@inproceedings{le-etal-2025-anastasia,
title = "Anastasia at {S}em{E}val-2025 Task 9: Subtask 1, Ensemble Learning with Data Augmentation and Focal Loss for Food Risk Classification.",
author = "Le, Tung Thanh and
Ngo, Tri Minh and
Dang, Trung Hieu",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.20/",
pages = "141--147",
ISBN = "979-8-89176-273-2",
abstract = "Our approach for the SemEval-2025 Task 9: Subtask 1, The Food Hazard Detection Challenge showcases a robust ensemble learning methodology designed to classify food hazards and associated products from incident report titles. By incorporating advanced data augmentation techniques, we significantly enhanced model generalization and addressed class imbalance through the application of focal loss. This strategic combination led to our team securing the Top 1 position, achieving an impressive score of 0.8223, underscoring the strength of our solution in improving classification performance for food safety risk assessment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-etal-2025-anastasia">
<titleInfo>
<title>Anastasia at SemEval-2025 Task 9: Subtask 1, Ensemble Learning with Data Augmentation and Focal Loss for Food Risk Classification.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tung</namePart>
<namePart type="given">Thanh</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tri</namePart>
<namePart type="given">Minh</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trung</namePart>
<namePart type="given">Hieu</namePart>
<namePart type="family">Dang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Our approach for the SemEval-2025 Task 9: Subtask 1, The Food Hazard Detection Challenge showcases a robust ensemble learning methodology designed to classify food hazards and associated products from incident report titles. By incorporating advanced data augmentation techniques, we significantly enhanced model generalization and addressed class imbalance through the application of focal loss. This strategic combination led to our team securing the Top 1 position, achieving an impressive score of 0.8223, underscoring the strength of our solution in improving classification performance for food safety risk assessment.</abstract>
<identifier type="citekey">le-etal-2025-anastasia</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.20/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>141</start>
<end>147</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Anastasia at SemEval-2025 Task 9: Subtask 1, Ensemble Learning with Data Augmentation and Focal Loss for Food Risk Classification.
%A Le, Tung Thanh
%A Ngo, Tri Minh
%A Dang, Trung Hieu
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F le-etal-2025-anastasia
%X Our approach for the SemEval-2025 Task 9: Subtask 1, The Food Hazard Detection Challenge showcases a robust ensemble learning methodology designed to classify food hazards and associated products from incident report titles. By incorporating advanced data augmentation techniques, we significantly enhanced model generalization and addressed class imbalance through the application of focal loss. This strategic combination led to our team securing the Top 1 position, achieving an impressive score of 0.8223, underscoring the strength of our solution in improving classification performance for food safety risk assessment.
%U https://aclanthology.org/2025.semeval-1.20/
%P 141-147
Markdown (Informal)
[Anastasia at SemEval-2025 Task 9: Subtask 1, Ensemble Learning with Data Augmentation and Focal Loss for Food Risk Classification.](https://aclanthology.org/2025.semeval-1.20/) (Le et al., SemEval 2025)
ACL