@inproceedings{sharp-etal-2025-team,
title = "Team {K}i{A}m{S}o at {S}em{E}val-2025 Task 11: A Comparison of Classification Models for Multi-label Emotion Detection",
author = {Sharp, Kimberly and
Kathmann, Sofia and
R{\"u}eck, Amelie},
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.203/",
pages = "1542--1548",
ISBN = "979-8-89176-273-2",
abstract = "The aim of this paper is to take on the challenge of multi-label emotion detection for a variety of languages as part of Track A in SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. We fine-tune different pre-trained mono- and multilingual language models and compare their performance on multi-label emotion detection on a variety of high-resource and low-resource languages. Overall, we find that monolingual models tend to perform better, but for low-resource languages that do not have state-of-the-art pre-trained language models, multilingual models can achieve comparable results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharp-etal-2025-team">
<titleInfo>
<title>Team KiAmSo at SemEval-2025 Task 11: A Comparison of Classification Models for Multi-label Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kimberly</namePart>
<namePart type="family">Sharp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sofia</namePart>
<namePart type="family">Kathmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amelie</namePart>
<namePart type="family">Rüeck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>The aim of this paper is to take on the challenge of multi-label emotion detection for a variety of languages as part of Track A in SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. We fine-tune different pre-trained mono- and multilingual language models and compare their performance on multi-label emotion detection on a variety of high-resource and low-resource languages. Overall, we find that monolingual models tend to perform better, but for low-resource languages that do not have state-of-the-art pre-trained language models, multilingual models can achieve comparable results.</abstract>
<identifier type="citekey">sharp-etal-2025-team</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.203/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1542</start>
<end>1548</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team KiAmSo at SemEval-2025 Task 11: A Comparison of Classification Models for Multi-label Emotion Detection
%A Sharp, Kimberly
%A Kathmann, Sofia
%A Rüeck, Amelie
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F sharp-etal-2025-team
%X The aim of this paper is to take on the challenge of multi-label emotion detection for a variety of languages as part of Track A in SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection. We fine-tune different pre-trained mono- and multilingual language models and compare their performance on multi-label emotion detection on a variety of high-resource and low-resource languages. Overall, we find that monolingual models tend to perform better, but for low-resource languages that do not have state-of-the-art pre-trained language models, multilingual models can achieve comparable results.
%U https://aclanthology.org/2025.semeval-1.203/
%P 1542-1548
Markdown (Informal)
[Team KiAmSo at SemEval-2025 Task 11: A Comparison of Classification Models for Multi-label Emotion Detection](https://aclanthology.org/2025.semeval-1.203/) (Sharp et al., SemEval 2025)
ACL