@inproceedings{bade-etal-2025-amado,
title = "Amado at {S}em{E}val-2025 Task 11: Multi-label Emotion Detection in {A}mharic and {E}nglish Data",
author = "Bade, Girma Yohannis and
Kolesnikova, Olga and
Oropeza, Jos{\'e} Luis and
Sidorov, Grigori and
Yigezu, Mesay Gemeda",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.185/",
pages = "1406--1410",
ISBN = "979-8-89176-273-2",
abstract = "Recently, social media has become a platform for different human emotions. Although most existing works treat the user{'}s opinions into a single emotion, the reality is that one user can have more than one emotion at a time, representing multiple emotions at the same time. Multi-label emotion detection is a more advanced and realistic approach, as it acknowledges the complexity of human emotions and their overlapping nature. This paper presents multi-label emotion detection in Amharic and English data. The work is part of SemEval2025 shared task 11, where tasks and datasets are offered by task organizers. To accomplish the aim of the given task, we fine-tune transformers base BERT model, passing through all different workflow pipelines. On unseen test data, the model evaluation achieved 0.6300 and 0.7025 an average macro F1-score for Amharic and English, respectively."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bade-etal-2025-amado">
<titleInfo>
<title>Amado at SemEval-2025 Task 11: Multi-label Emotion Detection in Amharic and English Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Girma</namePart>
<namePart type="given">Yohannis</namePart>
<namePart type="family">Bade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Kolesnikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">Luis</namePart>
<namePart type="family">Oropeza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grigori</namePart>
<namePart type="family">Sidorov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mesay</namePart>
<namePart type="given">Gemeda</namePart>
<namePart type="family">Yigezu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Recently, social media has become a platform for different human emotions. Although most existing works treat the user’s opinions into a single emotion, the reality is that one user can have more than one emotion at a time, representing multiple emotions at the same time. Multi-label emotion detection is a more advanced and realistic approach, as it acknowledges the complexity of human emotions and their overlapping nature. This paper presents multi-label emotion detection in Amharic and English data. The work is part of SemEval2025 shared task 11, where tasks and datasets are offered by task organizers. To accomplish the aim of the given task, we fine-tune transformers base BERT model, passing through all different workflow pipelines. On unseen test data, the model evaluation achieved 0.6300 and 0.7025 an average macro F1-score for Amharic and English, respectively.</abstract>
<identifier type="citekey">bade-etal-2025-amado</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.185/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1406</start>
<end>1410</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Amado at SemEval-2025 Task 11: Multi-label Emotion Detection in Amharic and English Data
%A Bade, Girma Yohannis
%A Kolesnikova, Olga
%A Oropeza, José Luis
%A Sidorov, Grigori
%A Yigezu, Mesay Gemeda
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F bade-etal-2025-amado
%X Recently, social media has become a platform for different human emotions. Although most existing works treat the user’s opinions into a single emotion, the reality is that one user can have more than one emotion at a time, representing multiple emotions at the same time. Multi-label emotion detection is a more advanced and realistic approach, as it acknowledges the complexity of human emotions and their overlapping nature. This paper presents multi-label emotion detection in Amharic and English data. The work is part of SemEval2025 shared task 11, where tasks and datasets are offered by task organizers. To accomplish the aim of the given task, we fine-tune transformers base BERT model, passing through all different workflow pipelines. On unseen test data, the model evaluation achieved 0.6300 and 0.7025 an average macro F1-score for Amharic and English, respectively.
%U https://aclanthology.org/2025.semeval-1.185/
%P 1406-1410
Markdown (Informal)
[Amado at SemEval-2025 Task 11: Multi-label Emotion Detection in Amharic and English Data](https://aclanthology.org/2025.semeval-1.185/) (Bade et al., SemEval 2025)
ACL