@inproceedings{sakib-etal-2025-nlp,
title = "{NLP}-{DU} at {S}em{E}val-2025 Task 11: Analyzing Multi-label Emotion Detection",
author = "Sakib, Sadman and
Faiak, Ahaj and
Arean, Abdullah Ibne Hanif and
Shifa, Fariha Anjum",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.169/",
pages = "1269--1275",
ISBN = "979-8-89176-273-2",
abstract = "This paper describes NLP-DU{'}s entry to SemEval-2025 Task 11 on multi-label emotion detection. We investigated the efficacy of transformer-based models and propose an ensemble approach that combines multiple models. Our experiments demonstrate that the ensemble outperforms individual models under the dataset constraints, yielding superior performance on key evaluation metrics. These findings underscore the potential of ensemble techniques in enhancing multi-label emotion detection and contribute to the broader understanding of emotion analysis in natural language processing."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sakib-etal-2025-nlp">
<titleInfo>
<title>NLP-DU at SemEval-2025 Task 11: Analyzing Multi-label Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sadman</namePart>
<namePart type="family">Sakib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahaj</namePart>
<namePart type="family">Faiak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdullah</namePart>
<namePart type="given">Ibne</namePart>
<namePart type="given">Hanif</namePart>
<namePart type="family">Arean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fariha</namePart>
<namePart type="given">Anjum</namePart>
<namePart type="family">Shifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper describes NLP-DU’s entry to SemEval-2025 Task 11 on multi-label emotion detection. We investigated the efficacy of transformer-based models and propose an ensemble approach that combines multiple models. Our experiments demonstrate that the ensemble outperforms individual models under the dataset constraints, yielding superior performance on key evaluation metrics. These findings underscore the potential of ensemble techniques in enhancing multi-label emotion detection and contribute to the broader understanding of emotion analysis in natural language processing.</abstract>
<identifier type="citekey">sakib-etal-2025-nlp</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.169/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1269</start>
<end>1275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLP-DU at SemEval-2025 Task 11: Analyzing Multi-label Emotion Detection
%A Sakib, Sadman
%A Faiak, Ahaj
%A Arean, Abdullah Ibne Hanif
%A Shifa, Fariha Anjum
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F sakib-etal-2025-nlp
%X This paper describes NLP-DU’s entry to SemEval-2025 Task 11 on multi-label emotion detection. We investigated the efficacy of transformer-based models and propose an ensemble approach that combines multiple models. Our experiments demonstrate that the ensemble outperforms individual models under the dataset constraints, yielding superior performance on key evaluation metrics. These findings underscore the potential of ensemble techniques in enhancing multi-label emotion detection and contribute to the broader understanding of emotion analysis in natural language processing.
%U https://aclanthology.org/2025.semeval-1.169/
%P 1269-1275
Markdown (Informal)
[NLP-DU at SemEval-2025 Task 11: Analyzing Multi-label Emotion Detection](https://aclanthology.org/2025.semeval-1.169/) (Sakib et al., SemEval 2025)
ACL