@inproceedings{yip-etal-2025-charsiurice,
title = "{C}harsiu{R}ice at {S}em{E}val-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection",
author = "Yip, Hiu Yan and
Chiu, Hing Man and
Yang, Hai - Yin",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.143/",
pages = "1082--1088",
ISBN = "979-8-89176-273-2",
abstract = "This paper presents our participation in SemEval-2025 Task 11, which focuses on bridging the gap in text-based emotion detection. Our team took part in both Tracks A and B, addressing different aspects of emotion classification. We fine-tuned a RoBERTa base model on the provided dataset in Track A, achieving a Macro-F1 score of 0.7264. For Track B, we built on top of the Track A model by incorporating an additional non-linear layer, in the hope of enhancing Track A model{'}s understanding of emotion detection. Track B model resulted with an average Pearson{'}s R of 0.5658. The results demonstrate the effectiveness of fine-tuning in Track A and the potential improvements from architectural modifications in Track B for emotion intensity detection tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yip-etal-2025-charsiurice">
<titleInfo>
<title>CharsiuRice at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiu</namePart>
<namePart type="given">Yan</namePart>
<namePart type="family">Yip</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hing</namePart>
<namePart type="given">Man</namePart>
<namePart type="family">Chiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hai</namePart>
<namePart type="given">-</namePart>
<namePart type="given">Yin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper presents our participation in SemEval-2025 Task 11, which focuses on bridging the gap in text-based emotion detection. Our team took part in both Tracks A and B, addressing different aspects of emotion classification. We fine-tuned a RoBERTa base model on the provided dataset in Track A, achieving a Macro-F1 score of 0.7264. For Track B, we built on top of the Track A model by incorporating an additional non-linear layer, in the hope of enhancing Track A model’s understanding of emotion detection. Track B model resulted with an average Pearson’s R of 0.5658. The results demonstrate the effectiveness of fine-tuning in Track A and the potential improvements from architectural modifications in Track B for emotion intensity detection tasks.</abstract>
<identifier type="citekey">yip-etal-2025-charsiurice</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.143/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1082</start>
<end>1088</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CharsiuRice at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection
%A Yip, Hiu Yan
%A Chiu, Hing Man
%A Yang, Hai -. Yin
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F yip-etal-2025-charsiurice
%X This paper presents our participation in SemEval-2025 Task 11, which focuses on bridging the gap in text-based emotion detection. Our team took part in both Tracks A and B, addressing different aspects of emotion classification. We fine-tuned a RoBERTa base model on the provided dataset in Track A, achieving a Macro-F1 score of 0.7264. For Track B, we built on top of the Track A model by incorporating an additional non-linear layer, in the hope of enhancing Track A model’s understanding of emotion detection. Track B model resulted with an average Pearson’s R of 0.5658. The results demonstrate the effectiveness of fine-tuning in Track A and the potential improvements from architectural modifications in Track B for emotion intensity detection tasks.
%U https://aclanthology.org/2025.semeval-1.143/
%P 1082-1088
Markdown (Informal)
[CharsiuRice at SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection](https://aclanthology.org/2025.semeval-1.143/) (Yip et al., SemEval 2025)
ACL