined as
mentioned in the main text. Answers tagged sd
containing the word depend were treated as NP.

C Descriptive statistics

In the main text, we have discussed the model results.
In this appendix we present the descriptive statistics
to paint a more comprehensive picture of the data.

Relationships among binary turn design features.
To examine the relationship between different binary
variables, log-odds ratios were computed between
each pair of features, and plotted in Figure 8. Positive
values mean the features tend to appear together,
negative ones