@inproceedings{morillo-etal-2025-verbanexai,
title = "{V}erba{N}ex{AI} at {S}em{E}val-2025 Task 3: Fact Retrieval with {G}oogle Snippets for {LLM} Context Filtering to identify Hallucinations",
author = "Morillo, Anderson and
Puertas, Edwin and
Martinez Santos, Juan Carlos",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.202/",
pages = "1534--1541",
ISBN = "979-8-89176-273-2",
abstract = "Thefirst approach leverages advanced LLMs, employing a chain-of-thought prompting strategywith one-shot learning and Google snippets forcontext retrieval, demonstrating superior performance. The second approach utilizes traditional NLP analysis techniques, including semantic ranking, token-level extraction, and rigorous data cleaning, to identify hallucinations"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morillo-etal-2025-verbanexai">
<titleInfo>
<title>VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anderson</namePart>
<namePart type="family">Morillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edwin</namePart>
<namePart type="family">Puertas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Martinez Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>Thefirst approach leverages advanced LLMs, employing a chain-of-thought prompting strategywith one-shot learning and Google snippets forcontext retrieval, demonstrating superior performance. The second approach utilizes traditional NLP analysis techniques, including semantic ranking, token-level extraction, and rigorous data cleaning, to identify hallucinations</abstract>
<identifier type="citekey">morillo-etal-2025-verbanexai</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.202/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1534</start>
<end>1541</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations
%A Morillo, Anderson
%A Puertas, Edwin
%A Martinez Santos, Juan Carlos
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F morillo-etal-2025-verbanexai
%X Thefirst approach leverages advanced LLMs, employing a chain-of-thought prompting strategywith one-shot learning and Google snippets forcontext retrieval, demonstrating superior performance. The second approach utilizes traditional NLP analysis techniques, including semantic ranking, token-level extraction, and rigorous data cleaning, to identify hallucinations
%U https://aclanthology.org/2025.semeval-1.202/
%P 1534-1541
Markdown (Informal)
[VerbaNexAI at SemEval-2025 Task 3: Fact Retrieval with Google Snippets for LLM Context Filtering to identify Hallucinations](https://aclanthology.org/2025.semeval-1.202/) (Morillo et al., SemEval 2025)
ACL