@inproceedings{bergmann-lisboa-etal-2025-qleveranswering,
title = "{Q}lever{A}nswering-{PUCRS} at {S}em{E}val-2025 Task 8: Exploring {LLM} agents, code generation and correction for Table Question Answering",
author = "Bergmann Lisboa, Andr{\'e} and
Cardoso Azevedo, Lucas and
Costella Pessutto, Lucas Rafael",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.179/",
pages = "1342--1350",
ISBN = "979-8-89176-273-2",
abstract = "Table Question Answering (TQA) is a challenging task that requires reasoning over structured data to extract accurate answers. This paper presents QleverAnswering-PUCRS, our submission to SemEval-2025 Task 8: DataBench, Question-Answering over Tabular Data. QleverAnswering-PUCRS is a modular multi-agent system that employs a structured approach to TQA. The approach revolves around breaking down the task into specialized agents, each dedicated to handling a specific aspect of the problem. Our system was evaluated on benchmark datasets and achieved competitive results, ranking mid-to-top positions in the SemEval-2025 competition. Despite these promising results, we identify areas for improvement, particularly in handling complex queries and nested data structures."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bergmann-lisboa-etal-2025-qleveranswering">
<titleInfo>
<title>QleverAnswering-PUCRS at SemEval-2025 Task 8: Exploring LLM agents, code generation and correction for Table Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Bergmann Lisboa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Cardoso Azevedo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="given">Rafael</namePart>
<namePart type="family">Costella Pessutto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Table Question Answering (TQA) is a challenging task that requires reasoning over structured data to extract accurate answers. This paper presents QleverAnswering-PUCRS, our submission to SemEval-2025 Task 8: DataBench, Question-Answering over Tabular Data. QleverAnswering-PUCRS is a modular multi-agent system that employs a structured approach to TQA. The approach revolves around breaking down the task into specialized agents, each dedicated to handling a specific aspect of the problem. Our system was evaluated on benchmark datasets and achieved competitive results, ranking mid-to-top positions in the SemEval-2025 competition. Despite these promising results, we identify areas for improvement, particularly in handling complex queries and nested data structures.</abstract>
<identifier type="citekey">bergmann-lisboa-etal-2025-qleveranswering</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.179/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1342</start>
<end>1350</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T QleverAnswering-PUCRS at SemEval-2025 Task 8: Exploring LLM agents, code generation and correction for Table Question Answering
%A Bergmann Lisboa, André
%A Cardoso Azevedo, Lucas
%A Costella Pessutto, Lucas Rafael
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F bergmann-lisboa-etal-2025-qleveranswering
%X Table Question Answering (TQA) is a challenging task that requires reasoning over structured data to extract accurate answers. This paper presents QleverAnswering-PUCRS, our submission to SemEval-2025 Task 8: DataBench, Question-Answering over Tabular Data. QleverAnswering-PUCRS is a modular multi-agent system that employs a structured approach to TQA. The approach revolves around breaking down the task into specialized agents, each dedicated to handling a specific aspect of the problem. Our system was evaluated on benchmark datasets and achieved competitive results, ranking mid-to-top positions in the SemEval-2025 competition. Despite these promising results, we identify areas for improvement, particularly in handling complex queries and nested data structures.
%U https://aclanthology.org/2025.semeval-1.179/
%P 1342-1350
Markdown (Informal)
[QleverAnswering-PUCRS at SemEval-2025 Task 8: Exploring LLM agents, code generation and correction for Table Question Answering](https://aclanthology.org/2025.semeval-1.179/) (Bergmann Lisboa et al., SemEval 2025)
ACL