@inproceedings{yang-etal-2025-ynu,
title = "{YNU}-{HPCC} at {S}em{E}val-2025 Task 11: Bridging the Gap in Text-Based Emotion Using Multiple Prediction Headers",
author = "Yang, Hao and
Wang, Jin and
Zhang, Xuejie",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.13/",
pages = "83--89",
ISBN = "979-8-89176-273-2",
abstract = "This paper describes the our team{'}s participation in Subtask A of Task 11 at SemEval-2025, focusing on multilingual text-based emotion classification. The team employed the RoBERTa model, enhanced with modifications to the output head to allow independent prediction of six emotions: anger, disgust, fear, joy, sadness, and surprise. The dataset was translated into English using Google Translate to facilitate processing. The study found that a single prediction head outperformed simultaneous prediction of multiple emotions, and training on the translated dataset yielded better results than using the original dataset. The team incorporated Focal Loss and R-Drop techniques to address class imbalance and improve model stability. Future work will continue to explore improvements in this area."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-ynu">
<titleInfo>
<title>YNU-HPCC at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Using Multiple Prediction Headers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper describes the our team’s participation in Subtask A of Task 11 at SemEval-2025, focusing on multilingual text-based emotion classification. The team employed the RoBERTa model, enhanced with modifications to the output head to allow independent prediction of six emotions: anger, disgust, fear, joy, sadness, and surprise. The dataset was translated into English using Google Translate to facilitate processing. The study found that a single prediction head outperformed simultaneous prediction of multiple emotions, and training on the translated dataset yielded better results than using the original dataset. The team incorporated Focal Loss and R-Drop techniques to address class imbalance and improve model stability. Future work will continue to explore improvements in this area.</abstract>
<identifier type="citekey">yang-etal-2025-ynu</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.13/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>83</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Using Multiple Prediction Headers
%A Yang, Hao
%A Wang, Jin
%A Zhang, Xuejie
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F yang-etal-2025-ynu
%X This paper describes the our team’s participation in Subtask A of Task 11 at SemEval-2025, focusing on multilingual text-based emotion classification. The team employed the RoBERTa model, enhanced with modifications to the output head to allow independent prediction of six emotions: anger, disgust, fear, joy, sadness, and surprise. The dataset was translated into English using Google Translate to facilitate processing. The study found that a single prediction head outperformed simultaneous prediction of multiple emotions, and training on the translated dataset yielded better results than using the original dataset. The team incorporated Focal Loss and R-Drop techniques to address class imbalance and improve model stability. Future work will continue to explore improvements in this area.
%U https://aclanthology.org/2025.semeval-1.13/
%P 83-89
Markdown (Informal)
[YNU-HPCC at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Using Multiple Prediction Headers](https://aclanthology.org/2025.semeval-1.13/) (Yang et al., SemEval 2025)
ACL