@inproceedings{mo-etal-2025-team,
title = "Team Cantharellus at {S}em{E}val-2025 Task 3: Hallucination Span Detection with Fine Tuning on Weakly Supervised Synthetic Data",
author = "Mo, Xinyuan and
Vorontsov, Nikolay and
Zang, Tiankai",
editor = "Rosenthal, Sara and
Ros{\'a}, Aiala and
Ghosh, Debanjan and
Zampieri, Marcos",
booktitle = "Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.semeval-1.226/",
pages = "1724--1736",
ISBN = "979-8-89176-273-2",
abstract = "This paper describes our submission to SemEval-2025 Task-3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, which mainly aims at detecting spans of LLM-generated text corresponding to hallucinations in multilingual and multi-model context. We explored an approach of fine-tuning pretrained language models available on Hugging Face. The results show that predictions made by a pretrained model fine-tuned on synthetic data achieve a relatively high degree of alignment with human-generated labels. We participated in 13 out of 14 available languages and reached an average ranking of 10th out of 41 participating teams, with our highest ranking reaching the top 5 place."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mo-etal-2025-team">
<titleInfo>
<title>Team Cantharellus at SemEval-2025 Task 3: Hallucination Span Detection with Fine Tuning on Weakly Supervised Synthetic Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyuan</namePart>
<namePart type="family">Mo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Vorontsov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiankai</namePart>
<namePart type="family">Zang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-273-2</identifier>
</relatedItem>
<abstract>This paper describes our submission to SemEval-2025 Task-3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, which mainly aims at detecting spans of LLM-generated text corresponding to hallucinations in multilingual and multi-model context. We explored an approach of fine-tuning pretrained language models available on Hugging Face. The results show that predictions made by a pretrained model fine-tuned on synthetic data achieve a relatively high degree of alignment with human-generated labels. We participated in 13 out of 14 available languages and reached an average ranking of 10th out of 41 participating teams, with our highest ranking reaching the top 5 place.</abstract>
<identifier type="citekey">mo-etal-2025-team</identifier>
<location>
<url>https://aclanthology.org/2025.semeval-1.226/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>1724</start>
<end>1736</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team Cantharellus at SemEval-2025 Task 3: Hallucination Span Detection with Fine Tuning on Weakly Supervised Synthetic Data
%A Mo, Xinyuan
%A Vorontsov, Nikolay
%A Zang, Tiankai
%Y Rosenthal, Sara
%Y Rosá, Aiala
%Y Ghosh, Debanjan
%Y Zampieri, Marcos
%S Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-273-2
%F mo-etal-2025-team
%X This paper describes our submission to SemEval-2025 Task-3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, which mainly aims at detecting spans of LLM-generated text corresponding to hallucinations in multilingual and multi-model context. We explored an approach of fine-tuning pretrained language models available on Hugging Face. The results show that predictions made by a pretrained model fine-tuned on synthetic data achieve a relatively high degree of alignment with human-generated labels. We participated in 13 out of 14 available languages and reached an average ranking of 10th out of 41 participating teams, with our highest ranking reaching the top 5 place.
%U https://aclanthology.org/2025.semeval-1.226/
%P 1724-1736
Markdown (Informal)
[Team Cantharellus at SemEval-2025 Task 3: Hallucination Span Detection with Fine Tuning on Weakly Supervised Synthetic Data](https://aclanthology.org/2025.semeval-1.226/) (Mo et al., SemEval 2025)
ACL