@inproceedings{spiewak-karas-2025-opi,
title = "{OPI}-{DRO}-{HEL} at {S}em{E}val-2025 Task 9: Integrating Transformer-Based Classification with {LLM}-Assisted Few-Shot Learning for Food Hazard Detection",
author = "{\'S}piewak, Martyna and
Kara{\'s}, Daniel",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.155/",
pages = "1174--1180",
ISBN = "979-8-89176-273-2",
abstract = "In this paper, we propose a hybrid approach for food hazard detection that combines a fine-tuned RoBERTa classifier with few-shot learning using an LLM model (GPT-3.5-turbo). We address challenges related to unstructured text and class imbalance by applying class weighting and keyword extraction (KeyBERT, YAKE, and Sentence-BERT). When RoBERTa{'}s confidence falls below a given threshold, a structured prompt which comprising the title, extracted keywords, and a few representative examples is used to re-evaluate the prediction with ChatGPT."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="spiewak-karas-2025-opi">
<titleInfo>
<title>OPI-DRO-HEL at SemEval-2025 Task 9: Integrating Transformer-Based Classification with LLM-Assisted Few-Shot Learning for Food Hazard Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martyna</namePart>
<namePart type="family">Śpiewak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Karaś</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>In this paper, we propose a hybrid approach for food hazard detection that combines a fine-tuned RoBERTa classifier with few-shot learning using an LLM model (GPT-3.5-turbo). We address challenges related to unstructured text and class imbalance by applying class weighting and keyword extraction (KeyBERT, YAKE, and Sentence-BERT). When RoBERTa’s confidence falls below a given threshold, a structured prompt which comprising the title, extracted keywords, and a few representative examples is used to re-evaluate the prediction with ChatGPT.</abstract>
<identifier type="citekey">spiewak-karas-2025-opi</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.155/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1174</start>
<end>1180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OPI-DRO-HEL at SemEval-2025 Task 9: Integrating Transformer-Based Classification with LLM-Assisted Few-Shot Learning for Food Hazard Detection
%A Śpiewak, Martyna
%A Karaś, Daniel
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F spiewak-karas-2025-opi
%X In this paper, we propose a hybrid approach for food hazard detection that combines a fine-tuned RoBERTa classifier with few-shot learning using an LLM model (GPT-3.5-turbo). We address challenges related to unstructured text and class imbalance by applying class weighting and keyword extraction (KeyBERT, YAKE, and Sentence-BERT). When RoBERTa’s confidence falls below a given threshold, a structured prompt which comprising the title, extracted keywords, and a few representative examples is used to re-evaluate the prediction with ChatGPT.
%U https://aclanthology.org/2025.semeval-1.155/
%P 1174-1180
Markdown (Informal)
[OPI-DRO-HEL at SemEval-2025 Task 9: Integrating Transformer-Based Classification with LLM-Assisted Few-Shot Learning for Food Hazard Detection](https://aclanthology.org/2025.semeval-1.155/) (Śpiewak & Karaś, SemEval 2025)
ACL