@inproceedings{kent-nindel-2025-itf,
title = "{ITF}-{NLP} at {S}em{E}val-2025 Task 11 An Exploration of {E}nglish and {G}erman Multi-label Emotion Detection using Fine-tuned Transformer Models",
author = "Kent, Samantha and
Nindel, Theresa",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.193/",
pages = "1465--1472",
ISBN = "979-8-89176-273-2",
abstract = "We present our submission to Task 11, Bridging the Gap in Text-Based Emotion Detection, of the 19th International Workshop on Semantic Evaluation (SemEval) 2025. We participated in track A, multi-label emotion detection, in both German and English. Our approach is based on fine-tuning transformer models for each language, and our models achieve a Macro F1 of 0.75 and 0.62 for English and German respectively. Furthermore, we analyze the data available for training to gain insight into the model predictions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kent-nindel-2025-itf">
<titleInfo>
<title>ITF-NLP at SemEval-2025 Task 11 An Exploration of English and German Multi-label Emotion Detection using Fine-tuned Transformer Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samantha</namePart>
<namePart type="family">Kent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Theresa</namePart>
<namePart type="family">Nindel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>We present our submission to Task 11, Bridging the Gap in Text-Based Emotion Detection, of the 19th International Workshop on Semantic Evaluation (SemEval) 2025. We participated in track A, multi-label emotion detection, in both German and English. Our approach is based on fine-tuning transformer models for each language, and our models achieve a Macro F1 of 0.75 and 0.62 for English and German respectively. Furthermore, we analyze the data available for training to gain insight into the model predictions.</abstract>
<identifier type="citekey">kent-nindel-2025-itf</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.193/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1465</start>
<end>1472</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ITF-NLP at SemEval-2025 Task 11 An Exploration of English and German Multi-label Emotion Detection using Fine-tuned Transformer Models
%A Kent, Samantha
%A Nindel, Theresa
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F kent-nindel-2025-itf
%X We present our submission to Task 11, Bridging the Gap in Text-Based Emotion Detection, of the 19th International Workshop on Semantic Evaluation (SemEval) 2025. We participated in track A, multi-label emotion detection, in both German and English. Our approach is based on fine-tuning transformer models for each language, and our models achieve a Macro F1 of 0.75 and 0.62 for English and German respectively. Furthermore, we analyze the data available for training to gain insight into the model predictions.
%U https://aclanthology.org/2025.semeval-1.193/
%P 1465-1472
Markdown (Informal)
[ITF-NLP at SemEval-2025 Task 11 An Exploration of English and German Multi-label Emotion Detection using Fine-tuned Transformer Models](https://aclanthology.org/2025.semeval-1.193/) (Kent & Nindel, SemEval 2025)
ACL