@inproceedings{bronec-helcl-2025-atyaephyra,
title = "Atyaephyra at {S}em{E}val-2025 Task 4: Low-Rank Negative Preference Optimization",
author = "Bronec, Jan and
Helcl, Jind{\v{r}}ich",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.187/",
pages = "1415--1422",
ISBN = "979-8-89176-273-2",
abstract = "We present a submission to the SemEval 2025 shared task on unlearning sensitive content from LLMs. Our approach employs negative preference optimization using low-rank adaptation. We show that we can utilize this combination to cheaply compute additional regularization terms, which help with unlearning stabilization. The results of our approach significantly exceed the shared task baselines."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bronec-helcl-2025-atyaephyra">
<titleInfo>
<title>Atyaephyra at SemEval-2025 Task 4: Low-Rank Negative Preference Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Bronec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jindřich</namePart>
<namePart type="family">Helcl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>We present a submission to the SemEval 2025 shared task on unlearning sensitive content from LLMs. Our approach employs negative preference optimization using low-rank adaptation. We show that we can utilize this combination to cheaply compute additional regularization terms, which help with unlearning stabilization. The results of our approach significantly exceed the shared task baselines.</abstract>
<identifier type="citekey">bronec-helcl-2025-atyaephyra</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.187/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1415</start>
<end>1422</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Atyaephyra at SemEval-2025 Task 4: Low-Rank Negative Preference Optimization
%A Bronec, Jan
%A Helcl, Jindřich
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F bronec-helcl-2025-atyaephyra
%X We present a submission to the SemEval 2025 shared task on unlearning sensitive content from LLMs. Our approach employs negative preference optimization using low-rank adaptation. We show that we can utilize this combination to cheaply compute additional regularization terms, which help with unlearning stabilization. The results of our approach significantly exceed the shared task baselines.
%U https://aclanthology.org/2025.semeval-1.187/
%P 1415-1422
Markdown (Informal)
[Atyaephyra at SemEval-2025 Task 4: Low-Rank Negative Preference Optimization](https://aclanthology.org/2025.semeval-1.187/) (Bronec & Helcl, SemEval 2025)
ACL