@inproceedings{hikal-etal-2025-msa-semeval,
title = "{MSA} at {S}em{E}val-2025 Task 3: High Quality Weak Labeling and {LLM} Ensemble Verification for Multilingual Hallucination Detection",
author = "Hikal, Baraa and
Nasreldin, Ahmed and
Hamdi, Ali",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.131/",
pages = "989--995",
ISBN = "979-8-89176-273-2",
abstract = "This paper describes our submission for SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The task involves detecting hallucinated spans in text generated by instruction-tuned Large Language Models (LLMs) across multiple languages. Our approach combines task-specific prompt engineering with an LLM ensemble verification mechanism, where a primary model extracts hallucination spans and three independent LLMs adjudicate their validity through probability-based voting. This framework simulates the human annotation workflow used in the shared task validation and test data. Additionally, a fuzzy matching algorithm is utilized to improve span alignment. Our system ranked 1st in Arabic and Basque, 2nd in German, Swedish, and Finnish, and 3rd in Czech, Farsi, and French."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hikal-etal-2025-msa-semeval">
<titleInfo>
<title>MSA at SemEval-2025 Task 3: High Quality Weak Labeling and LLM Ensemble Verification for Multilingual Hallucination Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baraa</namePart>
<namePart type="family">Hikal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Nasreldin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper describes our submission for SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The task involves detecting hallucinated spans in text generated by instruction-tuned Large Language Models (LLMs) across multiple languages. Our approach combines task-specific prompt engineering with an LLM ensemble verification mechanism, where a primary model extracts hallucination spans and three independent LLMs adjudicate their validity through probability-based voting. This framework simulates the human annotation workflow used in the shared task validation and test data. Additionally, a fuzzy matching algorithm is utilized to improve span alignment. Our system ranked 1st in Arabic and Basque, 2nd in German, Swedish, and Finnish, and 3rd in Czech, Farsi, and French.</abstract>
<identifier type="citekey">hikal-etal-2025-msa-semeval</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.131/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>989</start>
<end>995</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MSA at SemEval-2025 Task 3: High Quality Weak Labeling and LLM Ensemble Verification for Multilingual Hallucination Detection
%A Hikal, Baraa
%A Nasreldin, Ahmed
%A Hamdi, Ali
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F hikal-etal-2025-msa-semeval
%X This paper describes our submission for SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The task involves detecting hallucinated spans in text generated by instruction-tuned Large Language Models (LLMs) across multiple languages. Our approach combines task-specific prompt engineering with an LLM ensemble verification mechanism, where a primary model extracts hallucination spans and three independent LLMs adjudicate their validity through probability-based voting. This framework simulates the human annotation workflow used in the shared task validation and test data. Additionally, a fuzzy matching algorithm is utilized to improve span alignment. Our system ranked 1st in Arabic and Basque, 2nd in German, Swedish, and Finnish, and 3rd in Czech, Farsi, and French.
%U https://aclanthology.org/2025.semeval-1.131/
%P 989-995
Markdown (Informal)
[MSA at SemEval-2025 Task 3: High Quality Weak Labeling and LLM Ensemble Verification for Multilingual Hallucination Detection](https://aclanthology.org/2025.semeval-1.131/) (Hikal et al., SemEval 2025)
ACL