@inproceedings{wongso-etal-2025-lazarus,
title = "Lazarus {NLP} at {S}em{E}val-2025 Task 11: Fine-Tuning Large Language Models for Multi-Label Emotion Classification via Sentence-Label Pairing",
author = "Wongso, Wilson and
Setiawan, David and
Joyoadikusumo, Ananto and
Limcorn, Steven",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.104/",
pages = "763--772",
ISBN = "979-8-89176-273-2",
abstract = "Multi-label emotion classification in low-resource languages remains challenging due to limited annotated data and model adaptability. To address this, we fine-tune large language models (LLMs) using a sentence-label pairing approach, optimizing efficiency while improving classification performance. Evaluating on Sundanese, Indonesian, and Javanese, our method outperforms conventional classifier-based fine-tuning and achieves strong zero-shot cross-lingual transfer. Notably, our approach ranks first in the Sundanese subset of SemEval-2025 Task 11 Track A. Our findings demonstrate the effectiveness of LLM fine-tuning for low-resource emotion classification, underscoring the importance of tailoring adaptation strategies to specific language families in multilingual contexts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wongso-etal-2025-lazarus">
<titleInfo>
<title>Lazarus NLP at SemEval-2025 Task 11: Fine-Tuning Large Language Models for Multi-Label Emotion Classification via Sentence-Label Pairing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wilson</namePart>
<namePart type="family">Wongso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Setiawan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ananto</namePart>
<namePart type="family">Joyoadikusumo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Limcorn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Multi-label emotion classification in low-resource languages remains challenging due to limited annotated data and model adaptability. To address this, we fine-tune large language models (LLMs) using a sentence-label pairing approach, optimizing efficiency while improving classification performance. Evaluating on Sundanese, Indonesian, and Javanese, our method outperforms conventional classifier-based fine-tuning and achieves strong zero-shot cross-lingual transfer. Notably, our approach ranks first in the Sundanese subset of SemEval-2025 Task 11 Track A. Our findings demonstrate the effectiveness of LLM fine-tuning for low-resource emotion classification, underscoring the importance of tailoring adaptation strategies to specific language families in multilingual contexts.</abstract>
<identifier type="citekey">wongso-etal-2025-lazarus</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.104/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>763</start>
<end>772</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lazarus NLP at SemEval-2025 Task 11: Fine-Tuning Large Language Models for Multi-Label Emotion Classification via Sentence-Label Pairing
%A Wongso, Wilson
%A Setiawan, David
%A Joyoadikusumo, Ananto
%A Limcorn, Steven
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F wongso-etal-2025-lazarus
%X Multi-label emotion classification in low-resource languages remains challenging due to limited annotated data and model adaptability. To address this, we fine-tune large language models (LLMs) using a sentence-label pairing approach, optimizing efficiency while improving classification performance. Evaluating on Sundanese, Indonesian, and Javanese, our method outperforms conventional classifier-based fine-tuning and achieves strong zero-shot cross-lingual transfer. Notably, our approach ranks first in the Sundanese subset of SemEval-2025 Task 11 Track A. Our findings demonstrate the effectiveness of LLM fine-tuning for low-resource emotion classification, underscoring the importance of tailoring adaptation strategies to specific language families in multilingual contexts.
%U https://aclanthology.org/2025.semeval-1.104/
%P 763-772
Markdown (Informal)
[Lazarus NLP at SemEval-2025 Task 11: Fine-Tuning Large Language Models for Multi-Label Emotion Classification via Sentence-Label Pairing](https://aclanthology.org/2025.semeval-1.104/) (Wongso et al., SemEval 2025)
ACL