@inproceedings{premptis-etal-2025-ails,
title = "{AILS}-{NTUA} at {S}em{E}val-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking",
author = "Premptis, Iraklis and
Lymperaiou, Maria and
Filandrianos, George and
Menis Mastromichalakis, Orfeas and
Voulodimos, Athanasios and
Stamou, Giorgos",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.184/",
pages = "1383--1405",
ISBN = "979-8-89176-273-2",
abstract = "The {\{}textit{\{}Unlearning Sensitive Content from Large Language Models{\}}{\}} task aims to remove targeted datapoints from trained models while minimally affecting their general knowledge. In our work, we leverage parameter-efficient, gradient-based unlearning using low-rank (LoRA) adaptation and layer-focused fine-tuning. To further enhance unlearning effectiveness, we employ data chunking, splitting forget data into disjoint partitions and merging them with cyclically sampled retain samples at a pre-defined ratio. Our task-agnostic method achieves an outstanding forget-retain balance, ranking first on leaderboards and significantly outperforming baselines and competing systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="premptis-etal-2025-ails">
<titleInfo>
<title>AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iraklis</namePart>
<namePart type="family">Premptis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Lymperaiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Filandrianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orfeas</namePart>
<namePart type="family">Menis Mastromichalakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athanasios</namePart>
<namePart type="family">Voulodimos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giorgos</namePart>
<namePart type="family">Stamou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>The {textit{Unlearning Sensitive Content from Large Language Models}} task aims to remove targeted datapoints from trained models while minimally affecting their general knowledge. In our work, we leverage parameter-efficient, gradient-based unlearning using low-rank (LoRA) adaptation and layer-focused fine-tuning. To further enhance unlearning effectiveness, we employ data chunking, splitting forget data into disjoint partitions and merging them with cyclically sampled retain samples at a pre-defined ratio. Our task-agnostic method achieves an outstanding forget-retain balance, ranking first on leaderboards and significantly outperforming baselines and competing systems.</abstract>
<identifier type="citekey">premptis-etal-2025-ails</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.184/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1383</start>
<end>1405</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking
%A Premptis, Iraklis
%A Lymperaiou, Maria
%A Filandrianos, George
%A Menis Mastromichalakis, Orfeas
%A Voulodimos, Athanasios
%A Stamou, Giorgos
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F premptis-etal-2025-ails
%X The {textit{Unlearning Sensitive Content from Large Language Models}} task aims to remove targeted datapoints from trained models while minimally affecting their general knowledge. In our work, we leverage parameter-efficient, gradient-based unlearning using low-rank (LoRA) adaptation and layer-focused fine-tuning. To further enhance unlearning effectiveness, we employ data chunking, splitting forget data into disjoint partitions and merging them with cyclically sampled retain samples at a pre-defined ratio. Our task-agnostic method achieves an outstanding forget-retain balance, ranking first on leaderboards and significantly outperforming baselines and competing systems.
%U https://aclanthology.org/2025.semeval-1.184/
%P 1383-1405Markdown (Informal)
[AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large Language Models using Data Chunking](https://aclanthology.org/2025.semeval-1.184/) (Premptis et al., SemEval 2025)
ACL