@inproceedings{islam-etal-2025-nbf,
title = "{NBF} at {S}em{E}val-2025 Task 5: Light-Burst Attention Enhanced System for Multilingual Subject Recommendation",
author = "Islam, Baharul and
Ahmad, Nasim and
Barbhuiya, Ferdous and
Dey, Kuntal",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.127/",
pages = "953--958",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents a system for automated subject tagging in a bilingual academic setting. Our approach leverages a novel burst attention mechanism to enhance the alignment between article and subject embeddings, derived from a large cross-lingual subject corpus. By employing a margin-based loss with negative sampling, our resource-efficient model achieves competitive performance in both quantitative and qualitative evaluations. Experimental results demonstrate average recall rates of 32.24{\%} on the full test set, along with robust performance on specialized subsets, making our system well-suited for large-scale subject recommendation tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="islam-etal-2025-nbf">
<titleInfo>
<title>NBF at SemEval-2025 Task 5: Light-Burst Attention Enhanced System for Multilingual Subject Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baharul</namePart>
<namePart type="family">Islam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasim</namePart>
<namePart type="family">Ahmad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ferdous</namePart>
<namePart type="family">Barbhuiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuntal</namePart>
<namePart type="family">Dey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents a system for automated subject tagging in a bilingual academic setting. Our approach leverages a novel burst attention mechanism to enhance the alignment between article and subject embeddings, derived from a large cross-lingual subject corpus. By employing a margin-based loss with negative sampling, our resource-efficient model achieves competitive performance in both quantitative and qualitative evaluations. Experimental results demonstrate average recall rates of 32.24% on the full test set, along with robust performance on specialized subsets, making our system well-suited for large-scale subject recommendation tasks.</abstract>
<identifier type="citekey">islam-etal-2025-nbf</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.127/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>953</start>
<end>958</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NBF at SemEval-2025 Task 5: Light-Burst Attention Enhanced System for Multilingual Subject Recommendation
%A Islam, Baharul
%A Ahmad, Nasim
%A Barbhuiya, Ferdous
%A Dey, Kuntal
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F islam-etal-2025-nbf
%X This paper presents a system for automated subject tagging in a bilingual academic setting. Our approach leverages a novel burst attention mechanism to enhance the alignment between article and subject embeddings, derived from a large cross-lingual subject corpus. By employing a margin-based loss with negative sampling, our resource-efficient model achieves competitive performance in both quantitative and qualitative evaluations. Experimental results demonstrate average recall rates of 32.24% on the full test set, along with robust performance on specialized subsets, making our system well-suited for large-scale subject recommendation tasks.
%U https://aclanthology.org/2025.semeval-1.127/
%P 953-958
Markdown (Informal)
[NBF at SemEval-2025 Task 5: Light-Burst Attention Enhanced System for Multilingual Subject Recommendation](https://aclanthology.org/2025.semeval-1.127/) (Islam et al., SemEval 2025)
ACL