@inproceedings{mokhtar-etal-2025-alexnlp,
title = "{A}lex{NLP}-{MO} at {S}em{E}val-2025 Task 8: A Chain of Thought Framework for Question-Answering over Tabular Data",
author = "Mokhtar, Omar and
Ghanem, Minah and
El - Makky, Nagwa",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.118/",
pages = "865--873",
ISBN = "979-8-89176-273-2",
abstract = "Table Question Answering (TQA) involves extracting answers from structured data using natural language queries, a challenging task due to diverse table formats and complex reasoning. This work develops a TQA system using the DataBench dataset, leveraging large language models (LLMs) to generate Python code in a zero-shot manner. Our approach is highly generic, relying on a structured Chain-of-Thought framework to improve reasoning and data interpretation. Experimental results demonstrate that our method achieves high accuracy and efficiency, making it a flexible and effective solution for real-world tabular question answering."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mokhtar-etal-2025-alexnlp">
<titleInfo>
<title>AlexNLP-MO at SemEval-2025 Task 8: A Chain of Thought Framework for Question-Answering over Tabular Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Omar</namePart>
<namePart type="family">Mokhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minah</namePart>
<namePart type="family">Ghanem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nagwa</namePart>
<namePart type="family">El - Makky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Table Question Answering (TQA) involves extracting answers from structured data using natural language queries, a challenging task due to diverse table formats and complex reasoning. This work develops a TQA system using the DataBench dataset, leveraging large language models (LLMs) to generate Python code in a zero-shot manner. Our approach is highly generic, relying on a structured Chain-of-Thought framework to improve reasoning and data interpretation. Experimental results demonstrate that our method achieves high accuracy and efficiency, making it a flexible and effective solution for real-world tabular question answering.</abstract>
<identifier type="citekey">mokhtar-etal-2025-alexnlp</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.118/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>865</start>
<end>873</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AlexNLP-MO at SemEval-2025 Task 8: A Chain of Thought Framework for Question-Answering over Tabular Data
%A Mokhtar, Omar
%A Ghanem, Minah
%A El - Makky, Nagwa
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F mokhtar-etal-2025-alexnlp
%X Table Question Answering (TQA) involves extracting answers from structured data using natural language queries, a challenging task due to diverse table formats and complex reasoning. This work develops a TQA system using the DataBench dataset, leveraging large language models (LLMs) to generate Python code in a zero-shot manner. Our approach is highly generic, relying on a structured Chain-of-Thought framework to improve reasoning and data interpretation. Experimental results demonstrate that our method achieves high accuracy and efficiency, making it a flexible and effective solution for real-world tabular question answering.
%U https://aclanthology.org/2025.semeval-1.118/
%P 865-873
Markdown (Informal)
[AlexNLP-MO at SemEval-2025 Task 8: A Chain of Thought Framework for Question-Answering over Tabular Data](https://aclanthology.org/2025.semeval-1.118/) (Mokhtar et al., SemEval 2025)
ACL