@inproceedings{volker-etal-2025-salt,
title = "{SALT} at {S}em{E}val-2025 Task 2: A {SQL}-based Approach for {LLM}-Free Entity-Aware-Translation",
author = {V{\"o}lker, Tom and
Pfister, Jan and
Hotho, Andreas},
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.117/",
pages = "852--864",
ISBN = "979-8-89176-273-2",
abstract = "Entity-aware machine translation faces significant challenges when translating culturally-adapted named entities that require knowledge beyond the source text. We present SALT (SQL-based Approach for LLM-Free Entity-Aware-Translation), a parameter-efficient system for the SemEval-2025 Task 2. Our approach combines SQL-based entity retrieval with constrained neural translation via logit biasing and explicit entity annotations. Despite its simplicity, it achieves state-of-the-art performance (First Place) among approaches not using gold-standard data, while requiring far less computation than LLM-based methods. Our ablation studies show simple SQL-based retrieval rivals complex neural models, and strategic model refinement outperforms increased model complexity. SALT offers an alternative to resource-intensive LLM-based approaches, achieving comparable results with only a fraction of the parameters."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="volker-etal-2025-salt">
<titleInfo>
<title>SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Völker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Pfister</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Hotho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Entity-aware machine translation faces significant challenges when translating culturally-adapted named entities that require knowledge beyond the source text. We present SALT (SQL-based Approach for LLM-Free Entity-Aware-Translation), a parameter-efficient system for the SemEval-2025 Task 2. Our approach combines SQL-based entity retrieval with constrained neural translation via logit biasing and explicit entity annotations. Despite its simplicity, it achieves state-of-the-art performance (First Place) among approaches not using gold-standard data, while requiring far less computation than LLM-based methods. Our ablation studies show simple SQL-based retrieval rivals complex neural models, and strategic model refinement outperforms increased model complexity. SALT offers an alternative to resource-intensive LLM-based approaches, achieving comparable results with only a fraction of the parameters.</abstract>
<identifier type="citekey">volker-etal-2025-salt</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.117/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>852</start>
<end>864</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation
%A Völker, Tom
%A Pfister, Jan
%A Hotho, Andreas
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F volker-etal-2025-salt
%X Entity-aware machine translation faces significant challenges when translating culturally-adapted named entities that require knowledge beyond the source text. We present SALT (SQL-based Approach for LLM-Free Entity-Aware-Translation), a parameter-efficient system for the SemEval-2025 Task 2. Our approach combines SQL-based entity retrieval with constrained neural translation via logit biasing and explicit entity annotations. Despite its simplicity, it achieves state-of-the-art performance (First Place) among approaches not using gold-standard data, while requiring far less computation than LLM-based methods. Our ablation studies show simple SQL-based retrieval rivals complex neural models, and strategic model refinement outperforms increased model complexity. SALT offers an alternative to resource-intensive LLM-based approaches, achieving comparable results with only a fraction of the parameters.
%U https://aclanthology.org/2025.semeval-1.117/
%P 852-864
Markdown (Informal)
[SALT at SemEval-2025 Task 2: A SQL-based Approach for LLM-Free Entity-Aware-Translation](https://aclanthology.org/2025.semeval-1.117/) (Völker et al., SemEval 2025)
ACL