@inproceedings{gao-etal-2025-i2r,
title = "{I}2{R}-{NLP} at {S}em{E}val-2025 Task 8: Question Answering on Tabular Data",
author = "Gao, Yuze and
Chen, Bin and
Su, Jian",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.14/",
pages = "90--101",
ISBN = "979-8-89176-273-2",
abstract = "We present a Large Language Model (LLM) based system for question answering (QA) over tabular data that leverages multi-turn prompting to automatically generate executable Pandas functions. Our framework decomposes the problem into three key steps: (1) Answer Type Identification, where the system identifies the expected format of the response (e.g., boolean, number, category); (2) Pandas Function Generation, which generates a corresponding Pandas function using table metadata and in-context examples, and (3) Error Correction and Regeneration, where iteratively refining the function based on error feedback from executions. Evaluations on the SemEval-2025 Task 8 Tabular QA benchmark (Grijalba et al., 2024) demonstrate that our multi-turn approach significantly outperforms single-turn prompting models in exact match accuracy by 7.3{\%}. The proposed system not only improves code generation robustness but also paves the way for enhanced and adaptability in table-QA reasoning tasks. Our implementation is available at https://github.com/Gyyz/Question{\_}Answering-over-Tabular-Data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-etal-2025-i2r">
<titleInfo>
<title>I2R-NLP at SemEval-2025 Task 8: Question Answering on Tabular Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuze</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>We present a Large Language Model (LLM) based system for question answering (QA) over tabular data that leverages multi-turn prompting to automatically generate executable Pandas functions. Our framework decomposes the problem into three key steps: (1) Answer Type Identification, where the system identifies the expected format of the response (e.g., boolean, number, category); (2) Pandas Function Generation, which generates a corresponding Pandas function using table metadata and in-context examples, and (3) Error Correction and Regeneration, where iteratively refining the function based on error feedback from executions. Evaluations on the SemEval-2025 Task 8 Tabular QA benchmark (Grijalba et al., 2024) demonstrate that our multi-turn approach significantly outperforms single-turn prompting models in exact match accuracy by 7.3%. The proposed system not only improves code generation robustness but also paves the way for enhanced and adaptability in table-QA reasoning tasks. Our implementation is available at https://github.com/Gyyz/Question_Answering-over-Tabular-Data.</abstract>
<identifier type="citekey">gao-etal-2025-i2r</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.14/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>90</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T I2R-NLP at SemEval-2025 Task 8: Question Answering on Tabular Data
%A Gao, Yuze
%A Chen, Bin
%A Su, Jian
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F gao-etal-2025-i2r
%X We present a Large Language Model (LLM) based system for question answering (QA) over tabular data that leverages multi-turn prompting to automatically generate executable Pandas functions. Our framework decomposes the problem into three key steps: (1) Answer Type Identification, where the system identifies the expected format of the response (e.g., boolean, number, category); (2) Pandas Function Generation, which generates a corresponding Pandas function using table metadata and in-context examples, and (3) Error Correction and Regeneration, where iteratively refining the function based on error feedback from executions. Evaluations on the SemEval-2025 Task 8 Tabular QA benchmark (Grijalba et al., 2024) demonstrate that our multi-turn approach significantly outperforms single-turn prompting models in exact match accuracy by 7.3%. The proposed system not only improves code generation robustness but also paves the way for enhanced and adaptability in table-QA reasoning tasks. Our implementation is available at https://github.com/Gyyz/Question_Answering-over-Tabular-Data.
%U https://aclanthology.org/2025.semeval-1.14/
%P 90-101
Markdown (Informal)
[I2R-NLP at SemEval-2025 Task 8: Question Answering on Tabular Data](https://aclanthology.org/2025.semeval-1.14/) (Gao et al., SemEval 2025)
ACL