@inproceedings{azadi-etal-2025-word2winners,
title = "Word2winners at {S}em{E}val-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval",
author = "Azadi, Amirmohammad and
Zamani, Sina and
Rostamkhani, Mohammadmostafa and
Eetemadi, Sauleh",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.182/",
pages = "1370--1376",
ISBN = "979-8-89176-273-2",
abstract = "This paper describes our system for SemEval 2025 Task 7: Previously Fact-Checked Claim Retrieval. The task requires retrieving relevant fact-checks for a given input claim from the extensive, multilingual MultiClaim dataset, which comprises social media posts and fact-checks in several languages. To address this challenge, we first evaluated zero-shot performance using state-of-the-art English and multilingual retrieval models and then fine-tuned the most promising systems, leveraging machine translation to enhance crosslingual retrieval. Our best model achieved an accuracy of 85{\%} on crosslingual data and 92{\%} on monolingual data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="azadi-etal-2025-word2winners">
<titleInfo>
<title>Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amirmohammad</namePart>
<namePart type="family">Azadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zamani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammadmostafa</namePart>
<namePart type="family">Rostamkhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sauleh</namePart>
<namePart type="family">Eetemadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper describes our system for SemEval 2025 Task 7: Previously Fact-Checked Claim Retrieval. The task requires retrieving relevant fact-checks for a given input claim from the extensive, multilingual MultiClaim dataset, which comprises social media posts and fact-checks in several languages. To address this challenge, we first evaluated zero-shot performance using state-of-the-art English and multilingual retrieval models and then fine-tuned the most promising systems, leveraging machine translation to enhance crosslingual retrieval. Our best model achieved an accuracy of 85% on crosslingual data and 92% on monolingual data.</abstract>
<identifier type="citekey">azadi-etal-2025-word2winners</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.182/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1370</start>
<end>1376</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval
%A Azadi, Amirmohammad
%A Zamani, Sina
%A Rostamkhani, Mohammadmostafa
%A Eetemadi, Sauleh
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F azadi-etal-2025-word2winners
%X This paper describes our system for SemEval 2025 Task 7: Previously Fact-Checked Claim Retrieval. The task requires retrieving relevant fact-checks for a given input claim from the extensive, multilingual MultiClaim dataset, which comprises social media posts and fact-checks in several languages. To address this challenge, we first evaluated zero-shot performance using state-of-the-art English and multilingual retrieval models and then fine-tuned the most promising systems, leveraging machine translation to enhance crosslingual retrieval. Our best model achieved an accuracy of 85% on crosslingual data and 92% on monolingual data.
%U https://aclanthology.org/2025.semeval-1.182/
%P 1370-1376
Markdown (Informal)
[Word2winners at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval](https://aclanthology.org/2025.semeval-1.182/) (Azadi et al., SemEval 2025)
ACL